Що таке процесор: Центральный процессор — Википедия – Как выбрать центральный процессор, и зачем это нужно? | Процессоры | Блог

Содержание

Как выбрать центральный процессор, и зачем это нужно? | Процессоры | Блог

Пожалуй, ключевым достоинством персонального компьютера как платформы является его впечатляющая гибкость и возможности кастомизации, которые сегодня, благодаря появлению новых стандартов и типов комплектующих, кажутся практически безграничными. Если лет десять назад, произнося аббревиатуру «ПК», можно было с уверенностью представить себе белый железный ящик, опутанный проводами и жужжащий где-то под столом, то сегодня столь однозначных ассоциаций нет и быть не может.

Сегодняшний ПК может быть мощной рабочей станцией, ориентированной на производительность в вычислениях или рабочей машиной дизайнера, «заточенной» под качество двухмерной графики и быструю работу с данными. Может быть топовой игровой машиной или скромной мультимедийной системой, живущей под телевизором…

Иначе говоря, у каждого ПК сегодня свои задачи, которым соответствует тот или иной набор железа. Но как выбрать подходящее?

Начинать следует с центрального процессора. Видеокарта определит производительность системы в играх (и ряде рабочих приложений, использующих вычисления на GPU). Материнская плата — формат системы, её функционал «из коробки» и возможности подключения комплектующих и периферийных устройств. Однако именно процессор определит возможности системы в повседневных домашних задачах и работе.

Давайте рассмотрим, что важно при выборе процессора, а что — нет.

На что НИКОГДА не нужно обращать внимание

Производитель процессора

Как и в случае с видеокартами (да, впрочем, и со многими другими девайсами), наши соотечественники всегда рады превратить обыкновенный потребительский товар в нечто, что можно поднять на штандарты и пойти войной на сторонников противоположного лагеря. Можете представить себе ситуацию, в которой любители маринованных огурцов и консервированных помидоров разделили магазин баррикадой, покрывают друг друга последними словами и частенько прибегают к рукоприкладству? Согласитесь, звучит как полный бред… однако в сфере компьютерных комплектующих такое происходит сплошь и рядом!

Если же вы выбираете процессор под абсолютно новую систему, обращать внимание следует на актуальные сокеты:

AM1 — платформа AMD, предназначенная для неттопов, встраиваемых систем и мультимедийных ПК начального уровня. Как и все APU, отличается наличием сравнительно мощной встроенной графики, что и является основным преимуществом.

AM4 — универсальная платформа AMD для мейнстрим-сегмента. Объединяет десктопные APU и мощные ЦПУ семейства Ryzen, благодаря чему позволяет собирать ПК буквально под любой бюджет и потребности пользователя.

TR4 — флагманская платформа AMD, предназначенная под процессоры Threadripper. Это продукт для профессионалов и энтузиастов: 16 физических ядер, 32 потока вычислений, четырёхканальный контроллер памяти и прочие впечатляющие цифры, дающие серьёзный прирост производительности в рабочих задачах, но практически не востребованные в домашнем сегменте.

LGA 1151_v2 — сокет, который ни в коем случае нельзя путать с обычным LGA 1151 (!!!). Являет собой актуальную генерацию мейнстримовой платформы Intel, и наконец-то привносит в потребительский сегмент процессоры с шестью физическими ядрами — этим и ценен. Однако обязательно следует помнить, что процессоры Coffee Lake нельзя установить в платы с чипсетами серий 200 и 100, а старые процессоры Skylake и Kaby Lake — в платы с чипсетами серии 300.

LGA 2066 — актуальная генерация платформы Intel, предназначенной для профессионалов. Также может быть интересна в качестве платформы для постепенного апгрейда. Младшие процессоры Core i3 и Core i5 практически ничем не отличаются от аналогов под LGA 1151 первой версии и стоят относительно доступно, но впоследствии их можно заменить на Core i7 и Core i9.

Количество ядер

Этот параметр требует множества оговорок, и его следует применять с осторожностью, однако именно он позволяет более-менее логично выстроить и дифференцировать центральные процессоры.

Модели с двумя вычислительными ядрами, а также с двумя физическими ядрами и четырьмя виртуальными потоками вне зависимости от тактовой частоты, степени динамического разгона, архитектурных преимуществ и фанатских мантр сегодня прочно обосновались в сегменте офисных ПК, причём даже там — не на самых ответственных местах. Всерьёз говорить об использовании таких ЦПУ в игровых машинах, а уж тем более — в рабочих станциях сегодня не приходится.

Процессоры с четырьмя вычислительными ядрами выглядят немного актуальнее, и могут удовлетворить запросы как офисных работников, так и не самых требовательных домашних пользователей. На них вполне можно собрать бюджетный игровой ПК, хотя в современных тайтлах производительность будет ограничена, а одновременное выполнение нескольких операций — к примеру, запись игрового видео, — будет невозможно или приведёт к заметному падению фпс.

Оптимальный вариант для дома — процессоры с шестью ядрами. Они способны обеспечивать высокую производительность в играх, не падают в обморок при выполнении нескольких ресурсоёмких задач одновременно, позволяют использовать ПК в качестве домашней рабочей станции, и при всём этом — сохраняют вполне доступную стоимость.

Процессоры с восемью ядрами — выбор тех, кто занят более серьёзными задачами, нежели игры. Хотя и с развлечениями они справятся без проблем, заметнее всего их преимущества — в рабочих приложениях. Если вы занимаетесь обработкой и монтажом видео, рисуете сложные макеты для полиграфии, проектируете дома или другие сложные конструкции, то выбирать стоит именно эти ЦПУ. Излишка производительности вы не заметите, а вот быстрая обработка и отсутствие зависаний в самый ответственный момент — определённо вас порадуют.

Процессоры с 10 и 16 ядрами — это уже серверный сегмент и весьма специфические рабочие станции, от предыдущего варианта отличающиеся примерно как работа дизайнера спецэффектов для большого кино от работы монтажера роликов на youtube (собственно, примерно там и используются). Однозначно рекомендовать или наоборот, отговаривать от их покупки сложно. Если вам реально требуется такая производительность — вы уже знаете, как и где будете её применять.

Рекомендация №8: Количество ядер — не самый чёткий параметр, и не всегда он позволяет отнести к одной группе процессоры с близкими характеристиками. Тем не менее, при выборе процессора стоит ориентироваться на этот параметр.

Производительность

Итоговый и самый важный параметр, которого, увы, нельзя найти ни в одном каталоге магазина. Тем не менее, в итоге именно он определяет, подойдет ли вам тот или иной процессор, и насколько эксплуатация ПК на его основе будет соответствовать вашим первоначальным ожиданиям.

Прежде, чем отправляться в магазин за процессором, который вам вроде бы подходит, не поленитесь изучить его детальные тесты. Причем «детальные» — это не видосики на ютубе, показывающие вам то, что вы должны увидеть по замыслу их автора. Детальные тесты — это масштабное сравнение процессора в синтетических бенчмарках, профессиональном софте и играх, проводимое по чёткой методике с участием всех или большинства конкурирующих решений.

Как и в случае с видеокартами, чтение и анализ подобных материалов поможет вам определить, стоит ли тот или иной процессор своих денег, и на что, при возможности, его можно заменить.

Рекомендация №9: Потратив пару вечеров на чтение и сравнение информации из разных источников (важно, чтобы они были авторитетными, и весьма желательно — зарубежными), вы сделаете аргументированный выбор и избавите себя от множества проблем в будущем. Поверьте, оно того более чем стоит.

Критерии и варианты выбора:

Согласно изложенным выше критериям, ЦПУ из каталога DNS можно распределить следующим образом:

Процессоры AMD Sempron и Athlon под [url=»https://www.dns-shop.ru/catalog/17a899cd16404e77/processory/?order=1&stock=2&f=2g9r]сокет AM1 подойдут для сборки бюджетных мультимедийных ПК, встраиваемых систем и тому подобных задач. К примеру, если вы хотите установить в машину полноценный ПК с десктопной операционной системой или собрать небольшой неттоп, который будет скрытно жить в недрах дачного дома или гаража — стоит обратить внимание на эту платформу.

Для [url=»https://www.dns-shop.ru/catalog/17a899cd16404e77/processory/?order=1&stock=2&f=26r-26u-26t&f=27h]офисных ПК подойдут двухъядерные процессоры Intel Celeron, Pentium и Core i3. Их преимуществом в данном случае выступит наличие встроенного графического ядра. Производительность последнего достаточна для вывода необходимой информации и ускорения работы браузеров, но совершенно недостаточна для игр, которых на рабочем месте всё равно быть не должно.

Для [url=»https://www.dns-shop.ru/catalog/17a899cd16404e77/processory/?p=1&stock=2&order=1&f=27b-277-jlvh&f=emb2&f=ci6]домашнего мультимедийного ПК лучшим выбором окажутся APU от AMD, предназначенные под актуальный сокет AM4. Представители линеек A8, A10 и А12 объединяют под одной крышкой четырёхъядерный процессор и весьма неплохую графику, которая может уверенно соперничать с бюджетными видеокартами. ПК на этой платформе можно сделать весьма компактным, но его производительности хватит для воспроизведения любого контента, а также целого ряда рабочих задач и немалого перечня игр.

Для бюджетного игрового ПК подойдут четырёхъядерные процессоры [url=»https://www.dns-shop.ru/catalog/17a899cd16404e77/processory/?p=1&stock=2&order=1&f=j8yn&f=emb2]AMD Ryzen 3 и четырёхъядерные [url=»https://www.dns-shop.ru/catalog/17a899cd16404e77/processory/?p=1&stock=2&order=1&f=2iqha]Core i3 под сокет LGA 1151_v2 (не путать с двухъядерными Core i3 под сокет LGA 1151 !!!). Производительности этих процессоров достаточно для любых домашних задач и большинства игр, однако грузить их серьёзной работой или пытаться выполнять несколько ресурсоёмких задач одновременно всё же не стоит.

Для [url=»https://www.dns-shop.ru/catalog/17a899cd16404e77/processory/?p=1&stock=2&order=1&f=g7df&f=emb2&f=27j]бюджетной рабочей станции компромиссным вариантом могут стать четырёхъядерные процессоры AMD Ryzen 5. Помимо физических ядер, они предлагают и виртуальные потоки вычислений, что в итоге позволяет выполнять операции в восемь потоков. Разумеется, это не так эффективно, как физические ядра, но вероятность увидеть 100% загрузку процессора и падение фпс ниже играбельного при записи или прямой трансляции геймплея здесь гораздо ниже, чем у предыдущих двух вариантов. Да и последующий монтаж оного видео пройдёт быстрее.

Оптимальный выбор для домашнего игрового ПК — шестиядерные процессоры [url=»https://www.dns-shop.ru/catalog/17a899cd16404e77/processory/?p=1&stock=2&order=1&f=g7df&f=emb2&f=27k]AMD Ryzen 5 и [url=»https://www.dns-shop.ru/catalog/17a899cd16404e77/processory/?p=1&stock=2&order=1&f=2iqha&f=27k]Intel Core i5 под сокет LGA 1151_v2 (не путать с их четырёхъядерными предшественниками!!!). Стоимость этих ЦПУ вполне гуманна, их даже можно назвать относительно доступными, в отличие от топовых линеек Ryzen 7 и Core i7. А вот производительности — вполне хватает, чтобы играть в любые интересные пользователю игры и работать на дому. Причем даже одновременно, если будет такое желание.

Для топовых игровых ПК или рабочих станций без претензий на избранность и элитарность подойдут процессоры [url=»https://www.dns-shop.ru/catalog/17a899cd16404e77/processory/?p=1&stock=2&order=1&f=emb2&f=27m]AMD Ryzen 7 и [url=»https://www.dns-shop.ru/catalog/17a899cd16404e77/processory/?p=1&stock=2&order=1&f=26p&f=2iqha&f=27k]Intel Core i7, имеющие, соответственно, 8 ядер/16 потоков и 6 ядер/12 потоков. Относясь к мейнстримовым платформам, эти процессоры всё ещё относительно доступны и не требуют дорогостоящих материнских плат, блоков питания и кулеров. Однако их производительности достаточно практически для всех задач, которые может поставить перед ПК рядовой пользователь.

Если же её всё-таки будет недостаточно — для высокопроизводительных рабочих станций предназначены процессоры AMD Ryzen Threadripper, предназначенные для установки в сокет TR4, и топовые модели процессоров Intel под сокет LGA 2066 — [url=»https://www.dns-shop.ru/catalog/17a899cd16404e77/processory/?p=1&f=i1wt-26p&f=i1wz&f=27m-bmip-dybz-27n]Core i7 и Core i9, имеющие по 8, 10, 12 и более физических ядер. Помимо этого, процессоры предлагают четырёхканальный контроллер памяти, что важно для ряда профессиональных задач, и до 44 линий PCI-express, позволяющих подключать много периферии, не теряя в скорости обмена данными. Рекомендовать эти ЦПУ для домашнего использования не получается и в силу их цены, и благодаря «заточенности» под многопоток и профессиональные задачи. А вот в работе процессоры под топовые платформы могут буквально в разы опережать своих десктопных собратьев.

Будова та основні характеристики процесора

Інформація про процесор комп’ютера, його значення, технологію виготовлення, а також про характеристики, які необхідно враховувати при його виборі та придбанні.

Що таке процесор і як він влаштований

Центральний процесор (мікропроцесор, центральний процесорний пристрій, CPU, розм. — «проц», «камінь») — складна мікросхема, що є головною складовою частиною будь-якого комп’ютера. Саме цей пристрій здійснює обробку інформації, виконує команди користувача і керує іншими частинами комп’ютера.

Вже багато років основними виробниками процесорів є американські компанії Intel і AMD (Advanced Micro Devices). Є, звичайно, й інші гідні виробники, але до рівня вказаних лідерів їм далеко.
Intel і AMD постійно боряться за першість у виготовленні все продуктивніших і доступніших процесорів, вкладаючи в розробки величезні кошти і багато сил. Їх конкуренція — важливий чинник, що сприяє швидкому розвитку цієї галузі.
Як виглядає процесор компЗовні центральний процесор не є чимось видатним — маленька плата (приблизно 7 х 7 см) з великою кількістю контактів з одного боку і плоскою металевою коробочкою з іншою. Але насправді усередині цієї коробочки міститься надскладна мікроструктура з мільйонів транзисторів.

Як виготовляють процесори. Що таке техпроцес

Основним матеріалом при виробництві процесорів є звичайнісінький пісок, а точніше сказати кремній, якого у складі земної кори близько 30%. З очищеного кремнію спочатку виготовляють великий монокристал циліндричної форми, який розрізають на «млинці» завтовшки близько 1 мм.
Потім з використанням технології фотолітографії в них створюються напівпровідникові структури майбутніх процесорів. Фотолітографія чимось нагадує процес друку фотографій з плівки, коли світло, проходячи через негатив, діє на поверхню фотопаперу і проектує на ньому зображення.
При виготовленні процесорів своєрідним фотопапером виступають згадані вище кремнієві «млинці». Роль світла відіграють іони бору, розігнані до величезної швидкості високовольтним прискорювачем. Вони пропускаються через спеціальні «трафарети» — системи високоточних лінз і дзеркал, вкроплюються в кремній і створюють в ньому мікроскопічну структуру із безлічі транзисторів. Сьогоднішні технології дозволяють створювати транзистори розміром всього 22 нанометри (товщина людської волосини — близько 50000 нм). З часом техпроцес виготовлення процесорів стане ще досконалішим. За прогнозами, їх транзистори зменшаться як мінімум до 14 нм.
Чим тонший техпроцес — тим більше транзисторів можна помістити в один процесор, тим він буде продуктивнішим і енергоефективнішим. Створена таким чином напівпровідникова структура вирізається з кварцового «млинця» і поміщається на текстоліт. На зворотну його сторону виводяться контакти для забезпечення підключення до материнської плати. Зверху кристал захищається від пошкодження металевою кришкою (див. зображення. вище).

Поняття архітектури, ядра, ревізії процесора

Процесори пройшли складну еволюцію і зараз продовжують розвиватися. Виробники удосконалюють не лише технологію виготовлення, але й внутрішню структуру процесорів. Кожне нове їх покоління відрізняється від попереднього будовою, кількістю і характеристиками елементів, що входять до їх складу.
Процесори, в яких використовуються однакові базові принципи будови, називають процесорами однієї архітектури, а ці принципи — архітектурою (мікроархітектурою) процесора.
В межах однієї архітектури процесори можуть істотно відрізнятися — частотами системної шини, техпроцесом виготовлення, розміром і структурою внутрішньої пам’яті та деякими іншими особливостями. Про такі процесори говорять, що вони мають різні ядра.
У рамках доопрацювання одного ядра виробники можуть робити невеликі зміни з метою усунення дрібних недоліків. Такі удосконалення, які «не тягнуть» на звання самостійних ядер, називають ревізіями.
Архітектурам і ядрам присвоюються певні імена, а їх ревізіям — спеціальні позначення. Наприклад, усі моделі Intel Core 2 Duo є процесорами мікроархітектури Intel Core і виготовлялися з ядрами Allendale, Conroe, Merom, Kentsfield, Wolfdale, Yorkfield. У кожного з цих ядер були ще і різні ревізії.

Основні характеристики процесора

Кількість обчислювальних ядер.
Багатоядерні процесори — це процесори, що містять на одному процесорному кристалі або в одному корпусі два і більше обчислювальних ядер.
Багатоядерність, як спосіб підвищення продуктивності процесорів, використовується з відносно недавнього часу, але визнана найперспективнішим напрямом їх розвитку. Для домашніх комп’ютерів вже існують процесори з 8 ядрами. Для серверів на ринку є 12-ядерні пропозиції (Opteron 6100). Розроблені прототипи процесорів, що містять близько 100 ядер.
Ефективність обчислювальних ядер різних моделей процесорів відрізняється. Але у будь-якому випадку, чим їх (ядер) більше, тим процесор продуктивніший.
Кількість потоків.
Чим більше потоків — тим краще. Кількість потоків не завжди співпадає з кількістю ядер процесора. Так, завдяки технології Hyper-Threading, 4-ядерний процесор Intel Core i7 — 3820 працює у 8 потоків і багато в чому випереджає 6-тиядерних конкурентів.
Розмір кеша 2 і 3 рівнів.
Кеш — це дуже швидка внутрішня пам’ять процесора, яка використовується ним як буфер для тимчасового зберігання інформації, що обробляється в конкретний момент часу. Чим кеш більший — тим краще.
Структура не усіх сучасних процесорів передбачає наявність кеша 3 рівня, хоча це не є критичним моментом. Так, за результатами багатьох тестів продуктивність процесорів Intel Core 2 Quadro, що випускалися з 2007 р. по 2011 р. і не мають кеша 3 рівня, навіть зараз виглядає гідно. Правда, кеш 2 рівня у них досить великий.
Частота процесора.
Тут усе просто — чим вища частота процесора, тим він продуктивніший.
Швидкість шини процесора (FSB, HyperTransport або QPI).
Через цю шину центральний процесор взаємодіє з материнською платою. Її швидкість (частота) вимірюється в мегагерцах і чим вона вища — тим краще.
Техпроцес.
Поняття техпроцесу розглядалося в попередньому пункті цієї статті. Чим тонший використано техпроцес, тим більше процесор містить транзисторів, менше споживає електроенергії і менше гріється. Від техпроцесу багато в чому залежить ще одна важлива характеристика процесора — TDP.
TDP.
Termal Design Point — показник, що відображає енергоспоживання процесора, а також кількість тепла, що виділяється ним в процесі роботи. Одиниці виміру — Вати (Вт). TDP залежить від багатьох чинників, серед яких головними є кількість ядер, техпроцес виготовлення і частота роботи процесора.
Окрім інших переваг, «холодні» процесори (з TDP до 100 Вт) краще піддаються розгону, коли користувач змінює деякі налаштування системи, внаслідок чого збільшується частота процесора. Розгон дозволяє без додаткових фінансових вкладень збільшити продуктивність процесора на 15 — 25 %, але це вже окрема тема.
В той же час, проблему з високим TDP завжди можна вирішити придбанням ефективної системи охолодження (див. останній пункт цієї статті).
Наявність і продуктивність відеоядра.
Останні технічні досягнення дозволили виробникам, окрім обчислювальних ядер, включати до складу процесорів ще і ядра графічні. Такі процесори, окрім вирішення своїх основних завдань, можуть виконувати роль відеокарти. Можливостей деяких з них цілком вистачає для гри в комп’ютерні ігри, не кажучи вже про перегляд фільмів, роботу з текстом і вирішення інших завдань.
Якщо відеоігри — не головне призначення комп’ютера, процесор з вбудованим графічним ядром дозволить заощадити на придбанні окремого графічного адаптера.
Тип і максимальна швидкість підтримуваної оперативної пам’яті.
Ці характеристики процесора необхідно враховувати при виборі оперативної пам’яті, з якою він буде використовуватися. Немає сенсу переплачувати за швидкісні модулі ОЗУ, якщо процесор не зможе реалізувати усі їх переваги.

Що таке сокет

Важливим моментом, який треба враховувати при виборі процесора, є те, для установки в сокет якого типу він призначений.
Сокет (socket, роз’єм центрального процесора) — це щілинний або гніздовий роз’єм на материнській платі, у який встановлюється процесор.
Кожен процесор можна встановити лише на материнську плату з підходящим роз’ємом, що має відповідні розміри, необхідну кількість і структуру контактних елементів.
Кожен новий сокет розробляється виробниками процесорів, коли можливості старих роз’ємів вже не можуть забезпечити нормальну роботу нових виробів.
Для процесорів Intel тривалий час використовувався (і зараз ще використовується) сокет LGA775 (процесори Pentium 4, Pentium D, Celeron D, Pentium EE, Core 2 Duo, Core 2 Extreme, Celeron, Xeon серії 3000, Core 2 Quad). З початком виробництва лінійки нових процесорів були введені сокети LGA1366, LGA1156, LGA1155 (процесори i7, i5, i3) та ін.
Роз’єми для процесорів від AMD за останні роки також змінилися — AM2, AM2+, AM3 і так далі. Про більше ранні сокети, думаю, сенсу згадувати немає, оскільки комп’ютери на їх основі — вже раритет. Якщо ви задумали модернізувати старий комп’ютер шляхом придбання продуктивнішого процесора, переконайтеся, що по сокету він підійде до вашої старої материнської плати. Інакше однозначно доведеться замінювати і її.
Встановлювати центральний процесор в сокет системної плати треба обережно, щоб не пошкодити контакти.

Система охолодження процесора

Який вигляд має кулер процесораПроцесор потребує належного охолодження, інакше він може вийти з ладу. Як відомо, поверхня процесора вкрита металевою коробкою, що виконує, крім захисних, ще й тепловідвідні функції. Поверх процесора на материнській платі встановлюється система охолодження. Її тепловідвідні елементи повинні щільно притискатися до поверхні процесора.
Для поліпшення передачі тепла з процесора на радіатор системи охолодження, між ними прокладається шар термопасти — спеціальної пастоподібної речовини з високою теплопровідністю.При підборі системи охолодження процесора треба враховувати його TDP (розглядалося вище в пункті про характеристики процесора).
Процесори зазвичай продаються в так званому боксовом варіанті постачання, коли в комплект входить штатна система охолодження — боксовий кулер. Але іноді ефективність такого кулера є недостатньою (наприклад, якщо проведено розгон і частота процесора, а відповідно і його TDP, зросла). Нормальна температура роботи процесора — до 50 градусів Цельсія (при пікових навантаженнях можливо трохи більше). Засоби вимірювання температури вбудовані в центральний процесор. За допомогою спеціальних програм температуру можна відстежувати в режимі реального часу (наприклад, програмою SpeedFan).
• CPU-Z:
⇒ Офіційна сторінка завантаження
⇒ Завантажити копію для Windows 32-bit (2,6 MB)
⇒ Завантажити копію для Windows 64-bit (3 MB)
Сучасний процесор влаштований так, що при досягненні ним критичної температури він вимикається і не вмикається, доки не охолоне. Це дозволяє попередити його ушкодження під впливом високої температури.
Перегрівання можливе внаслідок низької ефективності системи охолодження, виходу її з ладу, засмічення пилом, пересихання термопасти та ін.

Центральний процесор — Вікіпедія

Сучасний мікропроцесор Intel Core i7 2600K Socket LGA1155, вигляд зверху
Стійка центрального процесора EDVAC
Вид з середини на стійку центрального процесора PDP-8-1

Внутрішня будова мікропроцесора 80486dx2

Центральний процесор, ЦП (англ. Central processing unit, CPU) — функціональна частина комп’ютера, що призначена для інтерпретації команд.

Архітектура процесора[ред. | ред. код]

Архітектура системи команд[ред. | ред. код]

З погляду програмістів, під архітектурою процесора мається на увазі його здатність виконувати певний набір машинних кодів. Більшість сучасних десктопних процесорів відносяться до сімейства x86, або Intel-сумісних процесорів архітектури IA32 (архітектура 32-бітових процесорів Intel). Її основа була закладена компанією Intel в процесорі i80386, проте в подальших поколіннях процесорів вона була доповнена і розширена як самою Intel (введені нові набори команд MMX, SSE, SSE2 і SSE3), так і сторонніми виробниками (набори команд EMMX, 3DNow! і Extended 3DNow!, розроблені компанією AMD).

Мікроархітектура[ред. | ред. код]

Розробники комп’ютерного устаткування вкладають в поняття «Архітектура процесора» основні принципи внутрішньої організації конкретних сімейств процесорів. Наприклад, архітектура процесорів Intel Pentium позначалася як Р5, процесорів Pentium II і Pentium III — Р6, а Pentium 4 відносилися до архітектури NetBurst. Після того, як компанія Intel закрила архітектуру Р5 для сторонніх виробників, її основний конкурент — компанія AMD розробляла власні архітектури — K5, K6, К7 (для процесорів Athlon і Athlon XP), і К8 (для Athlon 64).

В рамках однієї і тієї ж архітектури різні процесори можуть досить сильно відрізнятися один від одного. І відмінності ці утілюються в різноманітних процесорних ядрах, що мають певний набір суворо обумовлених характеристик. Найчастіше ці відмінності втілюються в різних частотах системної шини (FSB), розмірах кеша другого рівня, підтримці тих або інших нових систем команд або технологічних процесах, за якими виготовляються процесори. Нерідко зміна ядра в одному і тому ж сімействі процесорів спричиняє за собою заміну процесорного роз’єму (сокет, англ. socket), з чого витікають питання подальшої сумісності материнських плат. Проте в процесі вдосконалення ядра виробникам доводиться вносити до нього незначні зміни, які не можуть претендувати на «власне ім’я». Такі зміни називаються ревізіями (англ. stepping) ядра і, найчастіше, позначаються цифро-буквеними комбінаціями. Проте в нових ревізіях одного і того ж ядра можуть зустрічатися досить помітні нововведення. Так, компанія Intel ввела підтримку 64-бітової архітектури EM64T в окремі процесори сімейства Pentium 4 саме в процесі зміни ревізії.

32-бітові та 64-бітові процесори[ред. | ред. код]

Архітектура IA-32 введена[Куди?] з появою покоління процесорів i80386 на заміну 16-бітним 8086, 80186, 80286. [[x86-64], 64-бітове розширення 32-бітової архітектури IA-32 було запропоноване в 2002 році компанією AMD в процесорах сімейства К8. Через деякий час компанією Intel було запропоновано власне позначення — Відмінності між AMD64 і Intel 64#EM64T (англ. Extended Memory 64-bit Technology). Розрядність основних внутрішніх регістрів 64-бітових процесорів подвоїлася (з 32 до 64 біт), а 32-бітові команди x86 отримали 64-бітові аналоги. Крім того, за рахунок розширення розрядності шини адрес обсяг пам’яті, що адресується процесором, істотно збільшився.

Продуктивність 64-бітових процесорів в переважній більшості сучасних застосунків практично та ж, що і у 32-бітових.[Що?][джерело?] Найефективнішим перехід на 64-бітові процесори стане для програм, що активно працюють з великими обсягами пам’яті, понад 4 ГБ: високопродуктивних серверів, баз даних, програм класу CAD/CAE, а також програм для роботи з цифровим контентом.[джерело?]

В інформатиці, Паралелізмом (англ. Concurrency), або багатозадачністю називається властивість систем, коли декілька процесів обчислення відбуваються водночас, і, можливо, взаємодіють один з одним.

Конвеєр команд[ред. | ред. код]

Конвеєр команд — апаратна структура в обчислювальних пристроях ЕОМ, призначена для прискорення виконання машинних команд шляхом суміщення певних стадій їх виконання в часі.

Багатоядерні процесори[ред. | ред. код]

Частина інформації в цій статті застаріла. Ви можете допомогти, оновивши її. (березень 2019)

Перший багатоядерний процесор створила Rockwell у 1984 році, об’єднавши два ядра R6502.[1]
В 2005 році з’явились перші двоядерні мікропроцесори архітектури x86 — Intel Pentium D та AMD Athlon 64 X2. До того часу класичні одноядерні CPU певною мірою вичерпали резерви зростання продуктивності за рахунок підвищення робочої частоти. Каменем спотикання стало не тільки дуже високе тепловиділення процесорів, що працюють на високих частотах, але і проблеми з їхньою стабільністю. Отже, екстенсивний шлях розвитку процесорів вичерпався[джерело?] і виробникам довелося освоювати новий, інтенсивний шлях підвищення продуктивності продукції.

Intel Core i7 2600K Socket LGA1155, вигляд знизу

Внутрішні спільно працюючі пристрої[ред. | ред. код]

Моделі процесорів включають такі спільно працюючі пристрої:

  • Пристрій керування (англ. control unit). Здійснює координацію роботи всіх інших пристроїв, виконує функції керування пристроями, керує обчисленнями в комп’ютері.
    • Дешифратор інструкцій (команд). Аналізує інструкції з метою визначення операцій, що відповідають інструкції, виділення операндів і адрес, за якими розміщуються операнди. В системах з конвеєром команд дешифратор здійснює дешифрування наступної команди одночасно з виконанням поточної (для завантаження усіх виконавчих пристроїв) і може дешифрувати одночасно декілька інструкцій, наприклад, для готовності здійснити перехід відповідно до результату, який найближчим часом буде отриманий з конвеєра.
  • Арифметико-логічний пристрій (АЛП). Так називається пристрій для цілочислових операцій. Арифметичні операції, такі як додавання, множення і ділення, а також логічні операції (OR, AND, ASL, ROL і ін.) обробляються за допомогою АЛП. Ці операції складають переважну більшість програмних кодів у більшості програм. Всі операції в АЛП обробляються в регістрах — спеціально відведених чарунках АЛП. У процесорі може бути декілька АЛП. Кожен здатний виконувати арифметичні або логічні операції незалежно від інших, що дозволяє виконувати декілька операцій одночасно. Арифметико-логічний пристрій виконує арифметичні і логічні дії. Логічні операції поділяються на дві прості операції: «Так» і «Ні» («1» і «0»). Звичайно, ці два пристрої виділяються суто умовно, конструктивно вони не розділені.
  • AGU (Address Generation Unit) — пристрій генерації адрес. Це пристрій не менш важливий, ніж АЛП, тому що він відповідає за коректну адресацію при завантаженні або збереженні даних.
  • Математичний співпроцесор (FPU). Процесор може містити декілька математичних співпроцесорів. Кожний з них здатний виконувати, щонайменше, одну операцію з рухомою комою, незалежно від того, що роблять інші АЛП. Метод конвеєрної обробки даних дозволяє одному математичному співпроцесорові виконувати декілька операцій одночасно. Співпроцесор підтримує високоточні обчислення як цілочислені, так і з рухомою комою і, крім того, містить набір корисних констант, що прискорюють обчислення. Співпроцесор працює паралельно з центральним процесором, забезпечуючи, таким чином, високу продуктивність.

Пам’ять[ред. | ред. код]

  • Кеш-пам’ять. Особлива високошвидкісна пам’ять процесора. Кеш використовується як буфер для прискорення обміну даними між процесором і оперативною пам’яттю, а також для збереження копій інструкцій і даних, що недавно використовувалися процесором. Значення з кеш-пам’яті витягаються прямо, без звертання до основної пам’яті.

Кеш першого рівня (L1 cache). Кеш-пам’ять, що знаходиться усередині процесора. Вона швидша за всі інші типи пам’яті, але менша за обсягом. Зберігає нещодавно використану інформацію, яка знову може бути використана при виконанні коротких програмних циклів.

Кеш другого рівня (L2 cache). Також знаходиться усередині процесора. Інформація, що зберігається в ній, використовується рідше, ніж інформація, що зберігається в кеш-пам’яті першого рівня, проте обсяг пам’яті у ній більший. Також у наш час[коли?] в процесорах використовується кеш третього рівня.

  • Оперативна пам’ять. Набагато більша за обсягом, ніж кеш-пам’ять, і значно менш швидкодіюча.
  • Регістри — це внутрішня пам’ять процесора. Являють собою ряд спеціалізованих додаткових комірок пам’яті, а також є внутрішніми носіями інформації мікропроцесора. Регістр є пристроєм тимчасового зберігання даних, числа або команди і використовується з метою полегшення арифметичних, логічних і пересильних операцій. Основним елементом регістра є електронна схема, яку називають тригером, що здатна зберігати одну двійкову цифру (розряд).

Деякі важливі регістри мають свої назви, наприклад:

  • суматор — регістр АЛП, що бере участь у виконанні кожної операції;
  • лічильник команд — регістр УП, вміст якого відповідає адресі чергової виконуваної команди, служить для автоматичної вибірки програми з послідовних комірок пам’яті;
  • регістр команд — регістр УП для збереження коду команди на період часу, що необхідний для її виконання. Частина його розрядів використовується для збереження коду операції, інші — для збереження кодів адрес операндів.

Шини[ред. | ред. код]

Шина — це канал пересилання даних, який використовується спільно різними блоками системи. Шина може являти собою набір провідних ліній у друкованій платі, проводи, припаяні до виводів роз’ємів, у які вставляються друковані плати, або плоский кабель. Інформація передається по шині у виді груп бітів. До складу шини для кожного біта слова може бути передбачена окрема лінія (паралельна шина), або всі біти слова можуть послідовно в часі використовувати одну лінію (послідовна шина).

За функціональним призначенням можуть бути виділені шини:

  • Шина даних. Служить для пересилання даних між процесором і пам’яттю або процесором і пристроями введення-виведення. Ці дані можуть являти собою як команди мікропроцесора, так і інформацію, що він посилає в порти введення-виведення або приймає звідти.
  • Шина адрес. Використовується ЦП для вибору необхідної комірки пам’яті або пристрою введення-виведення шляхом установки на шині конкретної адреси, що відповідає одній з комірок пам’яті або одному з елементів введення-виведення, що входять у систему.
  • Шина керування. По ній передаються сигнали керування, призначені пам’яті і пристроям введення-виведення. Ці сигнали вказують напрямок передачі даних (у процесор або з нього).

Буфер цілей розгалуження[ред. | ред. код]

BTB (Branch Target Buffer). Це таблиця, в якій знаходяться всі адреси, куди буде або може бути зроблений перехід.

Устройство процессора, из чего состоит процессор компьютера

Сейчас полно информации в интернете по теме процессоров, можно найти кучу статей о том как он работает, где в основном упоминаются регистры, такты, прерывания и прочее…Но, человеку не знакомому со всеми этими терминами и понятиями достаточно трудно вот так «с лету» вникнуть в понимание процесса, а начинать надо с малого — а именно с элементарного понимания как устроен процессор и из каких основных частей он состоит.

Итак, что же окажется внутри микропроцессора, если его разобрать:

цифрой 1 обозначается металлическая поверхность (крышка) микропроцессора, служащая для отвода тепла и защиты от механических повреждений того, что находится за этой крышкой (тоесть внутри самого процессора).

Под номером 2 — находится сам кристалл, по факту являющийся самой важной и дорогой в изготовлении частью микропроцессора. Именно благодаря этому кристаллу происходят все вычисления (а это и есть самая главная функция процессора) и чем он сложнее, чем совершенней — тем мощнее получается процессор и тем дороже соответственно. Кристалл изготавливается из кремния. На самом деле процесс изготовления очень сложный и содержит в себе десятки шагов, подробнее в этом видео:

Цифра 3 — специальная текстолитовая подложка, к которой крепятся все остальные части процессора, кроме того она играет роль контактной площадки — на ее обратной стороне есть большое количество золотистых «точек» — это контакты (на рисунке их немного видно). Благодаря контактной площадке (подложке) обеспечивается тесное взаимодействие с кристаллом, ибо напрямую хоть как нибудь воздействовать на кристалл не представляется возможным.

Крышка (1) крепится к подложке (3) с помощью клея-герметика, устойчивого к высоким температурам. Между кристаллом (2) и крышкой нет воздушного зазора, его место занимает термопаста, при застывании из нее получается «мостик» между кристаллом процессора и крышкой, благодаря чему обеспечивается очень хороший отток тепла.

Кристалл соединяется с подложкой с помощью пайки и герметика, контакты подложки соединяются с контактами кристалла. На этом рисунке наглядно показано как соединяются контакты кристалла с контактами подложки при помощи очень тонких проводков (на фото 170-кратное увеличение):

Вообще устройство процессоров разных производителей и даже моделей одного производителя может сильно разниться. Однако принципиальная схема работы остается прежней — у всех есть контактная подложка, кристалл (или несколько, расположенных в одном корпусе) и металлическая крышка для отвода тепла.

Так например выглядит контактная подложка процессора Intel Pentium 4 (процессор перевернут):

Форма контактов и структура их расположения зависит от сокета процессора и материнской платы компьютера (сокеты должны совпадать). Например на рисунке чуть выше контакты у процессора без «штырьков», поскольку штырьки находятся прямо в сокете материнской платы.

А бывает другая ситуация, где «штырьки» контактов торчат прямо из контактной подложки. Эта особенность характерна в основном для процессоров AMD:

Как уже упоминалось выше, устройство разных моделей процессоров одного производителя может различаться, перед нами яркий тому пример — четырехъядерный процессор Intel Core 2 Quad, который по сути представляет собой 2 двухъядерных процессора линейки core 2 duo, совмещенных в одном корпусе:

Важно! Количество кристаллов внутри процессора и количество ядер процессора — не одно и то же.

В современных моделях процессоров Intel умещается сразу 2 кристалла (чипа). Второй чип — графическое ядро процессора, по-сути играет роль встроенной в процессор видеокарты, тоесть даже если в системе отсутствует видеокарта, графическое ядро возьмет на себя роль видеокарты, причем довольно мощной (в некоторых моделях процессоров вычислительная мощь графических ядер позволяет играть в современные игры на средних настройках графики).

Вот и все устройство центрального микропроцессора, вкратце конечно же.

«Что такое процессор в компьютере?» – Яндекс.Кью

Доброго времени суток. На самом деле, есть очень много видеоматериалов на всем известном видеопортале. Видео начиная от «Как работает процессор» заканчивая тем как собирать сбалансированные сборки.

В самом начале надо понять совместимость:

  1. Сокет — Процессор

Так же не стоит забывать о том, что есть такая тема как «чипсет», допустим процессоры i7 7700k с архитектурой Kaby-Lake имеют чипсет Z270, а i7 8700k с архитектурой Coffee-Lake поддерживает чипсет Z370, при этом Сокет 1151 у них одинаковый. Исходя из этого, если вы попробуете в материнскую плату с чипсетом Z270 вставить процессор i7 8700k, он у вас попросту не запуститься. Поэтому данную тему тоже стоит затронуть.

Так же стоит обратить внимание, что при покупке процессоров с индексом «K» не стоит устанавливать материнские платы с приставками H,B и так далее, ибо у них меньше цепей питание, что в свою очередь может повлиять на работу процессора.

  1. Совместимость процессора и оперативной памяти(конкретнее, что каждый процессор может поддерживать определенную максимальную частоту оперативной памяти).

  2. Совместимость оперативной памяти и материнской платы(DDR3, DDR4). В настоящее время большинство сборок все же проходит с использованием оперативной памяти DDR4, но почитать материалы про данные форматы тоже полезно.

  3. Совместимость процессорных кулеров с сокетом на материнской плате. Проще говоря, если вы не обратите внимание на данный пункт при покупке процессорного кулера, то если он не подходит под ваш сокет, то под него попросту не будет креплений на материнской плате.

  4. Совместимость процессорного кулера по размерам в соотношении с корпусом. Было много случаев, когда люди покупали процессорные кулеры в форме башни, они вставали да(если они соблюдали правило с совместимостью с сокетом), но у них в итоге не закрывалась боковая крышка.

  5. Совместимость размера видеокарты по размерам в соотношении с корпусом. И с видеокартами были такие проблемы, когда в маленький корпусец не влезала видеокарта с тремя кулерами. GTX 1060, GTX 1070, GTX 1070ti, GTX 1080, GTX 1080Ti (версии с тремя кулерами) могут не влезть, поэтому на это тоже стоит обратить внимание.

  6. При добавление в сборку SSD формата M2, стоит обращать на наличие данного интерфейса на материнской плате. 

В принципе основные моменты я вам описал, надеюсь мой ответ вам поможет.

Центральний процесор (CPU), його основні виробники, ядра процесора, віртуальні процесори для хмарних технологій

Apple.

Виробники Intel і AMD займаються виробництвом процесорів для стаціонарних комп’ютерів, ноутбуків і серверів. А Qualcomm, NVIDIA і Apple розробляють мікропроцесори для смартфонів, планшетів, розумних годин і інших подібних цифрових гаджетів.

Процесор intel

Процесор intel

Сучасні процесори зазвичай невеликі і квадратні, з безліччю невеликих округлених металевих конекторів. Процесори кріпляться в спеціально призначені для них слоти на материнській платі. Під час роботи процесор обов’язково нагрівається, тому поруч з ним обов’язково встановлюється система охолодження.

Процесор AMD

Процесор AMD

Швидкість роботи процесора визначається за кількістю процесів, оброблюваних за секунду. Вимірюється цей показник в GHz (гігагерц). Наприклад, якщо швидкість роботи процесора становить 1 Hz, це означає, що за секунду обробляється тільки одна частина вступників інструкцій. А ось середній CPU зі швидкістю в 3.0 GHz може обробляти до 3 більйонів інструкцій за одну секунду.

Ядра процесора

Зустрічаються пристрої з одним ядром процесора. Зустрічаються з двома і більше. Ядрами називають фізичні елементи процесора, встановлені на материнській платі. Вони об’єднуються в єдину систему. Процесор з двома ядрами буде обробляти в два рази більше процесів, ніж процесор з одним. Але, вибираючи пристрій по процесору, дивитися потрібно в першу чергу не на кількість ядер, а на швидкість загальної системи. Більше   — не обов’язково швидше.

Ядра процесора

Ядра процесора

Деякі CPU можуть створювати віртуальні ядра, розбиваючи одну фізичну на два. Це означає, що процесор з чотирма ядрами може функціонувати максимум як восьміядерний. Але не варто забувати, що фізичні процесори в будь-якому випадку працюють швидше і чіткіше, ніж віртуальні.

Архітектура та робочі процеси будь-якого CPU дуже складні. У кожного виробника свої архітектури та особливості розробки. Кожен намагається зробити свій новий процесор найбільш ефективним, швидше і точніше обробляють всі завдання.

Віртуальні процесори для хмарних технологій

Віртуальні процесори, вони ж vCPU, являють собою фізичні процесори, прив’язані до віртуальних машин. Найчастіше робота з віртуальними процесорами втягується в роботу з хмарними технологіями. Фізичний хост, від якого йдуть vCPU, може бути оснащений безліччю звичайних процесорів. Але по дефолту під одну віртуальну машину виділяється один vCPU.

При адмініструванні систем з vCPU потрібно знати, яка документація використовується хмарним провайдером. Налаштування таких систем   — справа тонка. Важливо розуміти, що додавання додаткових віртуальних процесорів до системи не обов’язково підвищує її продуктивність. Навпаки, фізичним процесорам буде складніше координувати віртуальні.

На ефективність будь-якого процесора, як фізичного, так і віртуального, впливають багато чинників. Це і швидкість, і кількість ядер, і навіть система охолодження. Вибір процесора безпосередньо залежить від планованих навантажень.

Процессор | Компьютер для чайников

Процессор (сокращенно ЦП – центральный процессор или международное CPU) – это главный вычислительный элемент в компьютере. Фактически он является сердцем компьютера. На нем лежит вся работа по обработке данных. Остановилось сердце – умер компьютер. Работа процессора, в некоторой степени, действительно напоминает работу сердца, т.к. он работает под управлением электронных импульсов, так называемых тактов. Тактовая частота – это важнейшая характеристика процессора, она измеряется в гигагерцах (Ггц). От нее зависит скорость и производительность вашего ПК. Выше тактовая частота, значит быстрее скорость вычислений. Современные процессоры выполняют несколько миллионов операций в секунду.

Физически процессор представляет собой металлическую пластинку со множеством ножек (выводов), устанавливаемую в так называемый сокет (разъем) материнской платы. Внутри пластины находится кристалл полупроводника, содержащий до 2 млрд. логических элементов — транзисторов. Их размер настолько мал, что они умещаются на кристалле площадью 4-6 см2.

процессор в сокете

Основными производителями процессоров являются конкурирующие друг с другом компании Intel и AMD. Независимо от производителя процессор обладает характеристиками, от которых зависит его быстродействие.

Основные характеристики процессора

Процессор обладает целым рядом характеристик, но мы рассмотрим самые главные, которые нужно знать компьютерному чайнику. Как правило, их указывают в характеристиках компьютера в магазине.

Тактовая частота. Один из самых главный параметров процессора, обозначающий количество тактов в секунду и в зависимости от модели процессора может доходить до 3Ггц и выше.

Количество ядер. Ядро – это главный вычислительный модуль процессора. Современные процессоры заключают в одном корпусе от 2 до 8 вычислительных ядер. Такой подход позволяет увеличить производительность ЦП, за счет распределения обработки данных по ядрам. Для простоты понимания можно сказать,что в одном корпусе размещены несколько процессоров.

Выбирая компьютер для покупки, сразу определитесь, для чего он вам нужен. Если только для офисных задач и интернета, то покупайте компьютер с двухядерным процессором. Для игр, обработки видео и трехмерной графики лучше будет компьютер с 4 или 6 ядрами.

Поделиться.

Еще по теме:

  • Особенности и типы корпусов компьютераОсобенности и типы корпусов компьютера Под понятием «компьютер» подразумевается именно системный блок, без монитора. В корпусе системного блока размещены главные составляющие ПК: материнская плата с процессором, видеокартой и […]
  • Как подключить компьютер к WI-FIКак подключить компьютер к WI-FI Чаще всего стационарный компьютер подключается к интернету с помощью проводного соединения. Тем более у него изначально нет специального приемника, так называемого WI-FI адаптера, чтобы […]
  • Как выбрать блок питания для компьютераКак выбрать блок питания для компьютера Выбор правильного импульсного блока питания для построения системного блока очень важен. Блок питания посредственного качества работает довольно неэффективно, издает характерный шум, может […]
  • Почему шумит компьютер и как это исправитьПочему шумит компьютер и как это исправить Для многих пользователей персональных компьютеров, не так уж важна его вычислительная мощность, энергоэффективность и другие сложные параметры. Человеку необходимо устройство, способное […]
  • Оптический привод или дисковод компакт-дисковОптический привод или дисковод компакт-дисков Оптический привод или дисковод компакт дисков – это оптико-механическое устройство, предназначенное для считывания информации со съемных носителей, представленных в виде компакт-дисков […]

Оставьте комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *