Спутники земли – Гипотетические естественные спутники Земли — это… Что такое Гипотетические естественные спутники Земли?

Содержание

Искусственный спутник Земли — Википедия

Первый искусственный спутник Земли

Искусственный спутник Земли (ИСЗ) — космический летательный аппарат, вращающийся вокруг Земли по геоцентрической орбите.

Для движения по орбите вокруг Земли аппарат должен иметь начальную скорость, равную или большую первой космической скорости. Полёты ИСЗ выполняются на высотах до нескольких сотен тысяч километров. Нижнюю границу высоты полёта ИСЗ обуславливает необходимость избегания процесса быстрого торможения в атмосфере. Период обращения спутника по орбите в зависимости от средней высоты полёта может составлять от полутора часов до нескольких лет. Особое значение имеют спутники на геостационарной орбите, период обращения которых строго равен суткам и поэтому для наземного наблюдателя они неподвижно «висят» на небосклоне, что позволяет избавиться от поворотных устройств в антеннах.

Под понятием спутник, как правило, подразумеваются беспилотные космические аппараты (КА), однако околоземные пилотируемые и автоматические грузовые космические корабли, а также орбитальные станции по сути также являются спутниками. Автоматические межпланетные станции (АМС) и межпланетные космические корабли могут запускаться в дальний космос как минуя стадию спутника (то есть прямое восхождение), так и после предварительного вывода на так называемую опорную орбиту спутника.

В начале космической эры спутники запускались только посредством ракет-носителей, а к концу XX века широкое распространение получил также запуск спутников с борта других спутников — орбитальных станций и космических кораблей (в первую очередь, с МТКК-космоплана Спейс Шаттл). Как средства выведения спутников теоретически возможны, но пока не реализованы также МТКК-космолёты, космические пушки, космические лифты. Уже через небольшое время после начала космической эры стало обычным выведение более одного спутника на одной ракете-носителе, а к концу 2013 года число выводимых одновременно спутников в некоторых запусках ракет-носителей превысило три десятка. В ходе некоторых запусков последние ступени ракет-носителей также выходят на орбиту и на какое-то время фактически становятся спутниками.

Беспилотные спутники имеют массу от нескольких килограмм до двух десятков тонн и размер от нескольких сантиметров до (в частности, при использовании солнечных батарей и выдвижных антенн) нескольких десятков метров. Являющиеся спутниками космические корабли и космопланы достигают нескольких десятков тонн и метров, а сборные орбитальные станции — сотен тонн и метров. В XXI веке с развитием микроминиатюризации и нано-технологий массовым явлением стало создание сверхмалых спутников форматов кубсат (от одного до несколько кг и от нескольких до нескольких десятков см), а также появился новый формат покетсат (буквально карманный) в несколько сотен или десятков грамм и несколько сантиметров.

Спутники преимущественно создаются как невозвратные, однако некоторые из них (в первую очередь, пилотируемые и некоторые грузовые космические корабли) являются возвращаемыми частично (имея спускаемый аппарат) или полностью (космопланы и спутники, возвращаемые на их борту).

Искусственные спутники Земли широко используются для научных исследований и прикладных задач, а также в образовании (в мире стали массовым явлением так называемые «университетские» ИСЗ[1]) и хобби — радиолюбительские спутники.

В начале космической эры спутники запускались государствами (национальными государственными организациями), однако затем широкое распространение получили спутники частных компаний. С появлением кубсатов и покетсатов со стоимостью выведения до нескольких тысяч долларов стал возможен запуск спутников частными лицами.

Различают следующие типы спутников:

ИСЗ запускались более чем 70 различными странами (а также отдельными компаниями) с помощью как собственных ракет-носителей (РН), так и предоставляемых в качестве пусковых услуг другими странами и межгосударственными и частными организациями.

Первый в мире ИСЗ запущен в СССР 4 октября 1957 года (Спутник-1).
Второй страной, запустившей ИСЗ, стали США 1 февраля 1958 года (Эксплорер-1).
Третьей страной, выведшей первый ИСЗ на своей РН, стала Франция 26 ноября 1965 года (Астерикс).
Следующие страны — Великобритания, Канада, Италия — запустили свои первые ИСЗ в 1962, 1962, 1964 гг. соответственно на американских РН.
Австралия и ФРГ обзавелись первыми ИСЗ в 1967 и 1969 гг. соответственно также с помощью РН США.
На своих РН запустили свои первые ИСЗ Япония, Китай, Израиль в 1970, 1970, 1988 гг.
Ряд стран — Великобритания, Индия, Иран, а также Европа (межгосударственная организация ESRO, ныне ESA) — запустили свои первые ИСЗ на иностранных носителях, прежде чем создали свои РН. Первые ИСЗ многих стран были разработаны и закуплены в других странах (США, СССР, Китае и др.).

Первые ИСЗ стран мира[4][править | править код]

Неподтверждаемые первые ИСЗ[править | править код]

  •  Ирак — заявленный запуск в 1989 году на орбиту головной части РН «Таммуз» не подтверждён.
  •  КНДР — в 1998 и 2009 годах КНДР пыталась вывести на околоземную орбиту спутник Кванмёнсон-1 и Кванмёнсон-2, факт вывода средствами контроля космического пространства США и России не подтверждается, однако северокорейская сторона настаивает на факте успешного выведения ИСЗ на орбиту.

Страны, планирующие первые ИСЗ[править | править код]

10 февраля 2009 года впервые в истории произошло столкновение спутников. Столкнулись российский военный спутник (выведенный на орбиту в 1994 году, но через два года списанный) и рабочий американский спутник оператора спутниковой телефонной связи Иридиум. «Космос-2251» весил почти 1 тонну, а «Iridium 33» — 560 кг[9][10].

Спутники столкнулись над северной частью Сибири. В результате столкновения образовалось два облака из мелких обломков и фрагментов (общее количество обломков составило около 600)[11].

какие есть и чем отличаются

 

Мы провели эксперимент: спросили у знакомых, знают ли они, сколько спутников у Земли. Из десяти человек только один решил уточнить: «Каких именно? Естественных или искусственных?». Остальные вспомнили, что у Земли есть спутник Луна, и они слышали о каких-то ещё. Чтобы развеять сомнения в этом вопросе, Прекрасный Мир решил рассказать, какие спутники есть у Земли и чем они отличаются.

 

Что такое спутник

Спутник — объект, который вращается вокруг другого объекта в космосе по определенной траектории. В зависимости от происхождения спутники бывают естественными и искусственными.

Луна — естественный спутник Земли

Есть 2 наиболее распространенные теории о том, как появляются естественные спутники

 Луна — естественный спутник Земли

  1. Своей гравитационной силой планета притянула к себе астероид. Притянутый астероид начал вращаться по ее орбите и постепенно приобрел шарообразную форму.
  2. Когда планета только формировалась, от нее откололся кусочек. Этот кусочек не отдалился от планеты, а стал вращаться вокруг нее.

Считается, что для Луны справедлива вторая теория. Ученые выяснили, что в составах Луны и Земли есть одинаковые соединения. Поэтому они предположили, что раньше Луна была частью планеты.

Луна — это единственный естественный спутник Земли. Сейчас этот факт общепризнан, но в 19-м и первой половине 20-го веков астрономы постоянно предполагали наличие у Земли и других спутников.

Гипотетические естественные спутники Земли

Болид — яркий и заметный метеор

Фредерик Пти изучал болиды — достаточно яркие и заметные метеоры. По его вычислениям получалось, что некоторые болиды двигались по эллиптической орбите. Из-за этого он предположил, что эти болиды могут быть спутниками Земли. Научное сообщество с его теорией не согласилось и указало Пти на ошибки в вычислениях: например, он не учитывал сопротивление воздуха и не брал в расчет погрешности в исходных данных.

 

Письмо Георга Вальтемата в журнал «Сайенс»

(Sience) в котором он сообщает, что открыл

второй спутник Земли.

Георг Вальтемат предположил, что у Земли есть 3 маленьких спутника. Он считал, что спутники в разное время наблюдали многие ученые, но приняли их за пятна на солнце. Вальтемат заявил, что, в основном, спутники не видно, потому что они отражают мало света. Тем не менее, он вычислил, когда спутник пройдет по диску Солнца и будет заметен. Ученые Уинклер (Йена, Германия) и Иво фон Бенко (Пула, Австрия) проверили его заявление, но в назначенное время спутника не увидели.

Появлялись и другие заявления о наблюдении спутников Земли. Такие заявление делали астролог Горнольд, астроном-любитель Шпиль, ученый Джон Багби. Ни одно из таких заявлений не подтвердилось.

Квазиспутники

36514986361374gif1024x768.gif

Круитни — это квазиспутник,                 он  не является естественным спутником Земли.

В 21 веке ученые обнаружили небесные тела, которые были похожи на спутники. Эти тела назвали квазиспутниками. В отличие от Луны, квазиспутники обращаются вокруг Солнца и находятся от него примерно на том же расстоянии, что и Земля. Их орбиты нестабильны, и они периодически приближаются к Земле. В научно-популярной литературе квазиспутники называют «вторыми лунами» или «вторыми спутниками». Это упрощенное название, но из-за него порой возникает путаница: одно время в интернете появлялись статьи об обнаружении второго естественного спутника у Земли — Круитни. На самом деле, Круитни — это квазиспутник.

Искусственные спутники

36514986361205jpg1024x768.jpg

ГЛОНАСС — глобальная навигационная спутниковая система, российская разработка

Искусственный спутник Земли — это космический летательный аппарат, который вращается вокруг планеты по эллиптической орбите. Обычно под этим названием понимают беспилотные аппараты.

 

Спутников в космосе много: спутники связи, разведывательные и навигационные спутники, метеорологические, астрономические и другие исследовательские спутники.

Что посмотреть интересное о космосе

 

О космосе сейчас много материалов, которыми можно просто восторгаться, даже если вы ничего не понимаете в этой области. Если нравится космос, то Прекрасный Мир рекомендует посмотреть:

  1. Гугл Луна. Можно рассмотреть поверхность Луны и найти, куда прилунялись экспедиции: https://www.google.com/intl/ru/moon/

  2. Галерея Наса. Особенно крутой раздел с фото дня: https://www.nasa.gov/multimedia/imagegallery/iotd.html

  3. Инстаграм Наса. Здесь публикуют короткие видео с запуском ракет, потрясающие фото и видео из космоса: https://www.instagram.com/nasa/

  4. Инстаграм Роскосмоса. Здесь тоже фото и видео из космоса, особенно много прекрасных фотографий Земли: https://www.instagram.com/roscosmosofficial/

  5. Телестудия Роскосмоса. Новости, научно-популярные программы и видеоролики на русском: http://www.tvroscosmos.ru/

 

P.S. Статья является научно-популярной и предназначена для новичков. Поэтому мы написали ее простым языком, упуская сложную терминологию.

 

С пожеланиями запоминающихся лунных ночей,

Анастасия Горбунова.

 

Статья написана для Прекрасного Мира.

 

 

 

 

Спутники в Солнечной системе — Википедия

Сравнительные размеры некоторых спутников и Земли. Вверху — названия планет, вокруг которых показанные спутники обращаются.

Спутники планет, карликовых планет и малых тел Солнечной системы (в скобках указан год открытия; списки отсортированы по дате открытия).

Спутников у Меркурия, по современным данным, нет, хотя такие предположения выдвигались ранее.

В прошлом имели место многочисленные заявления о наблюдении спутников Венеры, но, по современным данным, естественных спутников у Венеры нет, а астероид 2002 VE68 является лишь квазиспутником[1].

У Земли всего один «полноценный» спутник — Луна, но целых 6 квазиспутников: (3753) Круитни, 2003 YN107 и (164207) 2004 GU9,[2](419624) 2010 SO16,[3] а также (367943) Дуэнде и (469219) 2016 HO3. Есть теории о гипотетических спутниках Земли и Луны и о подобии колец.

У Марса известно всего два спутника:

У Юпитера известно 79 спутников, в том числе открытые до полёта «Вояджеров»:

Четыре крупнейших спутника — Ио, Европа, Ганимед и Каллисто — называются Галилеевыми спутниками.

Кроме того, у Юпитера есть система колец (1979).

У Сатурна известно 82 спутника, в том числе открытые до полёта «Вояджеров»:

В 2019 году астрономы открыли 20 новых спутников Сатурна, благодаря чему он стал рекордсменом в Солнечной системе по количеству известных спутников, опередив Юпитер[4][5]. Также Сатурн обладает мощной системой колец, открытых Галилеем в 1609 году. Выдвигается гипотеза о существовании колец у Реи.

У Урана известно 27 спутников:

Также у Урана имеется система колец (1977).

У Нептуна известно 14 спутников:

У Нептуна есть и система колец (1989).

Церера[править | править код]

Спутников у Цереры не обнаружено. Фотографии, сделанные космическим аппаратом «Dawn» по состоянию на апрель 2015 года, исключают существование сколь-нибудь крупных спутников.

Плутон[править | править код]

Основная статья: Спутники Плутона

У Плутона известно пять спутников:

Существует мнение, что, поскольку барицентр системы Плутон—Харон находится вне поверхности Плутона, Харон является не спутником Плутона, а компонентом двойной планетной системы. Предполагалось, что у Плутона также может быть система планетных колец[6], но после пролёта у Плутона в 2015 году аппарата «Новые горизонты» таковых не обнаружилось.

Хаумеа[править | править код]

У Хаумеа известны два спутника:

Также у Хаумеа есть система колец (2017)

Макемаке[править | править код]

У Макемаке известен всего один спутник:

Эрида[править | править код]

У Эриды известен всего один спутник:

6 спутников Земли, о которых Вы не знали: казиспутники и троянские астероиды

Луна — единственный естественный спутник Земли. Когда-то мы были настолько уверенны в этом, что даже не дали своей луне какого-то определенного имени. С другой стороны это вполне оправдано, т.к. Луна являющаяся наиболее ярким и крупным объектом ночного неба, лишний раз в представлении не нуждается. Остальные же 6 спутников Земли настолько малы и далеки, что увидеть их можно только в мощные телескопы. Кроме того, вращаются они вокруг Солнца, но находятся под влиянием притяжения Земли.

Можно долго спорить по поводу того являются ли подобные объекты естественными спутниками, но поскольку, так сказать, официальная точка зрения по этому поводу еще не определена, то относить их к таковым пока ничего не запрещает. Международный Астрономический Союз, главенствующая организация в вопросах определения чем является то или иное небесное тело и как это тело правильно называть, обещает в скором будущем дать четкое определение понятиям «спутник» и «компонент гравитационной системы». Поэтому пока имеем то, имеем.

Что же, давайте выяснять какими они бывают и чем отличаются от Луны.

Итак, вместе с Луной у Земли 7 спутников. 5 из них являются квазиорбитальными астероидами или просто квазиспутниками, еще один относится к классу троянских астероидов. До определенного момента и те и другие (в данном случае другОЙ) были вполне обычными астероидами и вращались по своим более менее устойчивым орбитам вокруг Солнца, пока однажды не нарвались на огромную, относительно их габаритов, Землю в результате чего попали в орбитальный резонанс 1:1 с последней. Другими словами обращение Земли и «захваченных» астероидов синхронизировалось и теперь они делают один виток вокруг Солнца за одинаковое время.

В остальном эти два типа принципиально отличаются друг от друга, поэтому рассмотрим каждый по отдельности.

Квазиспутники Земли

Что такое квазиспутник? В принципе, им может стать практически любое небесное тело, попавшее в орбитальный резонанс 1 к 1 с планетой. Не смотря на полностью совпадающие орбитальные периоды, квазиспутники всегда имеют более значительный эксцентриситет (степень отклонения от окружности) орбиты, а иногда еще и выраженный наклон относительно плоскости эклиптики (плоскости, в которой вращается планета).

Главная особенность квазиспутников, как впрочем и троянских астероидов, заключается в том, что в любой момент времени они находятся ровно на том же расстоянии от Земли, что и год назад. Собственно, по этой причине их и причисляют к естественным спутникам.

С другой стороны их «верность» планете не всегда стабильна: продолжительность гравитационного тандема может составлять от нескольких орбитальных периодов до сотен тысяч витков.

Круитни

Самый крупный и известный среди квазиорбитальных спутников Земли — астероид Круитни (3753). Он был открыт еще в 1986 году астрономом-любителем и стал первым известным небесным телом в Солнечной системе, которое двигалось по такой странной, но стабильной орбите. Позднее астрономы обнаружили подобных компаньонов у Венеры, Юпитера, Сатурна, Урана, Нептуна и даже Плутона.

К сожалению, что собой представляет Круитни мы толком и не знаем. Это астероид диаметром около 5 км. Он вращается по очень вытянутой и наклоненной к плоскости эклиптике орбите, перигелий (ближайшая к Солнцу точка орбиты) которой лежит между орбитами Меркурия и Венеры, афелий — между Марсом и Юпитером.

Теоретически, так может выглядеть наш самый большой квазиорбитальный спутник

Наблюдая за Круитни с Земли, создается впечатление, что он очерчивает в небе подковообразные пируэты.

Каждый год в ноябре Круитни максимально сближается с Землей, подлетая на 12 млн км — это примерно в 30 раз больше расстояния до Луны. Увидеть, наш самый крупный квазиспутник в это время можно невооруженным взглядом, но выглядит он как очень тусклая звездочка.

Другие квазиспутники

Не менее интересен и самый маленький квазиспутник — (367943) Дуэнде. Его диаметр составляет всего навсего 30 метров, что он решил компенсировать максимальными сближениями с Землей. Так, 15 февраля 2013 года Дуэнде прошел на расстоянии всего 27 743 км от нас. Тем не менее, тогда для его наблюдения необходимо было вооружиться хотя бы простеньким биноклем. Увидеть Дуэнде без каких бы то ни было приспособлений мы сможем только в 2094 году — сближение составит 4500 км — пол шага в космических масштабах.

Еще есть 2003 YN107, (164207) 2004 GU9 и 2010 SO16. Известно о них совсем мало. Их диаметр лежит в пределах от 200 до 500 метров, а максимальное сближение составляет 23 млн км.

Троянский спутник Земли

Троянцы — небесные тела, которые движутся вдоль орбиты планеты в 60° впереди (точка Лагранжа L4) или 60° позади (точка Лагранжа L5) нее, совершая при этом дополнительные спиралевидные вращения относительно точек L4 или L5.

Зачастую эксцентриситет орбиты троянских астероидов полностью соответствует таковому у планеты, а вот наклон относительно плоскости эклиптики у троянцев весьма значительный. В целом, траектория их движения очень непроста и трудно поддается прогнозированию в долгосрочной перспективе (на несколько тысяч лет).

Астероид 2010 TK7

На данный момент у Земли известен лишь один такой астероид, 2010 TK7. Однако астрономы полагают, что реальное их количество может быть очень большим.

2010 TK7 представляет собой скалистый астероид размером примерно 300 метров. Он движется по крайне сложной орбите в 60° впереди нашей планеты. Максимальное сближение составляет около 20 млн км.

Визуализация траектории астероида 2010 TK7. Спиралеобраные движения возникают, как полагается, из-за высокого угла наклона и гравитационного притяжения со стороны других планет Солнечной системы.

Интересно, что существование троянских астероидов было предсказано в далеком 1772 году гениальным французским математиком и астрономом Жозефом Лагранжем. В своих уравнениях он рассчитал нахождение областей вдоль орбиты Планеты, в которых гравитация Солнца и планеты уравновешивается, позволяя малым телам, оказавшихся в этих точках, двигаться по одной орбите с планетой.

Наибольшее количество троянских астероидов в своем распоряжении имеет Юпитер — 6178. 9 имеется у Нептуна, и по одному у Марса и Урана.

Геостационарная орбита — Википедия

Синхронная орбита
Вид Земли с высоты около 30 тысяч км (Аполлон-8)

Геостациона́рная орби́та (ГСО) — круговая орбита, расположенная над экватором Земли (0° широты), находясь на которой, искусственный спутник обращается вокруг планеты с угловой скоростью, равной угловой скорости вращения Земли вокруг оси. В горизонтальной системе координат направление на спутник не изменяется ни по азимуту, ни по высоте над горизонтом — спутник «висит» в небе неподвижно. Поэтому спутниковая антенна, однажды направленная на такой спутник, всё время остаётся направленной на него. Геостационарная орбита является разновидностью геосинхронной орбиты и используется для размещения искусственных спутников (коммуникационных, телетрансляционных и т. п.).

Спутник должен обращаться в направлении вращения Земли, на высоте 35 786 км над уровнем моря (вычисление высоты ГСО см. ниже). Именно такая высота обеспечивает спутнику период обращения, равный периоду вращения Земли относительно звёзд (Звёздные сутки: 23 часа 56 минут 4,091 секунды).

Идея использования геостационарных спутников для целей связи высказывалась ещё словенским теоретиком космонавтики Германом Поточником[1] в 1928 году.

Преимущества геостационарной орбиты получили широкую известность после выхода в свет научно-популярной статьи Артура Кларка в журнале «Wireless World» в 1945 году[2], поэтому на Западе геостационарная и геосинхронные орбиты иногда называются «орбитами Кларка», а «поясом Кларка» называют область космического пространства на расстоянии 36000 км над уровнем моря в плоскости земного экватора, где параметры орбит близки к геостационарной. Первым спутником, успешно выведенным на ГСО, был Syncom-3[en], запущенный NASA в августе 1964 года.

Geostationary orbit-animation.gif

Спутник, находящийся на геостационарной орбите, неподвижен относительно поверхности Земли[3], поэтому его местоположение на орбите называется точкой стояния. В результате сориентированная на спутник и неподвижно закреплённая направленная антенна может сохранять постоянную связь с этим спутником длительное время.

Для Архангельска максимально возможная высота спутника над горизонтом — 17,2°
Наивысшая точка пояса Кларка всегда находится строго на юге (для северного полушария). В нижней части графика градусы — меридианы, над которыми находятся спутники.
По бокам — высоты спутников над горизонтом.
Сверху — направление на спутник. Для наглядности можно растянуть по горизонтали в 7,8 раза и отразить слева направо. Тогда он будет выглядеть так же, как на небе.

Геостационарная орбита может быть точно обеспечена только на окружности, расположенной прямо над экватором, с высотой, очень близкой к 35 786 км.

Если бы геостационарные спутники были видны на небе невооружённым глазом, то линия, на которой они были бы видны, совпадала бы с «поясом Кларка» для данной местности. Геостационарные спутники, благодаря имеющимся точкам стояния, удобно использовать для спутниковой связи: единожды сориентированная антенна всегда будет направлена на выбранный спутник (если он не сменит позицию).

Для перевода спутников с низковысотной орбиты на геостационарную используются переходные геостационарные (геопереходные) орбиты (ГПО) — эллиптические орбиты с перигеем на низкой высоте и апогеем на высоте, близкой к геостационарной орбите.

После завершения активной эксплуатации на остатках топлива спутник должен быть переведён на орбиту захоронения, расположенную на 200—300 км выше ГСО.

Существуют каталоги объектов на геостационарной орбите.[4]

Вычисление параметров геостационарной орбиты[править | править код]

Радиус орбиты и высота орбиты[править | править код]

На геостационарной орбите спутник не приближается к Земле и не удаляется от неё, и кроме того, вращаясь вместе с Землёй, постоянно находится над какой-либо точкой на экваторе. Следовательно, действующие на спутник силы гравитации и центробежная сила должны уравновешивать друг друга. Для вычисления высоты геостационарной орбиты можно воспользоваться методами классической механики и, перейдя в систему отсчета спутника, исходить из следующего уравнения:

Fu=FΓ{\displaystyle F_{u}=F_{\Gamma }},

где Fu{\displaystyle F_{u}} — сила инерции, а в данном случае, центробежная сила; FΓ{\displaystyle F_{\Gamma }} — гравитационная сила. Величину гравитационной силы, действующую на спутник, можно определить по закону всемирного тяготения Ньютона:

FΓ=G⋅M3⋅mcR2{\displaystyle F_{\Gamma }=G\cdot {\frac {M_{3}\cdot m_{c}}{R^{2}}}},

где mc{\displaystyle m_{c}} — масса спутника, M3{\displaystyle M_{3}} — масса Земли в килограммах, G{\displaystyle G} — гравитационная постоянная, а R{\displaystyle R} — расстояние в метрах от спутника до центра Земли или, в данном случае, радиус орбиты.

Величина центробежной силы равна:

Fu=mc⋅a{\displaystyle F_{u}=m_{c}\cdot a},

где a{\displaystyle a} — центростремительное ускорение, возникающее при круговом движении по орбите.

Как можно видеть, масса спутника mc{\displaystyle m_{c}} присутствует как множитель в выражениях для центробежной силы и для гравитационной силы, то есть высота орбиты не зависит от массы спутника, что справедливо для любых орбит[5] и является следствием равенства гравитационной и инертной массы. Следовательно, геостационарная орбита определяется лишь высотой, при которой центробежная сила будет равна по модулю и противоположна по направлению гравитационной силе, создаваемой притяжением Земли на данной высоте.

Центростремительное ускорение равно:

a=ω2⋅R{\displaystyle a=\omega ^{2}\cdot R},

где ω{\displaystyle \omega } — угловая скорость вращения спутника, в радианах в секунду.

Сделаем одно важное уточнение. В действительности, центростремительное ускорение имеет физический смысл только в инерциальной системе отсчета, в то время как центробежная сила является так называемой мнимой силой и имеет место исключительно в системах отсчета (координат), которые связаны с вращающимися телами. Центростремительная сила (в данном случае — сила гравитации) вызывает центростремительное ускорение. По модулю центростремительное ускорение в инерциальной системе отсчета равно центробежному в системе отсчета, связанной в нашем случае со спутником. Поэтому далее, с учетом сделанного замечания, мы можем употреблять термин «центростремительное ускорение» вместе с термином «центробежная сила».

Уравнивая выражения для гравитационной и центробежной сил с подстановкой центростремительного ускорения, получаем:

mc⋅ω2⋅R=G⋅M3⋅mcR2{\displaystyle m_{c}\cdot \omega ^{2}\cdot R=G\cdot {\frac {M_{3}\cdot m_{c}}{R^{2}}}}.

Сокращая mc{\displaystyle m_{c}}, переводя R2{\displaystyle R^{2}} влево, а ω2{\displaystyle \omega ^{2}} вправо, получаем:

R3=G⋅M3ω2{\displaystyle R^{3}=G\cdot {\frac {M_{3}}{\omega ^{2}}}}

или

R=G⋅M3ω23{\displaystyle R={\sqrt[{3}]{\frac {G\cdot M_{3}}{\omega ^{2}}}}}.

Можно записать это выражение иначе, заменив G⋅M3{\displaystyle G\cdot M_{3}} на μ{\displaystyle \mu } — геоцентрическую гравитационную постоянную:

R=μω23{\displaystyle R={\sqrt[{3}]{\frac {\mu }{\omega ^{2}}}}}

Угловая скорость ω{\displaystyle \omega } вычисляется делением угла, пройденного за один оборот (360∘=2⋅π{\displaystyle 360^{\circ }=2\cdot \pi } радиан) на период обращения (время, за которое совершается один полный оборот по орбите: один сидерический день, или 86 164 секунды). Получаем:

ω=2⋅π86164=7,29⋅10−5{\displaystyle \omega ={\frac {2\cdot \pi }{86164}}=7,29\cdot 10^{-5}} рад/с

Полученный радиус орбиты составляет 42 164 км. Вычитая экваториальный радиус Земли, 6 378 км, получаем высоту 35 786 км.

Можно сделать вычисления и иначе. Высота геостационарной орбиты — это такое удаление от центра Земли, где угловая скорость спутника, совпадающая с угловой скоростью вращения Земли, порождает орбитальную (линейную) скорость, равную первой космической скорости (для обеспечения круговой орбиты) на данной высоте.

Линейная скорость спутника, движущегося с угловой скоростью ω{\displaystyle \omega } на расстоянии R{\displaystyle R} от центра вращения равна

vl=ω⋅R{\displaystyle v_{l}=\omega \cdot R}

Первая космическая скорость на расстоянии R{\displaystyle R} от объекта массой M{\displaystyle M} равна

vk=GMR;{\displaystyle v_{k}={\sqrt {G{\frac {M}{R}}}};}

Приравняв правые части уравнений друг к другу, приходим к полученному ранее выражению радиуса ГСО:

R=GMω23{\displaystyle R={\sqrt[{3}]{G{\frac {M}{\omega ^{2}}}}}}

Орбитальная скорость[править | править код]

Скорость движения по геостационарной орбите вычисляется умножением угловой скорости на радиус орбиты:

v=ω⋅R=3,07{\displaystyle v=\omega \cdot R=3{,}07} км/с

Это примерно в 2,5 раза меньше, чем первая космическая скорость, равная 8 км/с на околоземной орбите (с радиусом 6400 км). Так как квадрат скорости для круговой орбиты обратно пропорционален её радиусу,

v=GMR;{\displaystyle v={\sqrt {G{\frac {M}{R}}}};}

то уменьшение скорости по отношению к первой космической достигается увеличением радиуса орбиты более чем в 6 раз.

R≈6400⋅(83,07)2≈43000{\displaystyle R\approx \,\!{6400\cdot \left({\frac {8}{3{,}07}}\right)^{2}}\approx \,\!43000}

Длина орбиты[править | править код]

Длина геостационарной орбиты: 2⋅π⋅R{\displaystyle {2\cdot \pi \cdot R}}. При радиусе орбиты 42 164 км получаем длину орбиты 264 924 км.

Длина орбиты крайне важна для вычисления «точек стояния» спутников.

Удержание спутника в орбитальной позиции на геостационарной орбите[править | править код]

Спутник, обращающийся на геостационарной орбите, находится под воздействием ряда сил (возмущений), изменяющих параметры этой орбиты. В частности, к таким возмущениям относятся гравитационные лунно-солнечные возмущения, влияние неоднородности гравитационного поля Земли, эллиптичность экватора и т. д. Деградация орбиты выражается в двух основных явлениях:

1) Спутник смещается вдоль орбиты от своей первоначальной орбитальной позиции в сторону одной из четырёх точек стабильного равновесия, т. н. «потенциальных ям геостационарной орбиты» (их долготы 75,3°E, 104,7°W, 165,3°E, и 14,7°W) над экватором Земли;

2) Наклонение орбиты к экватору увеличивается (от первоначального 0) со скоростью порядка 0,85 градусов в год и достигает максимального значения 15 градусов за 26,5 лет.

Для компенсации этих возмущений и удержания спутника в назначенной точке стояния спутник оснащается двигательной установкой (химической или электроракетной). Периодическими включениями двигателей малой тяги (коррекция «север — юг» для компенсации роста наклонения орбиты и «запад — восток» для компенсации дрейфа вдоль орбиты) спутник удерживается в назначенной точке стояния. Такие включения производятся по нескольку раз в 10 — 15 суток. Существенно, что для коррекции «север — юг» требуется значительно большее приращение характеристической скорости (около 45 — 50 м/с в год), чем для долготной коррекции (около 2 м/с в год). Для обеспечения коррекции орбиты спутника на протяжении всего срока его эксплуатации (12 — 15 лет для современных телевизионных спутников) требуется значительный запас топлива на борту (сотни килограммов в случае применения химического двигателя). Химический ракетный двигатель спутника имеет вытеснительную подачу топлива (газ наддува — гелий), работает на долгохранимых высококипящих компонентах (обычно несимметричный диметилгидразин и диазотный тетраоксид). На ряде спутников устанавливаются плазменные двигатели. Их тяга существенно меньше по отношению к химическим, однако большая эффективность позволяет (за счёт продолжительной работы, измеряемой десятками минут для единичного манёвра) радикально снизить требуемую массу топлива на борту. Выбор типа двигательной установки определяется конкретными техническими особенностями аппарата.

Эта же двигательная установка используется при необходимости для манёвра перевода спутника в другую орбитальную позицию. В некоторых случаях (как правило, в конце срока эксплуатации спутника) для сокращения расхода топлива коррекция орбиты «север — юг» прекращается, а остаток топлива используется только для коррекции «запад — восток».

Запас топлива является основным лимитирующим фактором срока службы спутника на геостационарной орбите (кроме отказов компонентов самого спутника).

Задержка сигнала[править | править код]

Связь через геостационарные спутники характеризуется большими задержками в распространении сигнала. При высоте орбиты 35 786 км и скорости света около 300 000 км/с ход луча «Земля — спутник» требует около 0,12 с. Ход луча «Земля (передатчик) → спутник → Земля (приемник)» ≈0,24 с. Полная задержка (измеряемая утилитой Ping) при использовании спутниковой связи для приема и передачи данных составит почти полсекунды. С учетом задержки сигнала в аппаратуре ИСЗ, в аппаратуре и в кабельных системах передач наземных служб общая задержка сигнала на маршруте «источник сигнала → спутник → приёмник» может достигать 2 — 4 секунд[6]. Такая задержка затрудняет применение спутников на ГСО в телефонии и делает невозможной применение спутниковой связи с использованием ГСО в различных сервисах реального времени (например в онлайн-играх)[7].

Невидимость ГСО с высоких широт[править | править код]

Так как геостационарная орбита не видна с высоких широт (приблизительно от 81° до полюсов), а на широтах выше 75° наблюдается очень низко над горизонтом (в реальных условиях спутники просто скрываются выступающими объектами и рельефом местности) и виден лишь небольшой участок орбиты (см. таблицу), то в высокоширотных районах Крайнего Севера (Арктики) и Антарктиды невозможна связь и телетрансляция с использованием ГСО[8]. К примеру, американские полярники на станции Амундсен-Скотт для связи с внешним миром (телефония, интернет) используют оптоволоконный кабель длиной 1670 километров до расположенной на 75° ю. ш. французской станции Конкордия, с которой уже видно несколько американских геостационарных спутников[9].

Таблица наблюдаемого сектора геостационарной орбиты в зависимости от широты места
Все данные приведены в градусах и их долях.

Широта
местности
Видимый сектор орбиты
Теоретический
сектор
Реальный
(с уч. рельефа)
сектор[10]
90
82
81 29,7
80 58,9
79 75,2
78 86,7 26,2
75 108,5 77
60 144,8 132,2
50 152,8 143,3
40 157,2 149,3
20 161,5 155,1
0 162,6 156,6

Из таблицы видно, например, что если на широте Санкт-Петербурга (~60°) видимый сектор орбиты (и, соответственно, количество принимаемых спутников) равен 84 % от максимально возможного (на экваторе), то на широте полуострова Таймыр (~75°) видимый сектор составляет 49 %, а на широте Шпицбергена и мыса Челюскина (~78°) — лишь 16 % от наблюдаемого на экваторе. В этот сектор орбиты в районе Сибири попадает 1 — 2 спутника (не всегда необходимого оператора).

Солнечная интерференция[править | править код]

Одним из самых неприятных недостатков геостационарной орбиты является уменьшение и полное отсутствие сигнала в ситуации, когда солнце и спутник находятся на одной линии с приёмной антенной (положение «солнце за спутником»). Данное явление присуще и другим орбитам, но именно на геостационарной, когда спутник «неподвижен» на небе, проявляется особенно ярко. В средних широтах северного полушария солнечная интерференция проявляется в периоды с 22 февраля по 11 марта и с 3 по 21 октября, с максимальной длительностью до десяти минут[11]. В такие моменты в ясную погоду солнечные лучи, сфокусированные светлым покрытием антенны могут даже повредить (расплавить или перегреть) приёмо-передающую аппаратуру спутниковой антенны[12].

Использование геостационарной орбиты ставит целый ряд не только технических, но и международно-правовых проблем. Значительный вклад в их разрешение вносит ООН, а также её комитеты и иные специализированные учреждения.

Некоторые экваториальные страны в разное время предъявляли претензии (например, Декларация об установлении суверенитета на участке ГСО, подписанная в Боготе Бразилией, Колумбией, Конго, Эквадором, Индонезией, Кенией, Угандой и Заиром 3 декабря 1976 г.[13]) на распространение их суверенитета на находящуюся над их территориями часть космического пространства, в которой проходят орбиты геостационарных спутников. Было, в частности, заявлено, что геостационарная орбита является физическим фактором, связанным с существованием нашей планеты и полностью зависящим от гравитационного поля Земли, а потому соответствующие части космоса (сегменты геостационарной орбиты) как бы являются продолжением территорий, над которыми они находятся. Соответствующее положение закреплено в Конституции Колумбии[14].

Эти притязания экваториальных государств были отвергнуты, как противоречащие принципу неприсвоения космического пространства. В Комитете ООН по космосу такие заявления подверглись обоснованной критике. Во-первых, нельзя претендовать на присвоение какой-либо территории или пространства, находящегося на таком значительном удалении от территории соответствующего государства. Во-вторых, космическое пространство не подлежит национальному присвоению. В-третьих, технически неправомочно говорить о какой-либо физической взаимосвязи между государственной территорией и столь отдаленным районом космоса. Наконец, в каждом отдельном случае феномен геостационарного спутника связан с конкретным космическим объектом. Если нет спутника, то нет и геостационарной орбиты.

  1. Noordung, Hermann; et al. The Problem With Space Travel (неопр.). — DIANE Publishing, 1995. — С. 72. — ISBN 978-0788118494.
  2. ↑ Extra-Terrestrial Relays — Can Rocket Stations Give Worldwide Radio Coverage? (англ.) (pdf). Arthur C. Clark (October 1945). Дата обращения 25 февраля 2010. Архивировано 23 августа 2011 года.
  3. ↑ Требование неподвижности спутников относительно Земли на своих орбитальных позициях на геостационарной орбите, а также большое количество спутников на этой орбите в разных её точках, приводят к интересному эффекту при наблюдении и фотографировании звёзд с помощью телескопа с использованием гидирования — удержания ориентации телескопа на заданной точке звёздного неба для компенсации суточного вращения Земли (задача, обратная геостационарной радиосвязи). Если наблюдать в такой телескоп звёздное небо вблизи небесного экватора, где проходит геостационарная орбита, то при определённых условиях можно видеть, как спутники друг за другом проходят на фоне неподвижных звёзд в пределах узкого коридора, как автомобили по оживлённой автотрассе. Особенно хорошо это заметно на фотографиях звёзд с длительными экспозициями, смотри, например: Babak A. Tafreshi. GeoStationary HighWay. (англ.). The World At Night (TWAN). Дата обращения 25 февраля 2010. Архивировано 23 августа 2011 года. Источник: Бабак Тафреши (Ночной мир). Геостационарная магистраль. (рус.). Астронет. Дата обращения 25 февраля 2010.
  4. ↑ CLASSIFICATION OF GEOSYNCHRONOUS OBJECTS
  5. ↑ для орбит спутников, масса которых пренебрежимо мала по сравнению с массой притягивающего его астрономического объекта
  6. ↑ Орбиты искусственных спутников Земли. Вывод спутников на орбиту
  7. ↑ The Teledesic Network: Using Low-Earth-Orbit Satellites to Provide Broadband, Wireless, Real-Time Internet Access Worldwide
  8. ↑ Журнал «Вокруг Света».№ 9 Сентябрь 2009. Орбиты, которые мы выбираем
  9. ↑ Мозаика. Часть II
  10. ↑ взято превышение спутником горизонта в 3°
  11. ↑ Внимание! Настаёт период активной солнечной интерференции!
  12. ↑ Солнечная интерференция
  13. ↑ B.IV.1. Declaration of the First Meeting of Equatorial Countries («Bogota Declaration») of December 3, 1976 // Space Law. Basic Legal Documents. Volume 1 / Karl-Heinz Böckstiegel, Marietta Benkö, Stephan Hobe. — Eleven International Publishing, 2005. — ISBN 9780792300915.
  14. ↑ Национальное законодательство и практика, имеющие отношение к определению и делимитации космического пространства

Спутник (космос) — Википедия

Материал из Википедии — свободной энциклопедии

У этого термина существуют и другие значения, см. Спутник.

Спу́тник — небесное тело, обращающееся по определённой траектории (орбите) вокруг другого объекта в космическом пространстве под действием гравитации. Различают искусственные и естественные спутники.

Впервые понятие «спутник» употребил Иоганн Кеплер в работе Narratio de Iovis Satellitibus, изданной в 1611 году в Франкфурте[1]. Синонимом данного термина в обиходе выступает слово «луна».

Среди астрономов есть мнение, что спутником необходимо считать объект, вращающийся вокруг центрального тела (звезды[2], планеты, карликовой планеты или астероида) так, что барицентр системы, состоящей из этого объекта и центрального тела, находится внутри центрального тела. Если барицентр находится вне центрального тела, объект не должен считаться спутником, а должен считаться компонентом системы, состоящей из двух или нескольких планет (карликовых планет, астероидов). Однако Международный астрономический союз ещё не дал строго определения спутника, заявляя, что это будет сделано позже[3]. В частности, МАС продолжает официально считать Харон спутником Плутона.

Помимо указанного, существуют и другие возможные способы формального определения понятия «спутник»[4].

При открытии естественного спутника ему присваивается обозначение и номер, а позже также собственное имя. Согласно традиции, правом выбора этого имени обладает первооткрыватель спутника. Предлагаемые им наименования должны соответствовать названиям ранее открытых спутников небесного тела, вокруг которого он обращается. Истории известны два исключения из традиции выбора названия первооткрывателем: названия первых семи спутников Сатурна и также четырёх спутников Урана были присвоены Джоном Гершелем, сыном астронома Уильяма Гершеля, а спутникам Юпитера, открытым с 1892 по 1974 год и остававшимся не названными первооткрывателями, имена были присвоены Международным астрономическим союзом в 1975 году[1].

С 1919 года регулированием присвоения названий спутников занимается Международный астрономический союз (МАС), а с 1973 года — созданная им Рабочая группа по номенклатуре планетной системы (англ. WGPSN[5]).

Действует следующая процедура присвоения названий. Об открытии нового спутника сообщается в Центральное бюро астрономических телеграмм в Кембридже, которое присваивает ему временное обозначение (например, вида S/2017 S1 для спутника Сатурна) и рассылает информацию об открытии в циркуляре. Собственное имя присваивается после того, как элементы орбиты спутника будут установлены с достаточной точностью. Предложенное первооткрывателем именование представляется на обсуждение WGPSN, а по его итогам передаётся на утверждение исполнительному комитету и генеральной ассамблее МАС, которая и утверждает его окончательно[5].

Большая часть названий спутников заимствована из греческой и римской мифологии; исключением выступают спутники Урана, названия которых заимствованы из пьес Шекспира и поэмы Александра Поупа «Похищение локона», а также нерегулярные спутники Сатурна, для которых используются имена (в основном гигантов) из инуитской, галльской и скандинавской мифологии[5].

У спутников также могут быть свои спутники, но в большинстве случаев приливные силы главного тела сделали бы такую систему неустойчивой. Были предположения наличия спутников у Луны, Реи и Япета, но спутники естественного происхождения у спутников не были обнаружены.

Относительные размеры с планетами земной группы и Плутоном

Земля со спутника в реальном времени онлайн

Помните фильм «Люди в черном», где агент Кей сквозь орбитальную камеру смотрел на свою возлюбленную, поливающую цветы во дворе дома? Возможность посмотреть на то, как выглядит наша Земля со спутника в реальном времени, привлекает людей со всего мира. Сегодня мы расскажем — и покажем вам! — лучшие плоды современных технологий по наблюдению за Землей.

Внимание! Если вы видите темный экран, это значит что камеры в тени. Заставка или серый экран — нет сигнала.

Живая Земля

Обычно нам достаются лишь статичные спутниковые карты, застывшие во времени — детали не обновляются годами, а на улице царит вечный летный день. Разве не интересно взглянуть, насколько красива Земля со спутника онлайн зимой или ночью? Кроме того, качество снимков некоторых регионов России и СНГ оставляет желать лучшего. Но теперь все это решается одним махом — благодаря Международной космической станции, Земля онлайн со спутника в реальном времени теперь не фантастика. Прямо на этой странице можно присоединиться к тысячам людей, которые сейчас наблюдают за планетой.

На высоте 400 километров над планетой, где постоянно находится станция, NASA установило 3 высококачественных камеры, разработанных частными компаниями. Космонавты сами или по командам Центра управления полетом направляют камеры, с которых идет передача данных. Благодаря ручному управлению мы можем видеть, как выглядит Земля со спутника онлайн со всех сторон — ее атмосферу, горы, города и океаны. А мобильность станции позволяет за час рассмотреть половину земного шара.

Как происходит трансляция?

Благодаря тому, что камеры находятся на Международной станции, нам заметные даже незначительные детали, которые комментируются учеными, космонавтами и профессиональными журналистами. Однако наша Земля онлайн со спутника в реальном времени видна благодаря труду целого комплекса людей и машин — кроме уже упомянутых космонавтов и Центра управления, в процессе задействованы спутниковые технологии передачи связи, солнечные батареи питания и технические специалисты, занимающиеся переводом и декодированием данных. Соответственно, в трансляции есть свои нюансы — их знание поможет вам увидеть больше и лучше понимать происходящее на экране.

Наша точка наблюдения, орбитальная станция, движется с громадной скоростью — почти 28 тысяч километров в час, и облетает Землю за 90-92 минуты. Половину этого времени, 45 минут, станция висит на ночной стороне. И хотя на подлете солнечные батареи камер могут питаться светом заката, в глубине электричество исчезает — поэтому планета Земля со спутника не всегда доступна. В такие моменты экран трансляции становится серым; стоит немного подождать, и вы будете встречать рассвет вместе с космонавтами.

Дабы найти лучшее время для наблюдений, вам пригодится наша специальная карта Земли со спутника — на ней отмечается не только время прохождения космической станции, но и точное ее положение. Так можно узнать, когда увидеть свой город с космической высоты, или же найти станцию на небе с биноклем или телескопом!

Материалы по теме

Мы уже упоминали, что космонавты и наземное управление может менять наводку камер — они выполняют не только развлекательную, но и научную функцию. В такие моменты планета Земля со спутника в реальном времени не доступна — на экране появляется черная или синяя заставка, или же повторяются уже отснятые моменты. Если же нет перебоев в спутниковой связи, станция находится на дневной стороне планеты, а фон внезапно поменялся, значит камеры снимают зоны, недоступные публике в связи с международными договорами. Секретные объекты и запретные территории закрыты и на статичных картах, искусно скрытые фоторедакторами или просто затертые. Остается только ждать момента, когда ситуация в мире расслабится, и от обычных граждан не будет секретов.

Скрытые возможности

Но не стоит расстраиваться, если камера не функционирует прямо сейчас! Когда планета Земля онлайн со спутника не может быть показана, космонавты и NASA находят другие развлечения для зрителей. Вы увидите быт внутри Международной космической станции, астронавтов в невесомости, которые рассказывают о своей работе и о том, какой именно вид Земли со спутника будет показан следующим. Позволяют заглянуть даже во впечатляюще большой Центр управления полетами. Единственный минус — даже речь русских космонавтов переводят на английский, дабы ее понимали американские сотрудники, которые и управляют Центром. Выключить перевод на данный момент невозможно. Также не стоит удивляться тишине — комментарии не всегда уместны, а постоянного звукового сопровождения пока нет.

Для тех, кто прогнозирует маршрут камер, используя возможности, что дает карта Земли со спутника в реальном времени, у нас есть совет — проверьте настройки даты и времени на своем компьютере. Сервер, который обновляет карту, использует заданную формулу движения Международной станции и временной пояс вашего IP-адреса, чтобы предугадать положение орбитальных камер. О том, как выглядит Земля со спутника, онлайн карта судит исключительно по времени устройства. Если ваши часы отстают или спешат относительно временного пояса, станция будет сдвигаться на восток или запад соответственно. Использование прокси-серверов и анонимайзеров также повлияет на результат.

Вы — участник научной программы

Наверняка вы заметили, что качество картинки планеты Земля из космоса прямая трансляция со спутника часто меняется — изображение покрывается квадратами или отстает от звуковой дорожки. В большинстве случаев достаточно проверить скорость соединения с Интернетом, отключить другие видео и программы для скачивания файлов или нажать на кнопку HD в окне трансляции. Однако если и бывают перебои, стоит помнить — планету видно в живую только благодаря масштабному научному эксперименту.

Да-да — видео на этой странице передается не просто так. Камеры, установленные на Международной космической станции, являются частью программы High Definition Earth Viewing (с английского: вид Земли со спутника в высоком разрешении), которая до сих пор совершенствуется и развивается. Камеры, установлены космонавтами в изолированных от холода и пыли условиях, однако они подвергаются жесткому излучению со стороны Солнца. Ученые экспериментируют с трудностями безразрывной передачи данных в космосе, добиваясь того, чтобы карта Земли со спутника в хорошем качестве существовала не только неподвижной, но и живой, динамической. Полученные результаты помогут улучшить существующие каналы и создать новые — даже на орбите Марса в обозримом будущем.

Так что остаемся на связи — в мире космоса новое появляется каждый день!

comments powered by HyperComments

Понравилась запись? Расскажи о ней друзьям!

Просмотров записи: 222563

Оставьте комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *