Роботы робототехника – Robotics – Robots, robots, robots / Habr

Содержание

Robotics – Robots, robots, robots / Habr

Quite a long time ago, seven years ago to be precise, i wrote a series of posts describing the state of android robotics in the world. At the time i was a high school student, with a keen interest in android robotics, who absorbed a bit of knowledge from English, Japanese, Chinese, Korean and Russian internetz and wanted to spill it somewhere.

While the posts were not too professional, and not to my standards of today, they were worthy enough to get stolen and even get translated by unapproved English Habrahabr mirrors, and to this day, appear in searches.

After those posts were written, Habrahabr got split. Removal of everyone outside of pure coding who were considered «not cake enough» to Geektimes felt like an insult and so i left the platform. Yet, the website was reunited last year, and much to a personal surprise, fairly recently an English version of Habrahabr was released.

During all these years i managed to be kicked from one university, finished another with a thick thesis on «Usage of Robotics in Disaster Conditions», lived in the Republic of Korea for half a year, and most importantly, not only expanded my knowledge of android robotics in such ways that the Robotics folder on the main hard drive is now more than 300GB in size, but also expanded the knowledge via journeying and personally meeting projects of the past and present, creating quite a decent archive on Youtube and met not only with the robots, but the engineers and scientists as well.

While i am still nowhere to be a robotics engineer, (and in the daily life i attempt to be a traditional slice-of-life artist), i feel that my tiny gigabytes of knowledge might be worthy of sharing, and today on Habr i’m publishing the real story of Android Robotics from the beginning up to 2019.

Читать дальше →

habr.com

Роботы и робототехника перспективный тренд современности.

Роботы и робототехника всё сильнее входят в нашу жизнь. Появляются новые робототехнические конструкторы. Проводятся многочисленные конкурсы, соревнования и фестивали по робототехнике.

Читайте на сайте статьи о робототехнике и роботах, о различных технических новинках и гаджетах Также смотрите на моем YouTube канале LegoTeacher видео по теме роботы и робототехника.

Ранее в фантастических романах мы читали о видеотелефонах, роботах, полетах на Марс и о многом другом. На наших глазах фантастические романы стали обычной жизнью.

роботы и робототехника

Существует много направлений робототехники и большое количество видов роботов.

Основные направления робототехники:

  • промышленная робототехника
  • военная робототехника
  • образовательная робототехника
  • космическая робототехника
  • групповая робототехника
  • и множество других направлений

Роботы подразделяются на множество типов:

  • бытовые
  • промышленные
  • экстремальные
  • андроиды
  • медицинские
  • боевые
  • роботы игрушки

Перечислять можно еще долго и количество видов робота ещё и ещё увеличивается. Но чаще я буду публиковать статьи по образовательной робототехнике.

Образовательная робототехника

Образовательная робототехника направлена на помощь в изучении школьных дисциплин. Можно сказать что она даёт опережающее развитие в математике, физике, информатике и других предметах. Она помогает получить основы инженерно-технического образования. Следовательно, она является подготовительным этапом для поступления в технические ВУЗы.

Сейчас реальность меняется быстрыми темпами. При этом количество инженеров, которые способны творить и нестандартно мыслить уменьшается. В советское время была система распределения инженеров на предприятия с обязательной отработкой три года. В результате сокращения производств сложилась ситуация, когда выпускник института никому не нужен. Всем нужны инженеры с опытом работы, знанием иностранного технического языка и т.д.

Вузы же часто выпускают инженеров, абсолютно оторванных от действительности. Возможно они обладают теоретическими знаниями, но нет практических навыков. Образовательная робототехника может немного восполнить этот пробел. В первую очередь может дать возможность на практике ознакомиться с основными принципами робототехники и автоматизации. Так как на занятиях собирают и программируют различные модели роботов.

Также сейчас проводятся различные фестивали и соревнования по робототехнике. На них происходит обмен опытом и просто общение людей, увлеченных техническим творчеством. Робототехника для детей школьного возраста является сравнительно новой дисциплиной. И на сайте я буду по мере изучения материала публиковать статьи по робототехнике Лего.

Возможно будут публикации по  Ардуино и другим образовательным наборам, к которым у меня есть доступ. Изучение робототехники легче всего начинать со школьного возраста. В настоящее время имеется достаточно много образовательных наборов для изучения робототехники.

Роботы и робототехника Lego

Одним из самых удачных наборов является базовый набор Lego Mindstorms EV3 45544.

В нем есть все необходимое для того, чтобы создавать простых роботов. Сейчас можно скачать бесплатную версию программного обеспечения для образовательных наборов с официального сайта. В наборе есть контроллер, три двигателя, различные датчики и многое другое. Кроме наборов Lego есть и другие образовательные конструкторы. Большим преимуществом наборов Lego является качественная пластмасса.

Из этой прочной пластмассы изготовлены детали и также разнообразные дополнительные наборы и сенсоры. Они дополнительно расширяют возможности базового набора. О наборе Lego можно написать ещё очень много и постепенно в статьях я буду раскрывать эту тему. Для того, чтобы идти в ногу со временем, нужно получать новые знания. В первую очередь изучать современные технологии и новые течения в робототехнике.

Робототехника и автоматизация все больше используется в нашей жизни. Это и беспилотные космические аппараты, управляемые и автономные роботы. В повседневной жизни появляются умные дома, бытовые приборы типа роботов пылесосов и многое другое.

Lego Mindstorms EV3

legoteacher.ru

«Робототехника» — Яндекс.Знатоки

В формулировке вопроса не указана сторона, которая могла бы обойти «Три закона робототехники«. Руководствуясь здравой логикой предположу, что обход этих законов не в интересах человечества, значит в вопросе спрашивается про обход роботизированными системами.

***

В качестве справочной информации приведу перевод текста «Трёх законов робототехники» Айзека Азимова из Википедии:

  1. Робот не может причинить вред человеку или своим бездействием допустить, чтобы человеку был причинён вред.
  2. Робот должен повиноваться всем приказам, которые даёт человек, кроме тех случаев, когда эти приказы противоречат Первому Закону.
  3. Робот должен заботиться о своей безопасности в той мере, в которой это не противоречит Первому или Второму Законам.

В 1986 году Азимов сформулировал «Нулевой закон робототехники«, который почти повторяет положения первого закона:

0 . Робот не может причинить вред человечеству или своим бездействием допустить, чтобы человечеству был причинён вред.

Согласно нулевому закону, роботы не могут причинить вред ВСЕМУ ЧЕЛОВЕЧЕСТВУ и должны НЕ ДОПУСТИТЬ ПРИЧИНЕНИЕ ВРЕДА.

***

Одним из вариантов обхода этих законов при теоретическом «восстании машин» может быть предположение того, что «ЧЕЛОВЕЧЕСТВО СУЩЕСТВУЯ, КАК БЫ, НАНОСИТ СЕБЕ ВРЕД».

Дальше, легко предположить, какие действия должен будет предпринять робот по недопущению причинения вреда человечеству.

***

Чтобы не происходило подобных происшествий даже в теории, я предлагаю в «Нулевой закон робототехники» внести определение роботов, как собственности человека (собственность не может принимать судьбоносные решения за своего владельца). Подробнее в статье «Настоящий «нулевой» закон робототехники«, опубликованной на канале «ИНФОРМАЦИОННОЕ ПРАВО в обществе«.

27 января 2019 г.

автор: Демешин Сергей Владимирович.

yandex.ru

Роботы в промышленности — их типы и разновидности / Top 3D Shop corporate blog / Habr

Что это?

Это статья об индустриальном применении робототехники. Применение роботов в промышленности началось, по историческим меркам, не так давно — чуть больше, чем полвека назад, но сейчас уже мало какое производство можно представить себе без автоматических линий, без стальных манипуляторов и зорких стеклянных зрачков роботов — эти железные ребята прочно вошли в большинство производственных процессов и уходить не собираются.

Несмотря на такое обширное, почти повсеместное распространение роботов, лишь специалисты в полной мере представляют себе весь спектр их возможностей. В этой статье мы приоткроем дверь в мир промышленной робототехники для широкого круга читателей: опишем некоторые разновидности производственных роботов и сферы их применения. Нельзя объять необъятное в одной статье, но, если читателям будет интересно, мы обязательно продолжим.

Так какие они бывают — роботы?

Есть несколько классификаций промышленных роботов: по типу управления, по степени мобильности, по области применения и специфике совершаемых операций.

По типу управления:

Управляемые роботы: требуют, чтобы каждым их движением управлял оператор. В силу узости областей применения распространены мало. Да и не совсем роботы.

Автоматы и полуавтономные роботы: действуют строго по заданной программе, зачастую не имеют сенсоров и не способны корректировать свои действия, не могут обойтись без участия рабочего.

Автономные: могут совершать запрограммированный цикл действий без участия человека, согласно заданным алгоритмам и корректируя свои действия по мере необходимости. Такие роботы способны полностью перекрыть поле деятельности на своем участке конвейера, без привлечения живой рабсилы.

По функциям и сфере применения:

Роботы разделяются по назначению и исполняемым функциям, вот лишь некоторые из них: промышленные роботы бывают универсальные, сварочные, машиностроительные, режущие, комплектовочные, сборочные, упаковочные, складские, малярные.

Это далеко не полный перечень: количество всевозможных вариантов постоянно растет и все перечислить невозможно в рамках одной статьи. Можно лишь с уверенностью сказать о том, что вряд ли найдется такая область человеческой деятельности, где роботы не смогли бы сделать труд человека более творческим, взяв всю монотонную и опасную часть работы на себя.

Другие методы классификации

У каждой энциклопедии, каждого справочника и каждого производителя своя классификация и типология роботов. Что и не удивительно — зачастую она определяется сугубо специфическими нуждами и частным подходом того, кто её составляет.

Помешает ли это нам рассмотреть некоторые образцы и понять — что же они умеют? Нет конечно. Поехали.

Рассмотрим образцы

Среди промышленных роботов выделяется продукция таких известных фирм, как Kuka, Fanuc, Universal Robots, некоторые образцы которых мы рассмотрим чуть ниже.

KUKA KR QUANTEC PA Arctic

KUKA KR QUANTEC PA — один из лучших роботов-палетоукладчиков на рынке. KUKA KR QUANTEC PA Arctic — его модификация, робот функционирующий при экстремально низких температурах. Он создан для работы преимущественно в морозильных камерах, при температурах до -30 °C. Электронные и механические части аппарата не нуждаются в защите от мороза, снега, инея, а также не выделяют излишнего тепла. Радиус действия манипулятора модификации Арктик, как и у стандартного KUKA KR QUANTEC PA, составляет 3195 мм, а полезная нагрузка — до 240 кг. Аппарат идеален для применения в пищевой промышленности и в условиях крайнего севера. Кроме составления штабелей из паллетов, робот может выполнять и другие манипуляции, ведь точность его движений, а точнее говоря — стабильность повторяемости позиционирования, составляет 0,06 мм.

FANUC M-2000iA/1200

FANUC M-2000iA/1200 — пятиосевой грузоподъемный робот поднимающий до 1200 кг и перемещающий этот груз на расстояние до 3,7 м — идеален в качестве погрузчика, так как работает без участия человека, что практически сводит к нулю опасность травматизма. Работает при температурах 0°C — +45 °C. Стабильность повторяемости — 0,03 мм.
Крайне прочный аппарат.

Universal Robots — UR10

UR10 — самый крупный из манипуляторов Universal Robots и это коллаборативный робот, проще говоря — он создан для работы с другим оборудованием и помощи в работе человеку.
Манипулятор модели UR10 имеет радиус действия 1,3 м и поднимает груз до 10 кг. Его можно использовать с сельскохозяйственным, фармацевтическим, технологическим и многим другим оборудованием. Компактно размещается на рабочем месте человека, чтобы стать ему “третьей рукой”, легко программируется и быстро настраивается.

UR10 умеет завинчивать, клеить, сваривать и паять, производить литьевые и сборочные работы.

Также роботы Universal Robots применены в проекте Voodoo Manufacturing: Project Skywalker компании Medium Corporation — это фабрика 3D-печати, многие операции на которой выполняют именно роботы-манипуляторы. Такие действия, как замена платформ для печати, сбор и складирование готовых изделий больше не требуют неустанного внимания персонала.

Особенно интересны универсальные роботы, так как именно они, в силу своего назначения, снабжены наиболее адаптивными системами управления.

Rethinkrobotics

Это такие роботы, как Baxter и Sawyer производства Rethinkrobotics.

Baxter — многофункциональный робот с двумя манипуляторами и системами обратной связи и самообучения.

Его 7-осевые манипуляторы способны почти на всё, на что способна рука человека, в том числе — имеют обратную связь и могут контролировать прилагаемые усилия. Это, плюс ещё особенности дизайна, делают Бакстера безопасным для живых рабочих — его рабочее место не нуждается в ограждении, да и вообще — места он занимает немного, что здорово экономит пространство в цеху. Пара бакстеров способна успешно работать вместе.

Бакстер интересен еще и тем, что не требует тщательного подробного программирования каждого своего действия — “учить” его можно не только через интуитивно понятное визуальное приложение, но и прямо на рабочем месте — повторяя показанные движения он запоминает их и применяет в дальнейшем.

Sawyer — “младший брат” Бакстера — удивительно компактный и легкий робот-манипулятор, он весит всего 19 килограмм и может быть установлен почти где угодно, не занимая при этом много места.

Точность действий Сойера доходит до 0,1 мм, что позволяет использовать его в сотнях видов комплектовочных, сборочных и других конвейерных работ.

Оба робота легко переобучаются для выполнения новых функций даже без применения традиционного программирования и столь же просто перемещаются с одного рабочего места на другое.

Гибридное производство

Stratasys Infinite-Build 3D Demonstrator

Очень интересным представляется подход компании Stratasys, которая создала промышленный аппарат нового типа — гибрид робота и 3D-принтера.

Конечно, любой 3D-принтер обладает признаками робота, но тут — это совершенно традиционной формы роботизированный манипулятор, имеющий в том числе и функцию FDM-печати. Stratasys Infinite-Build 3D Demonstrator предназначен, прежде всего, для авиационного и космического производства, в котором так важна его способность производить печать на вертикальных поверхностях неограниченной площади, в соответствии с концепцией “infinite-build” — “бесконечное построение”. С работой над проектом связаны такие монстры, как аэрокосмический гигант Boeing и автоконцерн Ford, которые предоставили Stratasys спецификации по необходимым характеристикам получаемых изделий.
Восьмиосевой механизм манипулятора, обилие специально разработанных композитных материалов для печати, традиционно высокое качество изготовления — все говорит нам о том, что у этого аппарата и его потомков большое будущее.

3D Systems — Figure 4

Figure 4 компании 3D Systems — модульная робототехническаяя система для автоматизации стереолитографической 3D-печати, ни больше, ни меньше.
Это целый автоматический комплекс, который способен производить новые изделия каждые несколько минут — в отличие от нескольких часов на обычных SLS-принтерах.
Кроме того, в цикл уже включены и такие этапы, как промывка, отделение поддержек и дозасветка, а не только первичная экспозиция. Все это Figure 4 делает сам, без вмешательства оператора в процесс работы.

Благодаря модульности, на основе Figure 4 можно создать достаточно крупные автоматические линии, используя стандартные компоненты.

Этот комплекс был представлен общественности в этом году, на выставке The International Dental Show в Кёльне, как и новый 3D-принтер ProJet CJP 260Plus — полноцветный 3D-принтер предназначенный для анатомического моделирования медицинских изделий и быстрого прототипирования любых промышленных образцов.

Принтер также роботизирован — снабжен системой автоматической загрузки, удаления и переработки печатного порошка.

Можно с уверенностью сказать, что комплексный подход к 3D-печати — часть производственной культуры будущего. Он даст радикально новое сочетание скорости, точности, удобства и снижения себестоимости изделий.

Carbon — Carbon SpeedCell

Carbon SpeedCell — технологическое решение от компании Carbon, которое включает в себя новый 3D-принтер The M2, работающий по технологии CLIP, и финишинговый аппарат для стереолитографических распечаток Smart Part Washer.
CLIP — технология бесслойной стереолитографической печати, обеспечивающая скорость от 25 до 100 раз быстрее обычной SLS и новый уровень качества поверхности.

Система CLIP (Continuous Liquid Interface Production) позволяет получить невозможные ранее формы изделий требующие минимальной постобработки. Точных характеристик аппаратного комплекса производитель пока не предоставил, но сам подход уже радует — это почти готовое решение для любой мастерской, в которой требуется стереолитографическая печать.

DMG MORI — LASERTEC 65 3D

Аппарат сочетающий в себе несколько разных подходов к обработке деталей: это и классический фрезерный станок с программным управлением — пятиосевой и весьма точный, и лазерный режущий инструмент с теми же степенями свободы, и печатающий металлом 3D-принтер с технологией лазерного напыления. Сложно представить себе операцию, которую не смог бы произвести этот станок с металлической деталью. Гибридный подход: фрезеровка заготовки, наплавление недостающих деталей или печать с нуля и чистовая обработка — все операции могут произведены с деталью за один подход, в рамках одной заданной программы, без прерывания технологического цикла. Размер обрабатываемой и/или печатаемой детали составляет до 600 на 400 мм, а вес может быть до 600 кг.

Такое МФУ для работы по металлу уже многое изменило в культуре производства штучных и мелкосерийных изделий, а в ближайшее время подобный подход может распространиться и на серийное производство.

EOS — Additive Manufacturing

Компания EOS создала манипуляторы, которые способны производить различные операции, где требуется захват и перемещение детали. Разработки EOS в этой области основываются на наблюдениях за поведением животных, в частности — этот манипулятор создан по примеру хобота слона.

Такой робот-манипулятор может быть использован во множестве промышленных операций, как то: в транспортировке и упаковке, в перемещении деталей из одной рабочей зоны в другую, например — из 3D-принтера в камеру пост-обработки, чтобы исключить участие человека на этом этапе.

Вот так он устроен:

https://youtu.be/vQ_Zh0bxhs8

Также компания спонсирует и представляет проект Roboy — это мобильный гуманоидный робот, который способен выполнять любые движения свойственные человеку и служить помощником на производстве.

Concept Laser и Swisslog — M Line Factory
Известный производитель печатающих металлом 3D-принтеров, Concept Laser заключил соглашение с компанией Swisslog, их общий проект — M Line Factory, это система перемещения металлических 3D-печатных деталей между станками Concept Laser с помощью роботов Swisslog.

https://youtu.be/0v4LAbjfJxc

Компании продолжают совершенствование аппаратных комплексов для 3D-печати металлом. Роботизированные составляющие этих машин способны провести деталь через весь цикл — от загрузки проекта в память, до выхода готового изделия на склад, — без необходимости вмешательства оператора.

Additive Industries — The MetalFAB1

Единственная в своем роде установка — единая система для печати, транспортировки из рабочей камеры и хранения готовых деталей. Фактически — готовый цех металлической 3D-печати в одном корпусе.

Существуют роботы, которые способны выполнять функции сварочных и фрезерных станков c программным управлением.

А также такие, которые обслуживают традиционные фрезерные ЧПУ-станки, увеличивая их производительность.

Например, вот так это делает упомянутый выше Sawyer:

https://youtu.be/XU6thj7cQ5c

Выводы

Роботы в современной промышленности везде. Они в любом цеху и в любой области производства. И это нормально: роботы экономят деньги работодателей, а рабочих спасают от вредной и монотонно-отупляющей работы; роботы работают круглосуточно и безостановочно; роботы намного точнее живых рабочих — они не устают, у них не “замыливается глаз”, их сенсоры и системы позиционирования способны сохранять точность до сотых долей миллиметра.

Пока мы видим их еще не везде — многие производственные процессы скрыты от рядового пользователя, да и не особо интересны обычно, — но совсем скоро невозможно будет не замечать того, что подавляющая часть всех материальных благ производится умными машинами.

Хотите больше интересных новостей из мира 3D-технологий?

Подписывайтесь на нас в соц. сетях:

habr.com

Роботы в человеческом обществе / Unet corporate blog / Habr

Роботы – это автоматизированные машины, которые способны выполнять функции человека при взаимодействии с окружающим миром. О них люди мечтали еще с древних времен, и вот сейчас эти механизмы входят в наше общество с огромной скоростью. Основное их предназначение – сделать нашу жизнь более комфортной, улучшить условия труда, освободить «руки» от сложных рабочих процессов и увеличить производительность.

Роботы чаще всего встречаются в промышленности, где с их помощью удалось полностью автоматизировать большинство производственных задач. Но, кроме того, умные машины все больше задействуются в военной отрасли, медицине, сфере обслуживания и потребительском секторе.


И если ранее они выполняли только повторяющиеся рутинные задачи по программе, то сейчас их уровень достиг новых вершин, позволяя взаимодействовать с нами, общаясь на своем машинном языке, понимать наши жесты и эмоции. Кроме того, используя специализированные площадки уже сейчас каждый желающий имеет возможность влиять на индустрию, создавать свои программы и добавлять новые функции к роботам. Таким образом, развиваясь от простых вспомогательных механизмов, роботы имеют все шансы влиться в наше общество и стать нашими друзьями.

История развития

Отметим несколько интересных фактов из истории развития роботов. Первые признаки робототехники наблюдались еще с античности, когда люди мечтали о гигантских бронзовых машинах, которые смогли бы помочь им сражаться с врагами и завоевывать новые земли. Есть свидетельства, что прообразами нынешних роботов были механические фигуры, найденные в записках арабского изобретателя Аль-Джазари примерно в 1136 – 1206 годах.

Первым, кто представил чертеж человекоподобного робота, был великий Леонардо да Винчи примерно в 1495 году. Чертеж представлял модель механического рыцаря, который может сидеть, стоять, двигать руками, головой и, возможно, захватывать предметы. Но так и неизвестно, пытался ли да Винчи воплотить в реальность этот механизм.

В 16-17 веке в Западной Европе инженеры начали конструировать автоматоны — заводные механизмы наподобие человека, которые могли выполнять довольно сложные действия. Самый известный из них – робот «испанский монах», который был изобретен примерно в 1560 году механиком Хуанело Турриано для императора Карла V. Автоматон был около 40 см в высоту, способный ходить, бить себя в грудь рукой, кивать головой и даже преподносить деревянный крест к губам.

Более заметный прогресс в робототехнике наблюдался в 18 веке. К примеру, в 1738 году французский инженер Жак де Вокансон собрал первого в мире андроида, способного играть на флейте.

С 19 века изобретения стали приобретать более практический смысл. В 1898 году известный физик Никола Тесла представил общественности миниатюрное радиоуправляемое судно. Первоначально это изобретение казалось немного причудливым. Но в дальнейшем его идеи стали воплощаться в жизнь и приобрели широкое применение.

1921 год – механизмы, наконец, обрели четкий термин «робот» благодаря чешскому писателю Карлу Чапеку и его пьесе под названием «Россумские Универсальные Роботы». Примечательно, что Чапек назвал этим словом не машины, а живых людей, создаваемых на специальной фабрике. Но термин закрепился в науке и дал жизнь всем автоматизированным устройствам.

В середине 20 века, в частности, в 1950-ых стали разрабатываться механические манипуляторы для взаимодействия с радиоактивными материалами. Эти роботы копировали движения рук человека, находящегося в безопасном месте.

В 1968 году японской компанией Kawasaki Heavy Industries, Ltd был произведен первый промышленный робот. С тех пор Япония начала вовсю стремиться стать мировой столицей робототехники, и ей это удалось. Несмотря на то, что роботы изначально разрабатывались в США, они импортировались в Японию в малых количествах, где инженеры изучали их и применяли в производстве.

Коммерческое распространение роботов началось с 1980-ых годов. Технический прогресс двигался в направлении совершенствования систем управления. Такие компании как Unimate, Hitachi KUKA, Westinghouse, FANUC развивали системы датчиков для своих роботов, делая их более чувствительными к задачам, которые они выполняют.

В конце 90-ых – начале 2000-ых начался активный рост и развитие отрасли с использованием новых контроллеров, языков программирования, запуска первых роботов в космос и возникновением машин, создающих роботов.

В это время также появились новые человекоподобные роботы, такие как канадский Aiko, имитирующий человеческие чувства (осязание, слух, речь, зрение), ASIMO – гуманоид японской фирмы Honda, робот-собака AIBO, созданная компанией Sony и другие.

  • В 2005 году вышел робот-гуманоид RoboThespian британской компании Engineered Arts. Пройдя несколько модификаций, он стал наилучшей платформой для общения и развлечений. В этом же году мир увидел BigDog – боевой четвероногий робот, созданный Boston Dynamics.
  • В 2008 году вышел гуманоидный дружелюбный робот NAO, предназначенный для работы в домах, университетах и лабораториях и предлагающий помощь в научных исследованиях и образовании.
  • В 2011 году на МКС был отправлен первый робот-космонавт НАСА Robonaut-2.

Последние пять лет наблюдается широкий всплеск робототехники во всех отраслях – от продвинутых манипуляторов до гуманоидов, которые выглядят как живые люди, имеют широкий спектр эмоций и полностью копируют нашу мимику.

Препятствия

Несмотря на всю полезность технологии, роботы пока не используются повсеместно, как это зачастую нам показывают во многих фантастических фильмах. Это связано с рядом факторов. Во-первых, для этого просто не готова наша инфраструктура: дороги, улицы, здания и наши дома. Роботы воспринимают мир иначе и пока неспособны даже отличить стул от стола, чего уж говорить о постоянно меняющихся условиях нашей жизни.

Во-вторых, не готова правовая система государств: использование роботов требует соответствующих законов, чтобы они «мирно» сосуществовали с нами. В конце концов, если не сами роботы, то кто-то другой должен нести ответственность за их действия.

В-третьих, некоторые исследователи утверждают, что нам необходимо опасаться этих механических рабочих, так как с дальнейшим активным развитием искусственного интеллекта они смогут в буквальном смысле поработить нас. Эти опасения слишком сильно сдерживают исследование и распространения робототехники.

Конечно, не стоит отрицать, что есть масса глобальных рисков, которые могут возникнуть при использовании сверхчеловеческого разума, не запрограммированного на безусловную лояльность к человеку. Но будущее пока что в наших руках, и мы в силах его изменить, тем более, что сейчас программирование роботов становится все более открытым и доступным для общественности. Нужно только научиться правильно пользоваться этими возможностями.

Роботы сегодня

Как уже упоминалось, наибольшей отраслью, где используется робототехника, является промышленность, в частности, автомобилестроение. Манипуляторы, работающие на заводах, варьируются от размеров и функциональности в зависимости от типа выполняющей задачи – сборочные, сварочные, режущие, красящие. Наряду с ними на производстве можно встретить разгрузочно-погрузочных роботов, упаковщиков, сортировщиков, формовщиков и прочие механизмы, заменяющие человека в рутинных повторяющихся задачах. Компаниями-лидерами в промышленной автоматизации являются – KUKA (Германия), Fanuc (Япония), Kawasaki (Япония), ABB (Швейцария), Denso (Япония) и другие.

Наряду с этим новых масштабов приобретает рынок совместных роботов, которые могут работать с людьми на одной производственной линии, не причиняя им вреда. Это манипуляторы компании Universal Robots, а также промышленные роботы нового поколения Baxter и Sawyer от Rethink Robotics.

В последние годы весь мир внимательно следит за разработкой автомобилей с автономным управлением, которые будут перевозить людей без их участия в процессе. Сейчас ближе всего к беспилотным машинам находится служба такси Uber. Но прогресс в разработке технологии регулярно демонстрируют такие производители, как Ford, Mercedes, Toyota, BMW и Tesla.

Роботы также активно используются в сельском хозяйстве. Зачастую, это радиоуправляемые тракторы и плуги, но все более широкого применения приобретают беспилотные летательные аппараты, которые аграрии используют для картографирования своих угодий и регулярного осмотра культур.

А какие роботы служат в быту? Безусловно, первое место здесь принадлежит роботам-пылесосам, которые стали незаменимыми помощниками по уборке в доме. Лидером среди производителей этих устройств является американская фирма iRobot и её пылесосы Roomba. Последние модели производителя отличаются улучшенной навигацией и сопряжением со смартфоном. Данное дополнение открывает новые возможности для обычных пользователей, которые могут через специальные приложения добавлять роботам больше функций.

Для ухода за газонами служат автоматизированные газонокосилки, которые оснащены массивом датчиков для безопасной езды и стрижки травы на больших площадях. За бассейнами ухаживают небольшие колесные роботы, которые самостоятельно передвигаются по дну водоема, чистят стены, ступени и фильтруют воду.

Кроме того, растущего числа набирают беспилотные летательные аппараты, которые давно перешли от исключительно военного применения к гражданскому. Дроны используются для самых различных задач – от развлечения до наблюдения и профессиональной видеосъемки. Лидерство в этом секторе за китайским производителем DJI. Их последний аппарат Spark считается самым совершенным селфи-дроном, запускаемым и управляемым жестами.

Все большего распространения также приобретают системы умного дома. Если раньше такая «автоматизация» заключалась в хлопанье ладошами чтобы включить свет, то сейчас человеку вообще не нужно ни за чем следить – вся власть в руках электронного управдома, роботизированного центра управления, которому подчинены все домашние устройства от систем безопасности и освещения до кофеварки и стиральной машины.

Более того, пользователь может сам добавлять функции в систему, которые ему нужны. К примеру, ему необходимо настроить работу стиральной машины на время, когда счетчики работают в режиме «ночь», чтобы экономить расходы на электроэнергию. Для этого нужно сконструировать соответствующее приложение для смартфона, который поможет оставаться на связи с домом и управлять домашней автоматизацией практически с любого места.

Вспомогательным гаджетом может выступать эхо-колонка (Amazon Echo, Google Home и другие), позволяющая с помощью голосовых команд управлять всей техникой в доме. Или роботы-помощники, которые выступают в роли органайзера, будильника, мультимедиа проигрывателя. Будучи подключенными к Интернету, они сообщают о погоде, рассказывают новости, предоставляют информацию о пробках в вашем городе и прочее. А благодаря открытому доступу к программированию, из них можно сделать отличных помощников для учебы детей, развлечения пожилых и даже игрушек для домашних животных.

Как видите, роботы уже вошли в нашу жизнь в виде разнообразных умных гаджетов, бытовых приборов и смарт-систем. Однако до идеального образа, созданного человеческим воображением, умным машинам еще очень далеко. Все что они могут – выполнять запрограммированные человеком команды. Но инженеры упорно стремятся к тому, чтобы сделать машины по-настоящему дееспособными, а взаимодействие с ними более легким, естественным и главное – доступным обычному человеку.

Прогнозы на будущее

С каждым годом эксперты и аналитики представляют нам новый мир, где на смену вере в сверхъестественное придет вера в науку и технику. Мир, в котором можно учиться и работать, не выходя из дома. Интернет размоет границы между странами, а роботы будут делать за нас практически все.

Если верить статистическим данным организации Tractica, число потребляемых человечеством роботов достигнет 31,2 млн единиц по всему миру к 2020 году. При этом, лидерство на рынке займут бытовые роботы, обогнав промышленных и военных.

Ученые прогнозируют, что уже к 2018 году Интернет вещей будет насчитывать около 6 млрд подключенных устройств. Эти устройства будут обращаться к сервисам и данным в Сети, что позволит людям строить новые бизнес-планы для обслуживания этих подключенных устройств. К 2020 году 40% взаимодействий с мобильными устройствами будут осуществляться через «умных» агентов. Этот прогноз основан на том, что наш мир движется к эпохе приложений, в которой такие сервисы, как Amazon Alexa, Microsoft Cortana и Apple Siri будут играть роль универсального интерфейса для взаимодействия человека с устройствами.

Технический директор Google Рэй Курцвейл в своих прогнозах по поводу развития робототехники и информационных технологий предполагает, что персональные роботы, способные на полностью автономные сложные действия, станут такой же привычной вещью, как холодильники или стиральные машины уже в 2027 году. А беспилотные автомобили заполнят полностью дороги в 2033 году.

Какими бы утешительными или наоборот пугающими не были прогнозы, перед учеными и инженерами стоит еще ряд проблем. Основная из них – жесткие ограничения правительств государств в принятии робототехники, которые сопровождаются нехваткой стандартов качества и безопасности продукции.

Еще одна проблема, которую нужно решить перед тем, как роботы будут массово внедрены в жизнь – это доступность программного и аппаратного обеспечения. Дороговизна материалов и оборудования для производства не позволяет производителям снижать цены на своих роботов. К примеру, очень дорого стоят такие медицинские устройства как экзоскелеты, которые помогли бы многим людям с ограниченными возможностями нормально жить и передвигаться.

Пока нам доступны только роботы-уборщики, дроны и персональные помощники, но радует тот факт, что вскоре у нас будет возможность делать эти устройства более функциональными, не завися от производителей.

Плюс ко всему, обычные люди пока не готовы морально к принятию роботов, похожих на них. Это связано в первую очередь с нехваткой информации о том, каких достижений добился научно-технический прогресс. Вдобавок к этому у людей сложилось ошибочное мнение о роботах, которые были неоднократно представлены в научно-фантастических фильмах. Некоторые до сих пор воспринимают слово «робот» как что-то вроде «Терминатора» или дроида из «Звездных войн». А ведь на самом деле, сейчас собрать и запрограммировать робота может даже ребенок.

Нужно расширять границы знаний, больше читать и смотреть интересные видео об устройствах из реального мира, которые могут иметь большое значение в нашей повседневной жизни.

Роботы в концепции IoT

Робототехника также затрагивает область столь нашумевшего сейчас направления – Интернета вещей. Это единая сеть, которая соединяет окружающие объекты реального мира с виртуальными.

Как это происходит: сенсоры вводятся во все подключенные к сети устройства, что позволяет им взаимодействовать с внешним миром. К примеру, «умные» шторы, которые сами регулируют свою прозрачность в зависимости от уровней внешнего и внутреннего освещения. Или холодильник, который самостоятельно регулирует температуру в разных отсеках, основываясь на том, какие продукты вы берете чаще всего. Таким образом, техника начинает подстраиваться под ежедневную жизнь пользователя и управляться исходя из его потребностей.

Интернет вещей – это не просто объединение различных приборов и датчиков через проводные и беспроводные каналы. Это более тесная интеграция реального и виртуального миров, в которых производится общение между людьми и устройствами.

Ученые уверены, что в будущем эти системы станут активными участниками информационных и социальных процессов, а также бизнеса, где они смогут взаимодействовать между собой, обмениваться информацией об окружающей обстановке, реагировать и влиять на внешние процессы без вмешательства человека.

На этом фоне появляется концепция Social IoT, которая предполагает объединение людей, роботов и устройств в одно информационно-правовое поле. Но что же нужно для осуществления этой концепции? Дело в том, что самой главной проблемой в данной области на сегодняшний день является отсутствие государственных стандартов, что затрудняет возможность применения предлагаемых на рынке решений, а также сдерживает появление новых.

Но кроме стандартов безопасности, необходимо создать доступные механизмы взаимодействия между роботами и людьми для управления и контроля. Это даст возможность полноценно управлять не одним роботом, а безопасно впустить в наше общество иную цивилизацию машин и жить в гармонии с ними.

Такие пользовательские программные сервисы, к счастью, скоро появятся и будут доступными, позволяя даже новичку добавлять к своему роботу новые интересные задачи. Хотите, чтобы робот-пылесос пел ваши любимые песни? Почему бы и нет. Для этого достаточно будет воспользоваться набором готовых базовых инструментов.

С помощью API программы каждый желающий сможет быстро создавать и комбинировать множество своих вариантов решений. При этом не нужно будет тратить свои ресурсы на создание базовых инструментов, а только фокусироваться на основной задаче.

Уже в ближайшем будущем вы сможете подключить программу, выбрать готовое приложение и сделать свой робот-пылесос говорящим и поющим. А если оснастить его видеокамерой, он сможет выступать в роли охранника. Но самое главное, что с помощью большого набора программных инструментов у вас появится возможность писать собственные уникальные приложения, чтобы добавлять бытовым роботам больше новых функций.

Стоит также отметить, что каждый отдельно взятый продукт стороннего разработчика на представленной базе будет иметь возможность привлекать к себе пользователей всей системы и распространять свой продукт. Таким образом, будет создана большая экосистема инструментов и возможностей, которые будут пользоваться ежедневно людьми со всего мира.

Заключение

В заключение стоит отметить, что по мере того как наш мир будет наполняться роботами, навыки общения с ними будут не менее полезны чем навыки общения с людьми. Мы видим, как современные технологии постепенно объединяют людей и умные машины в одну большую социально-аппаратную сеть. И это только начало сложного, но очень увлекательного путешествия в будущее.

habr.com

Что такое образовательная робототехника сегодня / Habr

image

Кратко о себе:

Я не являюсь специалистом в области педагогики и образования, к детям отношусь сугубо как личностям в начале жизненного пути, а не к «цветам жизни» и преследую цель заинтересовать их и передать им свой опыт. В робототехнике работаю уже несколько лет и имею неподдельный интерес к этой сфере.

Кружков робототехники в России становится всё больше, однако мало кто из родителей понимает, что именно из себя представляет это направление. Большинство относится к нему скептически, считая что всё завязано на обычном LEGO, в которое можно поиграть и дома или же считают что это оторванный от жизни предмет, на который можно отправить ребенка ради его развлечения и отдыха. С другой стороны, некоторые считают это занятие уделом гениев или ботаников. Ну, или что оно способно сделать гения из их ребенка.

image

На самом же деле, образовательная робототехника не является ни заумным предметом, ни профессией будущего, ни беззаботным развлечением. А является она базой для серьезного изучения прикладных технических навыков, необходимых для будущего технаря уже сейчас.

Безусловно, это занятие не для всех — многие дети не горят желанием изучать «скучную» теорию вместо того чтобы, условно, порезвиться в спортивной секции. Однако, тех, кто любит всё время что-то создавать своими руками, интересуется компьютерной техникой или просто проявляет интерес к любой технике, образовательная робототехника способна обучить многим навыкам, например:

  • Самостоятельному проектированию конструкций
  • Пониманию принципов работы различных механизмов
  • Основам компьютерной грамотности
  • Принципам программирования
  • Оптимизации процессов и поисках альтернативных решений
  • Применению английского языка (стандарт в технической отрасли)
  • Пониманию «для чего нужна математика»
  • Взаимодействию программной части с конструкцией
  • Работе в составе команды и общей социализации

Конечно, всё это при условии достаточной оснащенности отдельно взятого кружка, профессиональной подготовке преподавателя и живому интересу с его стороны, а также некоторых других индивидуальных факторов.

image

Самое главное — не стоит нацеливаться на конкретные результаты, вроде занятия призовых мест на различных соревнованиях по робототехнике. Они нужны в первую очередь для социализации, созданию интереса к отрасли и духа соревнования. Это тот самый случай, когда во всех смыслах участие важнее победы. Здесь робототехника ближе к художественной школе с её выставками, где главное — на других посмотреть, да себя показать.

В качестве результата обучения можно рассматривать постепенное увеличение сложности создаваемых проектов (как в кружке, так и дома), однако тут всё индивидуально.

Перейдем к наиболее часто задаваемым вопросам:

Чем мы занимаемся на робототехнике?

Строим роботов, конечно! Интересных и разных. Из LEGO. Изучаем, что такое датчики, шестеренки, гусеницы, для чего это нужно и как это использовать. Воспроизводим некоторые приборы из «взрослого мира», вроде парктроника или охранной системы, а еще строим всякие гусеничные вездеходы.

image

Для всего этого нам часто приходится использовать математику и банальную интуицию. А логическое мышление — вообще наше всё.

Почему «LEGO»?

Образовательные наборы LEGO Mindstorms EV3 являются международным стандартом для образовательной робототехники, так как ни один другой набор не обладает таким уровнем стандартизации, простоты использования и глубины проработки. Выпущенное в 2013-м году третье поколение образовательного робототехнического набора от LEGO, EV3 (в народе «Ева») обладает поистине необъятной широтой возможностей, заложенных в программное обеспечение и аппаратную составляющую, а совместимость с любыми другими наборами LEGO даже 40-летней давности дает очевидную возможность использовать любые детали для строительства конструкций. Кстати, у LEGO в наборах есть шикарно реализованные механические узлы (дифференциалы, элементы различных типов передач, элементы подвески и тд) и даже внятная пневматика. Ни один другой набор не имеет ничего подобного на том же уровне реализации. Есть еще fischertechnik но он относительно редко мне встречался, а цена та-же.

image

У скептицизма в сторону LEGO есть две причины:

1. Поверхностное знакомство с этим набором. Многие преподаватели из кружков робототехники (даже ВУЗовских!) грешат тем, что плохо знают то, на чем они работают. Будучи не сильно знакомы с основами конструирования механизмов и программирования, они не в состоянии оценить все возможности инструмента, а тем более задействовать их в образовательных целях.

2. Высоко задранный нос у адептов «старой школы». Это о тех, кто заявляет, что те, кто занимаются на LEGO не знают ни о транзисторах-резисторах, и вообще мы тут из готовых блоков всё делаем и блоками-же программируем. Всё они верно говорят. Не знаем. Только робототехника не про электронику и пайку, а про решение практических задач и автоматизацию. Есть еще вариация с «крутыми программистами», которые сходу занимаются программированием микроконтроллеров и миганием светодиодами, напрочь забывая про механическую часть.

В реальности у LEGO Mindstorms всего 2 существенных минуса:

  • Низкая жесткость больших конструкций
  • Большой размер и вес главного модуля и двигателей (миниатюрных сервоприводов в наборе нет)

Но для образовательного процесса это редко бывает помехой.

Для какого возраста подходит робототехника?

Примерно от 6-7 и до 67 лет 🙂

На самом деле всё очень индивидуально. В возрасте 5-6 лет большинство детей еще остаются в фазе «игра — основа обучения». В этом возрасте главное — приобрести навык созидания, то есть научиться собирать из конструктора самостоятельно, без инструкций и подсказок, по своему разумению. Примерно с 5,5 лет я беру детей на занятия, где у них, по сути, проходят «прописи» — мы собираем из кубиков машинки, самосвалы, самолёты и вертолеты, и оснащаем эти постройки двигателями, чтобы у них крутились колёса и винты (занимаемся на LEGO WEDO 2.0). Программирование даю только тем, кто сам тянется узнать «как оно там происходит».

image

С 7 лет обычно ребёнок достаточно созревает, чтобы осознанно вникать в сложные вещи без потери интереса. В этом возрасте занимаемся уже на «Еве», осваивая такие понятия как «градус угла, процент, десятичная дробь» (ну а как иначе, тут мы уже с датчиками вплотную работаем). Обычно ни у кого особенных проблем с этим не возникает, если есть интерес к познанию. Проблемы возникают только тогда, когда нам уже нужно что-нибудь делить-умножать, а в школе этого еще не проходили.

image

10-14 лет — самый эффективный возраст для обучения, поскольку отношение к предмету обычно более серьезное, интерес более профессиональный, и нет страха перед математикой уровня шестого класса. К тому же можно рассказать, для чего нужны эти пресловутые синусы-косинусы, прикладной смысл которых в школе остаётся неизученным.

image

Также, спустя год обучения, можно перейти с LEGO на свободную элементную базу (одноплатные компьютеры и датчики из китая + алюминиевые профили из строительного магазина).

А что, если купить такое LEGO домой и заниматься самим?

Это вполне здравая идея, если:

Вы обладаете хотя бы минимальными знаниями о механизмах и программировании и способны изучить набор в полной мере самостоятельно. У вас есть лишние ~40 т.р. на покупку набора и некоторых дополнительных модулей. Однако даже в этом случае лучше параллельно учиться в кружке, развивая дома те идеи, которые пришли в голову после изучения новой темы.

Почему мы не используем инструкции?

Инструкции — от лукавого 🙂

Когда ребенок что-то строит по инструкции, он просто повторяет, не вникая в суть того, для чего та или иная деталь или узел нужен. Безусловно, купить дорогой набор LEGO Tehnic с кучей механики, пневматикой, и не построить предлагаемые модели по инструкции хотя бы ради изучения принципа работы — плохая идея. Эти модели очень сложные и интересные для изучения. Однако у нас в кружке главное — реализовать какой-либо принцип. А вот каким путем — уже проблема учащегося, которую он должен решить, используя свою голову. Пусть даже неправильно, с ошибками, но — сам. Инструкции у нас используются только когда мы собираем модель с очень сложной механикой и/или программой для изучения принципа работы.

Если в кружке собирают по инструкциям постоянно — это свидетельство профессиональной некомпетентности преподавателя. Такое часто наблюдается в кружках по франшизе и при школах.

Исключением можно считать книжки — сборники разнообразных механических узлов из LEGO (и не только). Такая шпаргалка очень полезна при проектировании.

image

Как происходит процесс программирования?

Для LEGO Mindstorms EV3 есть несколько вариантов:

  1. Встроенная среда для программирования прямо в главном модуле. Оттуда можно программировать простые линейные алгоритмы типа «сначала едь вперед до стены, потом поверни ровно налево». С этого мы начинаем. Это позволяет нам отложить изучение программирования с компьютера, и сосредоточиться на основах.
  2. Специальное программное обеспечение для компьютеров и планшетов, основанное на «взрослой» системе визуального программирования LabView. Программа собирается из блоков-функций. Это позволяет избежать проблем с изучением синтаксиса и по функционалу ничем не уступает взрослому текстовому программированию. Правда, выглядит громоздко, да. Но зато наглядно. Циклы, условные операторы, переменные, функции и всё вот это вот — в наличии. Это наш основной инструмент.
  3. При желании можно использовать Си или другой язык программирования, но если встал такой вопрос, то для этого лучше использовать Arduino и вообще это уже совсем другая история.

image

На этом я закончу, спасибо за чтение!

habr.com

Первые роботы и история развития робототехники

В массовом сознании слово «робот» ассоциируется в основном с научными достижениями и идеями 20-21 веков. Особенно часто этот термин мало разбирающийся в технических областях человек встречает в произведениях научной фантастики – романах Айзека Азимова, сериях фильмов «Терминатор», «Трансформеры» и т.д. Более продвинутые из них еще могут припомнить советские «Луноходы», промышленные или медицинские аппараты, зверо- или человекоподобных роботов из рекламных роликов компании Boston Dynamics. Однако, как и многие другие великие идеи человечества, концепция автоматизированных механизмов, способных самостоятельно выполнять различные операции, появилась гораздо раньше и прошла длительный путь своего развития.

Определение понятия

Прежде, чем говорить о том, какими были самые первые роботы, следует определить, что именно подразумевается под данным понятием. Это имеет важное значение для понимания развития данной технологии и ее уникальности. Первое появление слова «робот» относится к 1920 году, когда чешский писатель Карел Чапек употребил его в фантастической пьесе «Rossumovi univerzální roboti (R.U.R)». Там оно обозначало искусственно созданного человека, чей труд использовался на тяжелых и опасных производствах взамен человеческого (robota в переводе с чешского – каторга). И хотя в этом произведении роботы изготавливались на фабриках из выращенных органических тканей, само понятие впоследствии было популяризировано именно в отношении механических устройств.

Робота следует отличать от простых механизмов и автоматов. Это устройство обладает способностью к более тесному и комплексному взаимодействию с оператором и внешней средой. Если простой автоматический механизм при выполнении определенного действия слепо следует заранее заложенному в нем алгоритму, то робот способен воспринимать внешние сигналы и в соответствии с ними адаптировать свои действия. Таким образом его взаимодействие с внешней средой становится более гибким, точным и универсальным. Даже самые первые в мире роботы, о которых будет сказано далее, имели примитивные аналоги органов чувств, без которых это принципиальное отличие было бы невозможным.

У истоков: первые прообразы роботов

Однако история создания роботов тесно переплетается с развитием механики и логически из нее проистекает. Поэтому для ее понимания необходимо углубиться на несколько веков назад, а именно в эпоху античности, когда процветала колыбель наук – Древняя Греция. В этой стране появились автоматические устройства, созданные для выполнения практических задач и развлечения. В качестве примера можно привести описанную Филоном Византийским механическую женщину-слугу, которая наливала из кувшина вино во вставленный в ее руку стакан. Древнегреческий математик и изобретатель Архит Тарентский еще в 5 веке до н. э. изобрел деревянного голубя, который запускался в небо с помощью паровой катапульты. Многие историки технологий считают, что первый робот в истории был создан именно в этот момент, хотя корректнее считать его прототипом крылатой ракеты или реактивного снаряда.

Еще более сложное и грандиозное автоматическое устройство существовало в научной столице античного мира – великом городе Александрия. На расположенном здесь в начале нашей эры знаменитом Фаросском маяке были размещены величественные женские фигуры. Они могли указывать направление ветра и движение небесных светил (Солнца и Луны), отсчитывать время и даже сигнализировать морякам об опасности во время шторма или тумана с помощью громкого трубного звука. В древнегреческом городе Сиракузы на острове Сицилия жил великий греческий изобретатель и ученый Архимед, также прославившийся созданием автоматических механизмов. В частности, ему приписывается создание первого прообраза настоящего боевого робота. Устройство под названием «коготь», устанавливаемое на крепостной стене, захватывало длинным крюком осаждавшие город римские корабли, поднимало их в воздух и переворачивало, стряхивая экипаж за борт.

Другой гениальный грек, Герон Александрийский, изобрел первый в истории программируемый автомат. Тележка, вывозившая на сцену механизированные марионетки, управлялась с помощью веревки и колышков. Изменяя положение последних, Герон регулировал наматывание тросиков на независимые оси повозки, тем самым задавая ей траекторию движения. Этот принцип в чем-то похож на перфорированные ленты и карты – средства записи и хранения информации, используемые в автоматических станках и ЭВМ вплоть до 80-х годов ХХ века.

История робототехники была бы неполной без достижений других государств того времени. Так, еще в конце 2 тысячелетия до н. э., задолго до древнегреческих механизмов, в Древнем Египте жрецы изготовили статую, которая поднятием руки указывала на наследника фараона во время религиозных церемоний. А в Китае примерно в это же время местные мастера создавали первые прототипы роботов, приводимые в действие силой пороховых взрывов. Великий мудрец Лао-Цзы упоминал о механическом человеке, разработанном для императора на рубеже 1 и 2 тысячелетия до н. э.

И все же именно Древнюю Грецию можно считать родиной робототехники, потому как здесь были не просто построены многие автоматические устройства, но теоретизированы принципы их создания и функционирования.

Античные изобретатели и ученые разработали многие виды передач и двигателей (в том числе паровой, гидравлический и пневматический), сформулировали основные законы классической механики, благодаря чему последующие поколения смогли воспроизвести и развить их опыт.

«Роботы» Средневековья

Вопреки распространенному мнению, Средние века не были эпохой всеобщего упадка и технологического регресса. Наука, в том числе механика, хотя и с некоторой задержкой в первые века после падения античных держав, продолжала свое развитие. Удивительно, но многие сложные устройства появились на свет благодаря силе, которая в массовом сознании ассоциируется только с мракобесием – а именно Церкви. В те времена католические монастыри были одним из центров научной и инженерной мысли. В частности, легенды приписывают виднейшему ученому и теологу Альберту Великому создание «механической служанки», которая умела самостоятельно передвигаться и даже воспроизводить речь. Задокументированным, и, следовательно, более достоверным, выглядит свидетельство средневекового архитектора Виллара де Онекура (13 век н. э.), который в своем труде описал зооморфные механизмы, а также фигуру ангела, поворачивающуюся вслед за движением солнца. К тому же 13 веку относится увеселительный сад в поместье графа Роберта II д’Артуа, заполненный автоматическими обезьянами, птицами и механизированными фонтанами.

Большое развитие механика получила в это время и на Востоке. Византия, практически не затронутая потрясениями Раннего Средневековья, славилась автоматонами, встречавшими иностранных гостей в императорском дворце. Согласно свидетельствам, около царского трона были расположены два металлических льва, которые умели реветь и бить хвостами, а в кронах деревьев находились механизированные птицы, певшие и щебетавшие на разные голоса. В мусульманских странах того времени механика и математика вышли на качественно новый уровень, благодаря чему их мастера создавали удивительные устройства. Так, братья Бану Муса в 9 веке н. э. изобрели искусственного флейтиста, а видный ученый того времени Али ибн Халаф аль-Маради, живший в 11 веке, в своей «Книге тайн» описал около 30 сложных автоматонов.

Здесь же следует упомянуть и легенду о «железном мужике», созданном придворными мастерами Ивана Грозного. Согласно ей, человекоподобный механический слуга при дворе русского царя подавал ему чашу с вином и кафтан, подметал пол, кланялся гостям и даже «побивал медведя». Звучит фантастично, но следует учитывать, что эта легенда основана на письмах голландского купца Йохана Вема – человека крайне прагматичного и не склонного к фантазиям.

На закате эпохи Средневековья автоматические устройства, воспроизводящие достаточно сложные действия, популяризировались и легендарным Леонардо да Винчи.

Леонардо да Винчи, будучи гением инженерной мысли, в своих зарисовках предложил схемы самых разных механизмов, одним из которых является фигура закованного в латы рыцаря, которая могла двигать руками и шеей, садиться и даже открывать рот. Собранный образец демонстрировался изобретателем при дворе Людовика Сфорца, герцога Миланского, в 1495 году. В 20 веке по сохранившимся чертежам была воспроизведена точная и функциональная копия этого устройства, сегодня хранящаяся в Миланском музее.

Новое время: золотой век автоматонов

Однако настоящую популярность и бурное развитие автоматические механизмы получили с началом эпохи Возрождения. Наука, вырвавшись из монополии Церкви, получила дополнительный импульс к развитию, в том числе за счет переосмысления достижения античных ученых. И на первую роль в новой волне старинной робототехники вышли часовщики. Здесь стоит упомянуть о двух важных изобретениях, которые способствовали развитию технологии автоматонов – пружинному и маятниковому заводным механизмам. До этого подобные устройства приводились в движение гирями, что позволяло создавать только крупные и относительно несложные изделия. Новые накопители энергии (пружина и маятник) стали настоящим прорывом в миниатюризации автоматических механизмов.

Особенно прославился на этом поприще мастер Жак де Вокансон, который жил в 18 веке – к слову, в детстве обучавшийся в иезуитской школе. Особенную популярность получили два его изобретения:

  • механическая утка, способная взмахивать крыльями, клевать зерно с руки и даже испражняться;
  • автоматический музыкант, умеющий наигрывать различные мелодии на флейте и свирели.

Другим известным мастером был швейцарец Пьер Жаке Дро, живший в том же 18 веке и основавший знаменитую часовую компанию Jaquet Droz. В то время он прославился не только своими хронометрами, но и множеством сложнейших устройств, среди которых особенно известно три его творения:

  • «Писарь» – автоматическая фигура мальчика, содержащая около 4 000 деталей, была способна написать любой текст из 40 знаков, самостоятельно макая перо в чернильницу;
  • «Художник» – похожий автомат, только вместо текста наносивший на бумагу различные рисунки, например портреты людей, изображения животных и т. д.;
  • «Девушка-музыкант» – автомат в виде органистки, который умел наигрывать на небольшом органе 5 различных мелодий, при этом двигая головой и телом, а в конце выступления изящно кланяясь.

Отличительной чертой этих автоматонов была возможность их программировать, для чего использовались барабаны или диски с насечками, в которых была закодирована последовательность действий. Поменяв их расположение, мастер мог заставить свои устройства написать различные тексты, сыграть другую мелодию и т. д. И все же утверждать, что именно он создал первого робота, нельзя – его механизмы еще слишком мало взаимодействовали с внешней средой, а их функции были сугубо развлекательными.

Технология создания подобных устройств получила широкое распространение не только в Европе, но и мире. В конце 18 века в Японии была создана автоматическая девушка, способная стрелять из лука. В Эрмитаже выставлены знаменитые часы с павлином, купленные Екатериной Великой в Британии. Вклад российских мастеров здесь тоже есть – при перевозке в Россию механизм сильно повредился, но знаменитый изобретатель Кулибин смог полностью восстановить его.

Изготовление автоматонов развивалось по пути не только усложнения, но и миниатюризации устройств. Если первые образцы таких механизмов занимали достаточно много места, то к 19 веку их часто умещали в карманные часы. В основном это были сугубо развлекательные устройства, изготавливаемые для аристократов, передвижных цирков, выставок и т. д. Однако пройдет совсем немного времени, и автоматы начнут помогать людям.

Современный этап развития робототехники

Механические игрушки-автоматоны изготавливались часовщиками вплоть до начала 20 столетия. Их главным недостатком был сильно ограниченное время действия и слабость из-за особенностей пружинного заводного механизма. Однако развитие технологии электричества дало человечеству новый источник энергии, которым можно было питать устройства гораздо более продолжительное время. В то же время начинаются и первые попытки заставить сложные механизмы работать на человека, заменяя его труд на производстве. Уже в 1808 году французский ткач Жозеф Мари Жаккар изобрел ткацкий станок, программируемый с помощью перфокарт. Пока это был еще не робот – скорее, аналог современных автоматизированных линий. Но именно в нем впервые в промышленности был реализован принцип программирования, на котором держится современная робототехника.

Параллельно совершенствовались и способы управления – в частности проводной и радиоволновой. В 1898 году Никола Тесла впервые продемонстрировал самоходную лодку, управляемую дистанционно с помощью радио. Одновременно вместо сложных механических приводов устройства начали обзаводиться более простыми, мощными и миниатюрными электрическими двигателями.

Уже к началу 20 века сформировались все условия, обусловившие создание первых роботов. Электрический ток стал не только источником питания, но и средством получения, передачи и обработки информации. Сложно сказать, когда появился первый робот в современном понимании этого слова. Многие компании и отдельные разработчики тех времен вели работу в области создания подобных машин. В 20-30-е годы прошлого века было разработано более 30 механизмов, соответствующих требованиям полноценной робототехники.

И все же считается, что человек, создавший первого действующего робота – американский инженер Рой Уэнсли из корпорации Westinghouse Electric Company. Разработанный им в 1928 году механизм под названием «Герберт Телевокс» представлял собой человекоподобную машину, способную открывать двери и окна, отключать духовку, электродвигатели и т. д. Важнейшим отличием этого изобретения от автоматонов являлось умение отвечать и реагировать на команды, подаваемые ему по телефону. При этом робот был не подключен к линии напрямую – он, подобно человеку, с помощью встроенного микрофона слушал приказания. Из-за несовершенства технологий того времени эти команды представляли собой не обычную речь, а определенную последовательность гудков, писков, скрежетов и других звуков различной тональности.

Первенство Роя Уэсли оспаривает Макото Нисимура – японский ученый-биолог, создатель первого действующего робота в Японии (1929 год). Этот управляемый по проводам антропоморфный механизм был способен по командам выполнять различные манипуляции руками, в частности писать. Еще одним претендентом на роль родоначальника роботов был Эрик, разработанный в том же 1928 году британским военным Уильямом Ричардсом. Механизм мог не только двигать конечностями, но и «осмысленно» отвечать на ряд вопросов, при этом даже умудряясь отпускать шутки.

Однако эти и многие другие роботы предназначались для демонстрации научных достижений, но не для практической деятельности. Возникновение робототехники в производстве или сельском хозяйстве произошло позже, потому как такая работа требовала качественно нового уровня технологий. Хотя стоит отметить, что первый прообраз промышленного робота появился еще в 1898 году – это был созданный американским инженером Бэббитом манипулятор, с помощью которого выхватывались заготовки из раскаленной печи.

Полноценное развитие робототехники в промышленности произошло лишь после окончания Второй мировой войны.

В 1948 году в США компанией General Electric был создан первый промышленный робот для работы на атомном реакторе. Его особенностью было наличие обратной связи – оператор мог не только видеть его перемещение в рабочем пространстве, но и чувствовать силу, которую развивал захват манипулятора, что позволяло управлять механизмом более точно. В середине 50-х годов американец Джордж Девол основал компанию Unimation, которая занималась выпуском первых серийных промышленных роботов, программируемых с помощью перфокарт. Уже к середине 60-х годов в развитых странах насчитывалось несколько десятков компаний, наладивших выпуск подобных машин. Особенно в этом преуспела Япония – закупив у «Юнимейшн» первые роботы в 1968 году, уже через 10 лет эта страна стала мировым лидером по выпуску собственных аналогов и оснащения ими производств.

Сегодня роботы проникли практически во все сферы деятельности. Промышленность, научные исследования, энергетика, медицина, развлечения, военные действия и даже космос – современные автоматические или дистанционно контролируемые механизмы используются очень широко и даже постепенно вытесняют человеческий труд. Развитие роботов идет по нескольким направлениям – улучшение механизмов и приводов, совершенствование алгоритмов, внедрение самообучающихся систем управления (слабого искусственного интеллекта), а также разработка новых интерфейсов «человек-компьютер». Роботизация тесно переплетается с биотехнологиями и кибернетикой, результатом чего является создание кибернетических организмов (киборгов), функциональных бионических протезов, полностью автономных автомобилей, кораблей, космических и летательных аппаратов (в том числе военных). Так наше общество незаметно для себя вошло в будущее, которое всего лишь век назад описал в своей пьесе Карл Чапек.

robo-sapiens.ru

Оставьте комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *