Ядерный реактор портативный – Малогабаритная ядерная энергоустановка — новейшая технология семидесятых годов прошлого века: nikitich — LiveJournal

Мирный атом в каждый дом – миниатюрные атомные реакторы для всех

В последнее время все большее развитие получает концепция автономного энергоснабжения. Будь это загородный дом с его ветряками и солнечными панелями на крыше или деревообрабатывающий завод с отопительным котлом, работающим на отходах производства — опилках, суть не меняется. Мир постепенно приходит к тому, что пора отказываться от централизованного обеспечения теплом и электричеством. Центральное отопление в Европе уже практически не встречается, индивидуальные дома, многоквартирные небоскребы и промышленные предприятия отапливаются самостоятельно. Исключение составляют разве отдельные города северных стран – там централизованное отопление и большие котельные оправданы климатическими условиями.

Что касается автономной электроэнергетики, то к этому все идет – население активно скупает ветряки и солнечные панели. Предприятия ищут способы рационального использования тепловой энергии от технологических процессов, строят собственные тепловые электростанции и тоже скупают солнечные панели с ветряками. Особо повернутые на «зеленых» технологиях даже планируют покрывать солнечными панелями крыши заводских цехов и ангаров.

В конечном итоге это оказывается дешевле, чем покупка необходимых энергетических мощностей из местных энергосетей. Однако, после чернобыльской аварии, все как-то забыли, что самым экологически чистым, дешевым и доступным способом получения тепловой и электрической энергии все равно остается энергия атома. И если на протяжении существования атомной промышленности электростанции с ядерными реакторами всегда ассоциировались с комплексами на гектары площади, огромными трубами и озерами для охлаждения, то целый ряд разработок последних лет призван сломать эти стереотипы.

Сразу несколько компаний заявили что выходят на рынок с «домашними» ядерными реакторами. Миниатюрные станции с размерами от гаражного бокса до небольшого двухэтажного здания готовы поставлять от 10 до 100 МВт в течение 10 лет без дозаправки. Реакторы полностью автономны, безопасны, не требуют обслуживания и по истечении срока службы просто перезаряжаются еще на 10 лет. Чем не мечта для завода по производству утюгов или хозяйственного дачника? Рассмотрим более детально те из них, продажа которых начнется в ближайшие годы.

Toshiba 4S (Super Safe, Small and Simple)

Реактор сконструирован по типу батарейки. Предполагается что такая «батарейка» будет закопана в шахту глубиной 30 метров, а здание над ней будет иметь размеры 221611 метров. Не многим больше хорошего загородного дома? Такой станции понадобится обслуживающий персонал, но это все равно не идет в сравнение с десятками тысяч квадратных метров площади и сотнями рабочих на традиционных АЭС. Номинальная мощность комплекса – 10 мегаватт в течение 30 лет без дозаправки.

Реактор работает на быстрых нейтронах. Подобный реактор установлен и действует с 1980 года на Белоярской АЭС в Свердловской области России (реактор БН-600). Принцип действия описан здесь. В японской установке в качестве охлаждающей жидкости использован расплав натрия. Это позволяет работать поднять температуру работы реактора на 200 градусов Цельсия по сравнению с водой и при обычном давлении. Применение воды в таком качестве дало бы рост давления в системе в сотни раз.

Самое важное – стоимость выработки 1 кВт час для данной установки ожидается на уровне от 5 до 13 центов. Разброс обусловлен особенностями национального налогообложения, разной стоимостью переработки ядерных отходов и стоимостью введения в выведения из эксплуатации самой станции.

Первым заказчиком «батарейки» от Toshiba похоже выступит небольшой городок Galena штат Аляска в США. В настоящее время идет согласование разрешительной документации с американскими правительственными агентствами. Партнером компании в США выступает известная нам компания Westinghouse, впервые поставившая на украинскую АЭС топливные сборки альтернативные российским ТВЭЛ.

Hyperion Power Generation и реактор Hyperion

Эти американские ребята похоже первыми выйдут на коммерческий рынок миниатюрных ядерных реакторов. Компания предлагает установки от 70 до 25 мегаватт стоимостью примерно по $25-30 миллионов за штуку. Ядерные установки Hyperion могут использоваться как для генерации электроэнергии так и для отопления. Состоянием на начало 2010 года уже поступило более 100 заказов на станции разной мощности, при чем как от частных лиц, так и от государственных компаний. Планируется даже вынести производство готовых модулей за пределы США, построив заводы в Азии и Западной Европе.

Реактор работает на том же принципе, что и большинство современных реакторов в атомных электростанциях. Читать здесь. Наиболее близкими по принципу действия являются самые распространенные российские реакторы типа ВВЭР и силовые установки, применяемы на атомных подводных лодках проекта 705 «Лира» (NATO – “Alfa”). Американский реактор практически является сухопутной версией реакторов, устанавливаемы на указанных АПЛ, кстати – самых быстрых подводных лодок своего времени.

В качестве топлива используется нитрид урана, который имеет более высокую теплопроводность по сравнению с традиционным для реакторов ВВЭР керамическим оксидом урана. Это позволяет работать при температуре на 250-300 градусов Цельсия выше, чем водо-водяные установки, что повышает эффективность работы паровых турбин элеткрогенераторов. Здесь все просто – чем выше температура реактора, тем выше температура пара и, как следствие, выше КПД паровой турбины.

В качестве охлаждающей «жидкости» используется свинцово-висмутовый расплав, аналогичный таковому на советских АПЛ. Расплав проходит через три теплообменных контура, снижая температуру с 500 градусов Цельсия до 480. Рабочим телом для турбины могут служить как водяной пар так и перегретый углекислый газ.

Установка с топливом и системой охлаждения имеет массу всего в 20 тонн и рассчитана на 10 лет работы на номинальной мощности в 70 мегаватт без дозаправки. Впечатляют действительно миниатюрные размеры – реактор имеет всего 2.5 метра в высоту и 1.5 метра в ширину! Вся система может перевозиться на грузовиках или железнодорожным транспортом, являясь абсолютным коммерческим мировым рекордсменом по соотношению мощностьмобильность.

По приезду на место, «бочка» с реактором просто закапывается. Доступ к ней или какое-либо обслуживание не предполагается вообще. По истечении гарантийного срока сборка выкапывается и отправляется на завод производителя для перезаправки. Особенности свинцово-висмутового охлаждения дают огромное преимущество в безопасности – не возможен перегрев и взрыв (не растет давление с ростом температуры). Также, при охлаждении сплав застывает, а сам реактор превращается в изолированную толстым слоем свинца железную болванку, не боящуюся механических воздействий. Кстати, именно невозможность работы на малых мощностях (в следствие застывания охлаждающего сплава и автоматического отключения), явилась причиной отказа от дальнейшего использования свинцово-висмутовых установок на АПЛ. По этой же причине – это самые безопасные реакторы из всех, когда либо устанавливавшихся на АПЛ всех стран.

Изначально миниатюрные атомные электростанции разрабатывались компанией Hyperion Power Generation для нужд добывающей промышленности, а именно для переработки горючих сланцев в синтетическую нефть. Оценочные запасы синтетической нефти в горючих сланцах, доступных для переработки имеющимися на сегодня технологиями оценивается в 2.8.-3.3 триллиона баррелей. Для сравнения – запасы «жидкой» нефти в скважинах оцениваются всего в 1.2 триллиона баррелей. Однако процесс переработки сланцев в нефть требует их нагрева с последующим улавливанием  испарений, которые затем конденсируются в нефть и побочные продукты. Понятно, что для нагрева нужно где-то брать энергию. По этой причине добыча нефти из сланцев считается экономически нецелесообразной по сравнению с ее импортом у стран ОПЕК. Так что будущее своего продукта компания видит в разных сферах применения.

Например, в качестве мобильной электростанции для нужд военных баз и аэродромов. Здесь тоже интересные перспективы. Так, при ведении мобильных боевых действий, когда войска действуют из так называемых опорных пунктов в определенных регионах, эти станции могли бы питать инфраструктуру «баз». Прямо как в компьютерных стратегиях. С той лишь разницей, что когда задача в регионе выполнена, электростанцию грузят в транспортное средство (самолет, грузовой вертолет, грузовые автомобили, поезд, корабль) и увозят на новое место.

Другое применение в военной сфере – стационарное питание постоянных военных баз и аэродромов. При авиа налете или ракетном ударе база с подземной атомной электростанцией, не требующей обслуживающего персонала, с большей вероятностью сохранит боеспособность. Таким же образом можно питать группы объектов социальной инфраструктуры – системы вобоснабжения городов, административных объектов, больниц.

Ну и промышленно-гражданское применение – системы электропитания небольших городов и поселков, отдельных предприятий или их групп, системы отопления. Ведь эти установки прежде всего вырабатывают тепловую энергию и в холодных регионах планеты могут составить ядро централизованных систем отопления. Так же перспективным компания считает применение таких мобильных электростанций на опреснительных установках в развивающихся странах.

SSTAR (small, sealed, transportable, autonomous reactor)

Маленький, запечатанный, передвижной автономный реактор – проект, разрабатываемый в Lawrence Livermore National Laboratory, США. По принципу действия схож с Hyperion, только в качестве топлива использует Уран-235. Должен иметь срок годности в 30 лет при мощности от 10 до 100 мегаватт.

Размеры должны составлять 15 метров в высоту и 3 в ширину при весе реактора в 200 тонн. Эта установка изначально рассчитывается для применения в недоразвитых странах по схеме лизинга. Таким образом, повышенное внимание уделяется невозможности разобрать конструкцию и извлечь из нее что-либо ценное. Ценное  – это уран-238 и оружейный плутоний, которые вырабатываются по мере истечения срока годности.

По окончании действия договора лизинга, получатель должен будет вернуть эту установку в США. Только мне кажется, что это — мобильные заводы по производству оружейного плутония за чужие деньги? 🙂 В прочем, американское государство здесь не продвинулось дальше исследовательских работ, пока нет даже прототипа.

Подводя итог, следует отметить, что пока наиболее реальной является разработка от Hyperion и первые поставки намечены на 2014 год. Думаю, можно ожидать дальнейшего наступления «карманных» АЭС, тем более что похожие работы по созданию подобных станций ведут и другие предприятия, в том числе такие гиганты как Mitsubishi Heavy Industries. А вообще, миниатюрный ядерный реактор — это достойный ответ на всевозможную приливно-отливную муть и прочие невероятно «зеленые» технологии. Похоже, в ближайшем времени мы сможем наблюдать, как снова военные технологии переходят на гражданскую службу.

Минобороны заказало мобильные атомные реакторы для Арктики

К 2020 году в интересах Минобороны будут созданы передвижные атомные энергостанции мощностью до 1 мегаВатта.

Министр обороны дал команду сделать пилотный проект атомных станций малой мощности в интересах Минобороны. Проект уже идет и находится на стадии научно- исследовательской работы

— сообщил ТАСС гендиректор «Инжиниринговой компании инновационных проектов», выступающей интегратором программы, Юрия Конюшко.

Планируется, что мобильные атомные реакторы будут создаваться в двух вариантах — мощностью в 100 килоВатт и 1 мегаВатт, уточнил Конюшенко. Эти установки, в первую очередь, создаются для освоения Арктики и по модульному принципу. В зависимости от модификации они будут размещаться на колесном шасси МАЗ или КамАЗ, а в условиях Арктики — на санях.

Минобороны заказало мобильные атомные реакторы для Арктики

Ожидается, что предварительные данные по этим установкам будут предоставлены военным до конца нынешнего года. Потом начнутся опытно-конструкторские работы и изготовление опытного образца. Это может занять полтора-два года. Гендиректор компании уточнил, что к 2020 году будет необходимо подготовить серийное производство таких энергетических установок.

Стоит добавить, что подобные разработки велись еще в СССР. Например, в 1973 году в Белоруссии начались работы по созданию передвижного атомного реактора. Проект носил название «Памир» и в 1985 году была создана и пущена первая в мире передвижная атомная электростанция «Памир-630Д». Она размещалась на нескольких специальных полуприцепах. В качестве основного тягача для установки использовался автомобиль МАЗ-7960, специально разработанный на основе тягача МАЗ-537.

Минобороны заказало мобильные атомные реакторы для Арктики

Реакторный блок, являющийся самым тяжелым элементом всей установки, был смонтирован на специальном полуприцепе МАЗ-9994 грузоподъемностью 65 тонн.

на подходе более безопасные и компактные реакторы

Усиливающийся контроль за немыслимыми объёмами выбросов оксида углерода, образующегося в результате неполного сгорания ископаемого топлива, требует активного использования альтернативных источников энергии. В этом отношении ни солнечные, ни ветровые, ни речные электростанции не могут по эффективности затрат конкурировать с атомной энергетикой. Однако её развитие сильно затормозилось в конце прошлого века из-за ряда крупных аварий и риска тяжёлых экологических последствий. Но благодаря развитию технологий опасность может быть значительно уменьшена.

Президент Картер покидает АЭС Три-Майл-Айленд 1 апреля 1979 года

Президент Картер покидает АЭС Три-Майл-Айленд 1 апреля 1979 года

Коммерческие реакторы десятилетиями использовали в качестве топлива маленькие гранулы диоксида урана, уложенные внутри длинных цилиндрических стержней из сплава циркония. Цирконий позволяет нейтронам, образующимся в результате деления атомов, легко проходить сквозь стержни, погружённые в воду внутри активной зоны реактора, обеспечивая самоподдерживающуюся тепловую ядерную реакцию.

Но если цирконий перегревается, он вступает в реакцию с водой и производит водород, который может привести ко взрыву. Этот сценарий послужил причиной двух из трёх самых тяжёлых аварий на реакторах в мире: потенциальный взрыв и частичное плавление в 1979 году на Три-Майл-Айленд в США, а также взрывы и выброс радиации на Фукусиме-1 в Японии в 2011 году. Чернобыльская авария 1986 года произошла по причине неправильной конструкции и эксплуатации реактора.

Президент Картер покидает АЭС Три-Майл-Айленд 1 апреля 1979 года

Разрушенный 4-й энергоблок Чернобыльской АЭС 26 апреля 1986 года

Такие производители, как Westinghouse Electric Company и Framatome, ускоряют разработку так называемого аварийно-выносливого топлива, которое с меньшей вероятностью перегревается, а при наступлении этого состояния почти не будет выделять водород. В некоторых вариантах циркониевая оболочка имеет покрытие, чтобы минимизировать реакции. В других цирконий и даже диоксид урана заменены другими материалами.

Преимуществом данных технологий является возможность модернизации существующих реакторов при сравнительно небольшом вмешательстве. Поэтому они могут быть введены в эксплуатацию в течение следующего десятилетия, если результаты проводящегося ныне тестирования внутри ядра реактора окажутся успешными и удовлетворят надзирающие органы. Сообщается также, что новые виды топлива позволят станциям работать более эффективно и сделают атомную энергетику ещё более конкурентоспособной, что немаловажно, учитывая всё более активное освоение возобновляемых источников энергии.

Развитие атомной энергетики в США сильно затормозилось, в России и вовсе сложно назвать индустриальную отрасль, которая после раздела СССР не претерпела бы тяжёлый спад. Тем не менее, сегодня именно Россия является одной из ведущих стран в области атомной энергетики, ведя агрессивное соревнование с Китаем. Подобные разработки могли бы быть востребованы этими странами.

АЭС «Тяньвань» — самый крупный объект российско-китайского сотрудничества. Энергоблоки № 1 и №2 построены русскими специалистами в 2007 году

АЭС «Тяньвань» — самый крупный объект российско-китайского сотрудничества. Энергоблоки № 1 и № 2 запущены в 2007 году

Россия внедряет иные меры безопасности. Последние построенные государственной компанией «Росатом» станции внутри страны и за рубежом имеют усовершенствованные пассивные системы безопасности, которые могут подавлять перегрев, даже когда станция обесточена и охлаждающая жидкость не может активно циркулировать. Westinghouse и другие компании тоже встраивают функции пассивной безопасности в свои обновлённые проекты. Производители также экспериментируют с моделями четвёртого поколения, в которых вместо воды используется жидкий натрий или расплавленная соль для передачи тепла от деления атомов, что исключает возможность избыточного выделения водорода. Как сообщается, Китай намерен в этом году подключить к своей энергосистеме испытательный реактор с гелиевым охлаждением.

В США недостаток постоянного глубокого геологического хранилища отработанного ядерного топлива долгое время тормозило развитие отрасли. Но политические настроения могут меняться. Весной этого года внезапно более дюжины законодателей США предложили меры по возобновлению лицензирования хранилища ядерных отходов в горе Юкка в Неваде, сооружённого в 1987 году. Тем временем сенатор от Аляски Лиза Мурковски (Lisa Murkowski) выступает за разработку малогабаритных модульных реакторов в Национальной лаборатории штата Айдахо. Росатом тоже производит небольшие реакторы, которые могут транспортироваться, использоваться на ледоколах или подводных лодках. Ряд западных государств заключили предварительную сделку с NuScale Power в Орегоне на производство дюжины модульных реакторов. Улучшенное топливо и развитие направления компактных реакторов могут сыграть большую роль в возрождении атомной энергетики.

Плавучая АЭС «Академик Ломоносов» способна вырабатывать до 70 МВт электроэнергии

Плавучая АЭС «Академик Ломоносов» способна вырабатывать до 70 МВт электроэнергии

Если вы заметили ошибку — выделите ее мышью и нажмите CTRL+ENTER.

Малогабаритная ядерная энергоустановка — новейшая технология семидесятых годов прошлого века: nikitich — LiveJournal

Космос-954

МОСКВА, 3 марта. /ТАСС/. Россия завершила испытания малогабаритной ядерной энергетической установки, которая может использоваться при производстве крылатых ракет и подводных аппаратов. Об этом сообщил в субботу военно-дипломатический источник.

  • «В России завершены испытания малогабаритной ядерной энергетической установки — как для крылатых ракет неограниченной дальности, так и для автономных подводных аппаратов океанской многоцелевой системы. И эти технологии разработаны и реализованы сегодня только Россией», — отметил источник.

Меня просто умиляет идиотизм путинских пропагандистов. Путин в своём послании чушь нёс. И все грамотные поняли, что это чушь. А пропагандонам команда пошла — спасайте Путину лицо. И тут же «военно-дипломатический источник» подтвердил… Мол, не обо всём Путин наврал. И главное: «эти технологии разработаны и реализованы сегодня только Россией». Конечно только в России и только сегодня. — Рассчитано на невежественных дебилов.

Те, кто с мозгами и образованием, знают. что эти технологии были реализованы в СССР в 70-х прошлого века. И не только в СССР разумеется. И в США тоже, и давным давно.

У меня с юности в памяти засела история про упавший в Канаде советский спутник. Помню, был жуткий скандал и даже в советских газетах что-то прошло. Дело в том, что спутник был с ядерным реактором на борту и Канада требовала денежной компенсации от Советского Союза за устранение последствий радиоактивного заражения территории.

Погуглил-нашёл. Оказывается в википедии подробная статья на эту тему есть: Космос-954:

«Космос-954» — советский спутник морской космической системы разведки и целеуказания серии «УС-А» с ядерной энергетической установкой на борту. 24 января 1978 года упал на территорию Канады, вызвав радиоактивное заражение части Северо-Западных территорий. Советская сторона посчитала заражение незначительным[1], в отличие от американской и канадской, которые указывали на значительный характер заражения[2][3]. Всего на территорию площадью более 100 тысяч км² упало около сотни радиоактивных обломков. В местах падения некоторых из них радиоактивность действительно была значительной — до 200 рентген/час, бо́льшая же часть территории не пострадала. Жертв среди населения не было.

И параметры реактора:

«Космос-954» был оборудован ядерной энергетической установкой БЭС-5, известной также под кодовым названием «Бук», от которой питался бортовой радиолокатор бокового обзора. Электрическая мощность установки составляла 3 кВт при тепловой в 100 кВт, максимальный ресурс работы БЭС-5 — 124 (по другим данным, 135) суток. Двухконтурная установка имела реактор на быстрых нейтронах БР-5А и термоэлектрогенератор; теплоноситель обоих контуров — эвтектика натрий-калий, температура в первом контуре 700 °C, во втором — 350 °C. Масса всей установки — около 900 кг[4][5][6][7].

900 кг — маленький совсем. Это 1977, повторяю. Это СССР. А путинский режим до сих пор паразитирует на достижениях СССР и выдаёт их за свои.

Теперь самое интересное. Заметьте  «военно-дипломатический источник» не сообщает об испытании пресловутой «крылатой ракеты неограниченной дальности», он говорит только про испытания малогабаритной ядерной энергетической установки. Правда, со сроком испытания ошибся лет на сорок-пятьдесят. Ну это ладно.

Так почему бы эту путинскую ракету не испытать? Путин же сказал, что она есть. Да потому, что это глупость. Никакой такой ракеты нет и быть не может. Путину написали глупость, а он эту глупость зачитал. Он же невежда и болван в технике. В школе КГБ Путина учили только профессионально врать и стучать.

Никто не слышал про ракеты с ядерной энергоустановкой, ни про крылатые, ни про бескрылые. Фантастические проекты ракет и даже самолётов я ядерными двигателями были в 50-е годы, но от них давно отказались в виду полной бесперспективности.

Для чего нужен ядерный реактор на подводной лодке, торпеде или на спутнике — понятно — электричество вырабатывать, а уж этим электричеством питать либо мощную РЛС, либо электродвигатель с винтами. Там это в имеет смысл — автономность даёт, одной загрузки ядерного топлива надолго хватает.

А ракета движется за счёт реактивной струи газов. Т.е. нужно рабочее тело, которое будет образовывать эту струю — запас его нужен, запас ракетного топлива. И ядерный реактор никак не поможет продлить работу реактивного двигателя, никакой автономности он не добавит. Ни тепло реактора, ни электроэнергия не смогут образовать рабочее тело для реактивной струи. Нужен запас расходуемого вещества.

Ну а теперь представьте испытание ракеты с ядерным реактором — стартовала, полетела и попала точно в цель. А что будет в месте попадания ракеты? — Маленький Чернобыль там будет. Взорвётся работающий ядерный реактор. Хуже, чем в Канаде, будет. Реактор-то маленький, но радиация в нём большая. В Канаде реактор в плотных слоях атмосферы разлетелся на мелкие кусочки, а здесь кучно упадёт со всей радиацией.

Где испытывать будем? Есть конечно многострадальный город Воронеж… 🙂

Резюме:
Путин сморозил глупость, а пропагандоны, пытавшиеся отмазать хозяина, только сами обосрались и хозяина ещё раз обосрали.

P.S. Путинский «автономный подводный аппарат» — проще говоря, торпеда c ядерной боеголовкой — тоже советская разработка 60-х годов, от которой тогда же и отказались ввиду бессмысленного изуверства и политической вредности этой затеи. В торпеде должен был быть многомегатонный ядерный заряд в кобальтовой оболочке. Путин про кобальт ничего не сказал?

Собирались этой штукой взорвать американский берег, поднять в воздух и разбросать огромное количество породы с изотопами кобальта — чтобы на побережье США 300 лет не смогли жить даже тараканы и водоросли из-за супермощного радиоактивного заражения территории. Но это не отменило бы ни ответного удара США, ни того, что торпеда и её носитель могут быть заранее обнаружены и уничтожены. Зато США сразу озлобились бы от одного факта наличия такого оружия ядерного терроризма на вооружении у СССР.

У Путина ну ничего нового нет, ни одной новой идеи. Всё — плагиат из СССР.
Путин и его Средства Массового Оболванивания со всеми их «экспертами» и «источниками» просто лгут про новые принципы и мифические достижения. И не американцев они обманывают, а своё невежественное быдло — путинский электорат.

Космический реактор Kilopower / Habr

Интересный проект NASA/DOE ускользнул от меня при подготовке к предыдущим обзорам космических реакторов [1,2,3]. Это максимально легкий и простой вариант ядерного реактора, призванный заменить плутониевые РИТЭГи в дальних космических миссиях и энергоснабжении небольших баз астронавтов, во всяком случае, по замыслу создателей.

Проект интересен тем, что здесь отброшены многие условности в облике, которые довлеют в разных бумажных реакторах, а невысокий уровень сложности позволяет сделать конструкцию такой же простой, как у РИТЭГов, что, на самом деле сможет привести этот проект к успеху. Простая конструкция и правильная идеология позволяют проходить стадии разработки с очень высокой скоростью, не характерной для ковыряющихся десятилетиями проектов космических ядерных реакторов.

Концептуальный облик Kilopower, слева направо — радиаторы-холодильники, 2 сборки генераторов Стирлинга, радиационная защита и тепловые трубки, отражатель реактора из оксида бериллия (реактор внутри него).


Мощность Kilopower должна составлять от 1 до 10 кВт электрических (и в 4 раза выше — тепловая, что дает кпд в 25%), и настраиваться под конкретную миссию. Что интересно, насколько я понял, от мощности будет меняться только тепло-электрическая часть, а ядерная, фактически оставаться примерно одинаковой для всех вариантов. Реактор, прорабатываемый в американской лаборатории LANL, представляется собой цилиндр из сплава 7% молибдена и высокообогащенного урана 235, чего (ВОУ), почему-то разработчики космических реакторов боятся, хотя вроде никаких террористов и диктаторов за орбитой Юпитера пока не нашли. Диаметр цилиндра ~11 см, длина 25 см, вес ~35 кг, внутри расположен канал в 3.7 см диаметром, где расположен единственный стержень из карбида бора.

Молибден в сплаве с ураном нужен тут для придания механической прочности и устойчивости урана к фазовым переходам при нагреве, а стержнем-поглотителем нейтронов из карбида бора регулируется реактивность — во вставленном состоянии реактор подкритичен даже при попадании в воду, в изъятом (раз и навсегда) — выходит на закритику и набирает тепловую мощность. Мощность регулируется геометрией реактора и отражателя, которая подобрана так, что при нагреве до 1200 К тепловое расширение уранового сплава реактора снизит Кэфф (коэффициент количества нейтронов в следующем поколении) строго до 1, и дальше он больше 10 лет будет греться идущей цепной реакцией.

Табличка с расчетными Кэфф реактора: 1) холодный реактор с изъятым стержнем, 2) холодный реактор с вставленным стержнем, 3) нагретый реактор с изъятым стержнем в начале работы 4) нагретый реактор с изъятым стержнем после 10 лет выгорания.

Реактор окружен отражателем нейтронов (для снижения критмассы) из оксида бериллия, в который вставлены тепловые трубы — и это абсолютно вся конструкция собственно реактора. Между блоком преобразователей энергии и активной зоны стоит сегментная (теневая, защищающая только в одну сторону) радиационная защита из слоев гидрида лития и вольфрама.

Самое потрясающее на мой взгляд — это отсутствие оболочки у урановой активной зоны — в космосе она не нужна, на земле этот реактор не запускается никогда. Остается только позавидовать незашоренному мышлению и отсутвию атомнадзоров на орбите Нептуна.

Активная зона реактора и два варианта закрепления тепловых труб на ней. Между прочим крепление тепловых труб к урану — одна из неожиданно сложных проблем в этой разработке, в основном потому что остальные элементы реактора просты или отработаны.

Тепло, отводимое от активной зоны и отражателя тепловыми трубами подается на горячие концы генераторов Стирлинга (в разных проработках реактора их разное количество и мощность, но видимо что-то около 4-16 штук), а холодные их концы подключены к холодильникам-излучателям. Здесь тоже наблюдается здравая простота в конструкции — тепловые трубы широко применяются в космических аппаратах, а генераторы Стирлинга для космоса NASA тестирует уже второе десятилетие. При этом, считается, что замкнутая газовая конструкция Стирлингов лучше, чем разветвленная и требующая множество оборудования конструкция турбоэлектрических преобразователей (на цикле Брайтона, модно называемых в западных статьях rotating Brayton units).

Прошедшая в 2016 году испытания в центре Гленна NASA сборка из имитатора реактора (из сплава обеденного урана, нагреваемая ТЭНами) и 8 генераторов Стирлинга собранных попарно в 4 сборки. Стенд для испытаний работы системы в вакууме.

От конкурирующей конструкции РИТЭГов с Pu238 Kilopower отличает заметно бОльшая дешевизна (35 кг высокообогащенного урана стоит около 0,5 млн долларов, против примерно 50 млн долларов за 45 кг Pu238, необходимых для киловаттного РИТЭГ), и сильно меньшие проблемы с обращением при подготовке космического аппарата и его запуске, однако сегодня разработчики из LANL говорят о десятилетнем сроке работы реактора, в то время, как РИТЭГи Вояджеров работают уже 40 лет — где-то это может быть важным обстоятельством.

Испытательная площадка в Неваде, где пройдут тесты реактора и генератор Стирлинга, оставшийся у NASA после программы создания РИТЭГов с Стирлингами.

Десятилетний срок работы, по видимому, в основном ограничен механической частью реактора (генераторами Стирлинга). Во всяком случае урановое ядро за 10 лет работы на мощности 4 киловатта (тепловых) успеет выгореть меньше, чем на 0,1%, и распухание и повреждение материала составят примерно 1/10 теплового расширения, снижение мощности из-за отравления тоже признано незначительным.

Видео от LANL, рассказывающее про проект (на английском).

Важным обстоятельством для космоса является масса реактора. NASA собирает свои РИТЭГи из кубиков, с минимальным вариантом в виде MMRTG массой 45 кг и мощностью 125 ватт, так же имеется GPHS-RTG весом около 60 кг и мощностью в 300 электрических ватт, в то время, как минимальная версия Kilopower мощностью в 1 кВт весит около 300 кг, из которых реактор и радиационная защита весят около 230 кг. К сожалению, далеко не каждый аппарат NASA, отправляемый в дальний космос, имеет запас массы в 100-250 кг, даже за счет экономии 50 млн долларов на плутонии 238.

Разные варианты энергоисточников, которые можно создать на базе Kilopower.

В принципе, разработчики Kilopower точно оказались бы на коне, если бы DOE не так давно не возобновило программу производства Pu238 — ведь в 2011 году, когда, фактически стартовал проект этого космического реактора, возможность варианта восстановления производства Pu238 была все еще гипотетической, что подогревало интерес к альтернативам.

Еще немного железа — испытания тепловых труб и тепловой модели «реактор-трубы» в вакуумном стенде

В ходе разработки, специалисты LANL предложили и просчитали конструкцию киловаттного уранового реактора, и более — провело маленький эксперимент на своей критсборке Flattop, представляющей собой шар из обогащенного урана, окруженного бериллиевым отражателем. Эксперимент заключался в установке микростирлинга и тепловой трубы в критсборку, что позволило получать от тепла цепной реакции какое-то время 25 ватт электрических, так сказать proof of concept.

Критсборка Flattop и сдвигаемый бериллиевый отражатель, в правой врезке — установка тепловой трубы и генератора стирлинга к ней.

После удачной демонстрации проект Kilopower получил финансирование сразу от NASA и NNSA (это агенство, занимающееся хранением, производством и оборотом ядерных материалов в США) на 16,17 и 18 годы, предусматривающее создание прототипа киловаттного генератора с настоящим ядерным реактором (!) и испытание его в 2018 году Неваде. Производством реактора займется завод Y-12 (обычно занимающийся производством ядерного оружия), отражатель изготовит LANL, тепловую часть реактора, вакуумный стенд и биозащиту для испытаний сделает центр Маршала NASA, испытания модуля с иммитатором реактора (с ядром из обедненного урана, нагреваемого электрически) проведут в 2017 году в центре Гленна NASA.

Планы по проекту Kilopower. ISRU — получение ракетного топлива на месте (на Марсе), GRC — центр Гленна NASA, SBIR — программа разработки широкого круга технологий наса

На фоне проектов «больших» реакторов, которые проходят все круги разработки, строительства стендов, испытания на стендов, одобрения регулятором обоснований безопасности стендов и т.п. десятилетиями, проект такой длительности, простоты и с хорошей вероятностью полететь в космос не может не радовать. Еще больше он начнет радовать, если будет отобран в качестве источника энергии в одну из дальних миссий, собирающихся в космос в следующем десятилетии.

P.S. Интересная презентация NASA по аспектам использования ядерной энергии в миссии посещения Марса
P.P.S. Слегка невнятное (объяснения начинаются с середины), но довольно уникальное видео по разработке конца 80-х, начала 90х — высокотемпературному космическому реактору SP-100, планировавшегося в основном на военное применение, до сих пор частично засекреченному.

Оставьте комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *