Робототехника роботы – Прикладная робототехника. | Эксклюзивный дистрибьютор ROBOTIS. Робототехнические решения для образования, науки и бизнеса

Содержание

Доклады с первого в России митапа разработчиков роботов на Robot Operating System / Habr

В рамках форума Skolkovo Robotics & AI 16 апреля 2019 года в Москве прошел первый в России митап по Robot Operating System — популярному во всем мире программному фреймворку, реализующему основные алгоритмы для построения сложных роботов. Мероприятие дало такой мощный импульс развитию всех команд. Мы погрузились в то, что мы больше всего любим — разработку! Поэтому только сейчас мы нашли время для консолидации уникальных материалов нашей встречи, переданных спикерами для публикации.

Среди посетителей крупнейшего форума по робототехнике в России нашлось более 150 инженеров, которые либо уже используют ROS или только планируют его использование в своих проектах. Это неплохой результат для первой встречи небольшого сообщества российских разработчиков ROS. Мы стремимся к тому, чтобы стать частью мирового движения — а за рубежом аналогичные мероприятия собирают уже сотни участников. Второй российский ROS Meetup пройдет уже 30 ноября 2019 года.


Спасибо еще раз всем, кто пришел и потратил свое время на детальное изучение докладов и каверзные вопросы. Все это показало, что к развитию ROS есть большой интерес со стороны сообщества и необходимо далее вести регулярную работу для проведения подобных встреч. Мы растем тогда, когда обмениваемся лучшими практиками и улучшаем один из самых распространенных в мире инструментов разработки роботов — Robot Operating System.

Нашими спикерами были разработчики-практики с темами из своего реального опыта. Поэтому материалы, представленные в данной публикации, отражают возможности применения ROS в уже существующих и работающих проектах.

Глобальное сообщество ROS на данный момент является самым большим и открытым робототехническим сообществом в мире. Число загрузок ROS с 2014 года выросло почти 6 раз! Очевидно, что это важнейший инструмент для тех, кто создает роботов, поэтому мы в Лаборатории робототехники Сбербанка поддерживаем всех, кто разделяет с нами ценности ROS и хочет обменяться опытом.

Если вы разрабатываете новые алгоритмы для роботов, то написание пакета для ROS — это хорошее решение для их интеграции в уже существующих роботов и демонстрации миру.

Если вы только начинаете свой путь робототехника, то изучение ROS поможет вам освоить современные технологии и интегрироваться в сообщество.

Первый ROS Meetup был насыщен интересными докладами. Но так как не все смогли посетить мероприятие в Москве, мы выкладываем для вас видеозаписи и слайды презентаций:

Введение в ROS. Идеология и текущий статус.
Алексей Бурков, Лаборатория робототехники Сбербанка.

В докладе рассказывается о появлении ROS, его концепциях и людях, которые его разрабатывали, а также текущее состояние фреймворка в мировом сообществе.

Ссылка на слайды презентации.

Опыт использования ROS в соревновательной робототехнике на примере Eurobot.
Алексей Постников, Лаборатория робототехники Сбербанка.

В докладе рассматривается система локализации робота по Aruco маркерам с использованием ROS.

Ссылка на слайды презентации.

Кстати, вы можете принять участие в соревнованиях Eurobot, вступив в команду SetUp поддерживаемую Лабораторией робототехники Сбербанка — это отличный способ изучить робототехнику и ROS, и применить свои навыки на практике. Чтобы принять участие — напишите письмо на почту [email protected]

SLAM и навигация по лазерному лидару.
Алексей Бурков, Лаборатория робототехники Сбербанка.

История о том, как мы использовали ROS для навигации робота-курьера с помощью SLAM’а и планировщика путей, разобраны следующие темы:

  • Построение карты помещения и локализация робота алгоритмом Gmapping.
  • Локализация робота на карте алгоритмом AMCL.
  • Навигация робота через MoveBase и DWA.

Ссылка на слайды презентации.
Вы можете попасть на стажировку в Лабораториии Робототехники Сбербанка по темам робота курьера и ROS, для этого напишите письмо на почту [email protected]

Планировщик пути робота с учетом заданной карты и динамических препятствий на примере Eurobot.
Александр Гамаюнов, Лаборатория робототехники Сбербанка.

История создания собственного планировщика пути на основе A*, T*, Costmap Server, Global Planner, STM32 Driver и алгоритма Рамера — Дугласа — Пекера для участия в международных соревнованиях Eurobot.

Ссылка на слайды презентации.

Опыт применения ROS в системе управления автономным подводным необитаемом аппарате “Кусто 2”
Тимур Ахтямов, УНМЦ Гидронавтика.

Симуляция подводного аппарата. Использование конечных автоматов SMACH. ROS-обертка serial. Триггер на QR-коды. Roslaunch API для запуска и остановки launch-файлов из Python-кода. Автозапуск нод при старте ОС.

Ссылка на слайды презентации.

БелАЗ на ROS как мы в VIST Group создаем решения для добычи.
Елизавета Шпиев, VIST Group.

Рассказ о том, как VIST Group использует ROS для создания интеллектуального карьера.

Ссылка на слайды презентации.

Тестирование кода в ROS как построить беспилотный автомобиль и ничего не сломать.
Олег Шипитько, Визиллект.

Рассказ применении Google Test (С++), Unittest (Python) и Rostest для тестирования в ROS.

Ссылка на слайды презентации.

Компьютерное зрение в роботах захват вещей манипулятором по данным с RGBD камеры.
Александр Сёмочкин, Лаборатория робототехники Сбербанка.

О том, как использовать RGBD-камеру для захвата предметов роботом с манипулятором.

Ссылка на слайды презентации.

Объединение необъединимого в мире ROS разработки.
Константин Коногорский, VIST Group.

Продолжение истории об интеллектуальном карьере VIST Group, или как объединить необъединимое.

Ссылка на слайды презентации.

ROS Docker запуск виртуального образа ROS на Linux компьютере.
Александр Сёмочкин, Лаборатория робототехники Сбербанка.

Доклад об использовании Docker для создания и запуска виртуального образа ROS на Linux.

Ссылка на слайды презентации.

Чем устройства слушают и о чем они говорят.
Александр Меньшиков, Лаборатория робототехники Сбербанка.

Использование ROS для создания сервисов голосового общения.

Ссылка на слайды презентации.

Прошедший митап по ROS подарил участникам множество положительных эмоций и интересных докладов об использовании ROS в современной робототехнике в России, и мы надеемся и дальше развивать российское ROS сообщество с вашей помощью. Поэтому мы приглашаем всех желающих выступить с докладом на следующем ROS meetup 30 ноября 2019 года в Москве.
forms.gle/G3ggYcvFLfuJw1ur6

Кроме ROS Meetup, мы также проводим стажировки по ROS в Лаборатории робототехники Сбербанка по нашим проектам, подробнее можно узнать по ссылке.

Если вы хотите больше узнать о нашей работе или о направлениях развития современной робототехники, то рекомендуем вам внимательно ознакомиться с ежегодным аналитическим обзором мирового рынка робототехники.

Нам кажется, что первый опыт сбора сообщества был правильным и положительным — будем это продолжать. А ближайший ROS meetup планируется уже 30 ноября 2019 года!

Принять участие в качестве слушателя можно заполнив заявку и дождавшись на почту подтверждения вашего участия.

Военные роботы и их разработчики. Часть 2 / Habr

Продолжаем обзор роботов военного назначения. В первой части мы рассмотрели образцы компаний QinetiQ (Великобритания), Boston Dynamics (США) и ОАО «Ижевский радиозавод» (Россия). В этот раз к наземным добавились роботы, способные работать на воде и под водой.

iRobot, США

Компания была основана тремя учеными Массачусетского технологического института в 1990 году. Производила роботов военного назначения при финансировании DARPA. Кроме того, известна производством бытовых роботов: робопылесоса Roomba, робошвабры Braava и робота-чистильщика бассейнов Mirra. В 2016 году iRobot решила сосредоточиться на мирном применении робототехники и продала бизнес по разработке милитаризованной продукции компании Arlington Capital Partners. Но перед этим iRobot успела произвести на свет немало роботов для военных целей.
PackBot – первый военный робот компании, профинансированный DARPA (контракт заключен в 1998 году). По сути, это роботизированная платформа, на которую можно установить различные инструменты в зависимости от выполняемой задачи. Базовая версия PackBot Scout имела пять отсеков для устройств. PackBot Explorer оснащается камерами (в том числе инфракрасными), лазерным указателем, аудиодатчиками. Наиболее распространенной стала конфигурация PackBot 510 – этот робот мог оснащаться приборами для разминирования взрывных устройств, системами REDOWL для обнаружения снайперов и даже наборами для обнаружения радиационного заражения. Современная версия PackBot 510 с манипулятором весит 10,89 кг, развивает скорость до 9,3 км/ч и может работать автономно от 4 до 8 часов в зависимости от интенсивности использования. Роботы PackBot широко применялись военными США в Ираке и Афганистане. Несколько PackBot также были задействованы в поисково-спасательных операциях после теракта 11 сентября 2001 года в США.

110 FirstLook – многоцелевой компактный робот на гусеничном шасси, разработанный в 2011 году. Главное предназначение – помощь в обнаружении потенциальной опасности во время выполнения боевой операции. Оснащается четырьмя камерами с ИК-подсветкой и средством связи. Он может без вреда упасть с высоты 4,5 м на твердую поверхность. При этом если он перевернется, то может вернуться в исходное положение благодаря поворотным флипперам. Пример использования: забрасывается вручную в окно и передает изображение на пульт управления. Вес робота – 2,4 кг, длина – 25,4 см, максимальная скорость – 5,5 км/ч, работает до 6 часов на удалении до 200 м от оператора. В зависимости от выполняемой задачи может дополнительно комплектоваться манипулятором для обезвреживания взрывных устройств, тепловизором, а также средствами бактериологической, химической и радиационной разведки. Рабочие температуры – от -20 °C до +55 °C. Сотню таких роботов в 2012 году приобрела организация Joint Improvised-Threat Defeat Organization (JIDO), а позже Пентагон заказал еще 500 – для работы в Афганистане.

Warrior – роботизированная платформа, предназначенная преимущественно для перемещения потенциально опасных предметов (например, неразорвавшихся снарядов). При необходимости может использоваться для расчистки пути, тушения пожара или разведки. Благодаря роботизированной «руке» может также увозить раненых солдат с поля боя, ухватив их за одежду. Оснащается видеокамерами и рядом датчиков. Вес платформы без манипулятора составляет 165,6 кг, с манипулятором – 226,8 кг. Манипулятор может вытягиваться на расстояние до 192,2 см, в полностью вытянутом положении оперирует грузом до 31,6 кг, в закрытом положении – грузом до 136,1 кг. Робот преодолевает препятствия в высоту до 47 см и может двигаться под уклоном до 45º. Работает от 4 до 10 часов и управляется на расстоянии до 800 м от оператора.
Seaglider – автономный необитаемый подводный аппарат, который по факту был разработан Вашингтонским университетом, но обрел популярность после того, как iRobot в 2008 году приобрела право на производство аппарата. Он изучает физические, биологические и химические свойства воды и может передавать полученные данные, используя передатчик и хвостовую антенну. Для этого устройство всплывает таким образом, чтобы хвостовая часть оказалась над поверхностью воды. Внешний вид робота напоминает ракету. Время автономной работы (в зависимости от миссии) – до 10 месяцев при запасе хода в 4600 км. При весе 52 кг робот погружается на глубину до 1000 м и перемещается со скоростью 0,5 узла. В мае 2010 года Seaglider участвовал в исследованиях воды Мексиканского залива после инцидента со взрывом нефтяной платформы Deepwater Horizon.
Ranger – беспилотный подводный аппарат, также разработанный не iRobot, а компанией под названием Nekton Research. Последняя была приобретена iRobot, и оригинальная команда разработчиков влилась в новую компанию. Робот участвует в экспедиционных миссиях, заданиях по обнаружению подводных мин, разведывательных и патрульных миссиях. В отличие от Seaglider, Ranger оснащен пропеллером и рассчитан на непродолжительные задания. При общей длине 0,86 м он весит чуть меньше 20 кг и двигается со скоростью порядка 15 узлов (27,78 км/ч).
Transphibian – автономный необитаемый подводный аппарат, предназначенный для поиска мин, разведывательных операций и надзора за акваторией. Использует гибридную навигационную систему, благодаря чему может выполнять задачи как на мелководье, так и на глубине. Оснащен четырьмя плавниками. В движении похож на маленькую черепаху, которая плохо умеет плавать.

Chembot – проект гибкого миниатюрного робота, разработку которого проспонсировало DARPA – им нужен был робот, способный протиснуться в отверстие диаметром порядка 30 мм. По задумке, в конструкции должны отсутствовать твердые материалы, а «кожа» робота должна состоять из эластичного полимера, способного расширяться и сжиматься. В движение робот приходил благодаря изменяющемуся давлению воздуха в разных частях его «тела». Были созданы отдельные прототипы роботов, но создатели не придумали, как сделать его автономным и избавить от кучи проводов, отвечающих за давление.
LANdroid – миниатюрный робот-маршрутизатор. Компания iRobot выиграла конкурс от DARPA на его разработку в 2008 году. Год спустя в свет вышел LANdroid Ember, который помещался в грузовой карман на военных брюках. Назначение робота – быстро построить беспроводную сеть для приема и отправки информации в местах боевых действий. Робот оснащался камерами и антеннами. В конструкции также предусмотрены поворотные флипперы.

Samsung Techwin (сейчас Hanwha Techwin), Южная Корея

Компания была основана в 1977 году под названием Samsung Techwin, как дочка Samsung. В 1979-м начала изготавливать видеокамеры. Год спустя переключилась на реактивные двигатели для южнокорейских ВВС (изготавливала совместно с General Electric). С тех пор компания участвовала в производстве вертолетов, видеомагнитофонов, систем видеонаблюдения, объективов. Совместно с другими компаниями разрабатывала полупроводники, оптические системы связи, занималась исследовательской деятельностью в аэрокосмической отрасли и работала с нанотехнологиями. В декабре 2014 года Samsung заявила о продаже Techwin южнокорейскому конгломерату Hanwha Group. В июне 2015-го поглощение было завершено и компания переименована в Hanwha Techwin.

Samsung SGR-A1 – роботизированная турель, созданная для поддержки южнокорейских военных сил в корейской Демилитаризованной зоне. Разработка началась в 2003 году, а в 2006-м появились первые прототипы. Оснащается лазерным дальномером, инфракрасной термографической камерой, инфракрасным осветителем, пулеметом Daewoo K3 калибра 5,56 мм и многозарядным полуавтоматическим гранатометом Milkor M32 калибра 40 мм. Может отслеживать и вести цели как в дневное (дальность до 4 км), так и в ночное время (дальность 2 км). Но для применения летального вооружения необходим оператор. Вес конструкции – 117 кг, высота – 120 см, дальность действия – до 3,2 км.

ОАО «766 Управление производственно-технологической комплектации», Россия

«766 УПТК» создано в 2001 году и специализируется на разработке и производстве робототехники военного назначения. Располагает собственным инженерно-конструкторским центром. Среди других видов деятельности указывается проведение научно-исследовательских, конструкторских, экспериментальных и испытательных работ, а также разаботка и производство отдельных видов строительных материалов и конструкций.

«Уран-6» – робототехнический гусеничный комплекс для разминирования опасных участков местности. Может работать в урбанизированной, гористой и мелколесистой территории. По сути, это не что иное как дистанционно управляемый минный трал. Круговой обзор обеспечивают четыре камеры. Предусмотрены пять сменных инструментов для взаимодействия с различными типами грунта. Робот работает на поверхности с уклоном до 20º и преодолевает препятствия высотой до 1 м. Может поднять вес до 1 т. Весит самого робота – 6 т, он может работать 5 часов без дозаправки (употребляет дизельное топливо). Управление комплексом выполняется на удалении до 800 м. «Уран-6» принимал участие в разминировании Пальмиры.

«Уран-9» – многофункциональный боевой робототехнический комплекс. Главное предназначение – огневая поддержка и разведка. Благодаря модульной системе может оснащаться различными видами вооружения. Стандартный набор: пулемет Калашникова танковый модернизированный (ПКТМ) калибра 7,62 мм, автоматическая пушка 2А72 калибра 30 мм, комплекс управляемого вооружения «Атака» и четыре реактивных пехотных огнемета РПО ПДМ-А «Шмель-М». Оборудуется системой предупреждения о лазерном облучении и системой дымовых завес. Также оснащен термодатчиками, лазерным дальномером, дневными и ночными камерами. В снаряженном состоянии весит 12 т и может передвигаться со скоростью до 35 км/ч. На одной заправке дизельный двигатель может работать 6 часов подряд. Управление комплексом выполняется на удалении до 4 км. Поражает цели на расстоянии до 5 км днем и до 3,5 км ночью.

«Уран-14» – робототехнический комплекс пожаротушения. Предназначен для дистанционного тушения пожаров в опасных или труднодоступных для людей местах, например, в горящем складе с боеприпасами. Может использоваться для разведки очагов пожара, в том числе скрытых – благодаря тепловизионной системе видеонаблюдения. Работает на поверхностях с уклоном до 30º. Снаряженная масса – 14 т, максимальная скорость передвижения – 10 км/ч, дальность водяной струи – 50 м. Управляется дистанционно на удалении до 1 км.

ОАО НИТИ «Прогресс», Россия

Этот научно-исследовательский технологический институт был создан в июне 1959 года для ускорения разработки и производства жидкостной одноступенчатой баллистической ракеты Р-17. За вклад в создание новых образцов ракетной техники НИТИ «Прогресс» наградили орденом Трудового Красного Знамени в 1982 году. Кроме заказов оборонной промышленности, институт разрабатывает оборудование для переработки золотоносных руд, печатания денег, намотки защитных покрытий, производства автопокрышек, ремонта теплоэнергосетей, деревообработки и других сфер деятельности.

«Платформа-М» – многофункциональный роботизированный гусеничный комплекс. Предназначен преимущественно для огневой поддержки подразделений в бою и разведывательных задач. На робота можно «повесить» минный заградитель или трал – тогда он сможет выполнять задачи по минированию или разминированию. Оснащается робот пулеметом Калашникова танковым модернизированным (ПКТМ) калибра 7,62 мм с боезапасом в 400 патронов, четырьмя станковыми гранатометами АГС-30 калибра 30 мм, а также противотанковым ракетным комплексом «Корнет». Работает на поверхностях с уклоном до 25º. При собственном весе 800 кг робот передвигается со скоростью до 12 км/ч и может нести груз массой до 300 кг. Собственных источников питания хватает на 10 часов непрерывного движения. В конструкцию робота также входят видеокамеры, дальномер, тепловизор и радиолокационная станция «Фара».

СРР – компактный робот, о котором известно немногое. Оснащается двумя видеокамерами и благодаря малым размерам может выполнять разведывательные задачи. Например, может быть заброшен вручную в окно здания и передать оператору изображение того, что находится внутри. Работает на гусеничном ходу.

Exponent, США

Компания была основана как Failure Analysis Associates в апреле 1967 года. Принимает участие в расследованиях катастроф и других инцидентов: от пожаров и авиакатастроф до разлива нефти и авиабомбардировок. Также занимается изучением последствий ущерба. По заданию NASA в 1986 году компания занималась исследованием катастрофы шаттла «Челленджер». Известна исследованиями и разработками более чем в 20 научных областях. Переименована в Exponent в 1998 году.

MARCbot – роботизированная платформа на колесной базе, предназначенная для обнаружения взрывных устройств. Создана в 2004 году и разрабатывалась как недорогой вариант робота для использования в Ираке. Оснащается видеокамерой на выдвижной штанге, чтобы проверять различные объекты (например, автомобили) на наличие взрывных устройств. Это один из самых маленьких и часто используемых роботов в Ираке. Согласно эссе политолога П.В. Сингера «Robots at war: the new battlefield», некоторые солдаты армии США в Ираке прикрепляли на MARCbot противопехотную осколочную управляемую мину M18A1 «Клеймор» – чтобы послать робота вперед, если заподозрят засаду. Вес конструкции – 15 кг, длина – 61 см, высота – 34 см. Работает до 6 часов подряд на одном заряде батареи. Управляется на расстоянии до 300 м от оператора.

СКТБ прикладной робототехники МГТУ им. Н.Э. Баумана, Россия

Специальное конструкторско-технологическое бюро берет начало в 1972 году – приказом ректора тогдашнего МВТУ им. Н.Э. Баумана была создана студенческая лаборатория транспортных систем на конструкторско-механическом факультете. На ее базе были разработаны макеты планетоходов и пенетрометры для установки на луноход и марсоход. В 1986 году стало называться ОКБ специальной робототехники МВТУ им. Н.Э. Баумана, в 1999 году – СКТБ прикладной робототехники МГТУ им. Н.Э. Баумана. Сейчас превратилось в ООО СКТБ прикладной робототехники. Более 30 лет спецализируется на разработке мобильных робототехнических комплексов и дополнительного оборудования. Разрабатывает в том числе медицинские манипуляторы.

МРК-27 – мобильный робототехнический комплекс, разработанный в 1994 году. Используется для выполнения широкого спектра задач. Для каждой создана отдельная модификация. МРК-27-ВТ и МРК-27-ВУ оснащаются манипуляторами и предназначены для взрывотехнических работ и перемещения взрывоопасных устройств. МРК-27-МА – для работ в условиях повышенной радиации. МРК-27-Х – для работ в условиях химического заражения; он может анализировать воздух и укладывать в специальный контейнер химически опасные предметы. МРК-27-ГП – для проверок местности с помощью газоанализатора. А вариант МРК-27-БТ («боевая точка») предназначен для огневой поддержки подразделений. Он оснащается пулеметом «Печенег» калибра 7,62 мм, двумя реактивными штурмовыми гранатами РШГ-2, двумя реактивными огнеметами РПО-А «Шмель» и шестью дымовыми кассетными гранатами типа мортира КРАГ. При этом каждая из модификаций робота может проводить визуальную разведку. Базовая платформа работает на односекционном шасси с изменяемой геометрией гусеничного обвода. Манипулятор обладает пятью степенями свободы. Может дополнительно комплектоваться гидроразрушителем, подкатным устройством, электроинструментами и защитным бронекомплектом. Масса платформы МРК-27 – не более 210 кг, длина – 112 см, высота – 65 см. Работает на поверхностях с уклоном до 20º. Оснащается батареями, которых хватает на 4 часа непрерывной работы. Выполняет задачи при температурах от -30 °C до +40 °C.

МРК-25 «Кузнечик» – мобильный робототехнический комплекс на гусеничном шасси. Оснащается телекамерами, системой освещения и манипулятором. Предназначем для обнаружения и распознавания взрывных устройств. При собственной массе 186 кг робот может работать на поверхностях под уклоном до 40º. С «Кузнечиком» связана примечательная история. В июне 1997 года в Российском федеральном ядерном центре «Арзамас-16» началась неуправляемая ядерная реакция из-за допущенной ошибки. Людей эвакуировали с объекта. Для предотвращения второго Чернобыля послали немецкого робота MF-4 фирмы Telerob – он должен был вытащить контейнер с плутонием-239. Но он не выдержал радиации и вышел из строя. Ему на замену из Москвы срочно прилетел МРК-25 «Кузнечик», который вытащил не только контейнер с плутонием, но и нерабочего немецкого робота.

МОБОТ Ч-ХВ – мобильный робот, предназначенный для ликвидации аварий на Чернобыльской АЭС. «Мобот» – означает «мобильный робот», «Ч» – «Чернобыль», а «ХВ» – «химические войска». Именно по заданию начальника химических войск МО СССР в августе 1986 года был разработан этот робот. Он выполнял дозиметрическую разведку, убирал радиоактивные обломки, демонтировал трубы, возводил опалубку крыши зоны «М», размещал маяки и проводил другие работы. Оснащался гусеничным шасси с полиуретановыми траками, кабелеукладчиком, манипулятором, фронтальным погрузчиком и двумя телекамерами. Позже его доработали и оснащали отбойным молотком, стыковочным устройством, новым манипулятором с двупалым хватом и системой акустической связи. Общий вес робота достигал 430 кг.

Roboteam, Израиль

Компания основана в 2009 году, базируется в Тель-Авиве, а штаб-квартира находится в Гейтенсберге (город в США). Разрабатывает и производит многоцелевые роботизированные платформы для военных, правоохранительных органов, спецподразделений и миротворческих миссий.

MTGR – малогабаритный робот, предназначенный для разминирования взрывоопасных предметов, разведки, обнаружения химического, бактериологического или радиационного заражения. Оснащается 8 камерами, обеспечивающими 360-градусный обзор, причем две камеры находятся непосредственно на манипуляторе. Может двигаться под уклоном до 45°. Максимальная скорость – 3,5 км/ч, время работы на одном заряде батареи – 3 часа, собственный вес – 9,4 кг. Перевозит грузы весом до 10 кг. Манипулятор способен поднимать грузы весом до 5 кг в полностью распрямленном состоянии (в этом случае его длина составит 49 см). Работает в температурах от -20 °C до +60 °C. Управляется оператором на дистанциях до 500 м.

IRIS – легкий робот «забрасываемого» типа на колесной платформе. Может работать в песке, грязи, воде и на камнях (про снег разработчик умалчивает). Оснащается двумя поворотными камерами и предназначен для разведывательных миссий. Весит робот 1,85 кг и может переносить на себе 1 кг груза. Его длина – 23 см, а высота – 11 см. Развивает скорость до 5 км/ч и работает до 2 часов на одном заряде батареи. Управляется дистанционно – на расстоянии до 200 м от оператора. Работает в температурном диапазоне от -20 °C до +60 °C.

PROBOT – роботизированная платформа повышенной проходимости, предназначенная для перевозки грузов. Может участвовать в поисково-спасательных операциях или эвакуировать раненых с поля боя. На роботе установлены камеры (в том числе и ночного видения), обеспечивающие 360-градусный обзор. В отдельных случаях оснащается датчиками для проведения бактериологической, химической и радиационной разведки. Вес самой платформы – 410 кг, но может перевозить до 700 кг полезной нагрузки. Развивает скорость до 9,6 км/ч и может передвигаться автономно до 8 часов подряд. Его размеры внушительны: 150х120х60 см.

TIGR – всепогодный робот, предназначенный для проведения саперных работ. Оснащается манипулятором с пятью степенями свободы, который способен поднять 19 кг в сложенном состоянии и 7 кг – в вытянутом. Комплектуется модулями дневного и ночного видения (пять цветных камер и одна термальная), что позволяет использовать его в роли разведчика. Изготовитель утверждает, что робот работает при температурах от -32 °C до +49 °C. Вес платформы составляет 74 кг, длина – 91,2 см, высота – 35,3 см. Оснащается системой распознавания человека, которая безошибочно работает в светлое время суток на расстоянии до 600 м, а ночью – на расстоянии до 300 м.

General Robotics, Израиль

Частная компания, основанная в 2009 году. Занимается исследованиями, разработкой и производством роботизированных платформ для оборонных рынков разных стран.

DOGO – миниатюрный робот-разведчик, оснащенный летальным вооружением. Используется не только в разведывательных, но и в штурмовых операциях, когда необходимо выявить и устранить угрозу. Для этой цели комплектуется самозарядным пистолетом Glock26 калибра 9 мм и лазерным указателем. Вес робота составляет 10 кг. За обзор отвечают 8 камер с инфракрасной подсветкой. 13 ноября компания представиле «менее летальный» модуль для DOGO. В нем вместо пистолета устанавливается баллончик с перцовым газом – для нейтрализации цели.

DONKEY – складной мультифункциональный робот для быстрого развертывания на местности. Предназначен для разведки, прокладывания маршрута, транспортировки груза. Благодаря модульной структуре может оснащаться манипулятором, что делает его пригодным для саперных работ. Весит 40 кг, может перевозить грузы до 70 кг. Обладает бесшумным ходом благодаря четырем электромоторам – по одному на каждое колесо. Максимальная скорость – 16 км/ч, запас хода – 40 км. Может работать на поверхностях под уклоном до 30º.

Guardbot, США

Это американская инженерная компания, располагающаяся в городе Стамфорд неподалеку от Нью-Йорка. Специализируется на разработке амфибийных сферических роботизированных систем. Однако до сих пор она создала лишь один продукт – он повторяет имя компании. Как утверждают создатели, изначально проект Guardbot был задуман для миссии на Марсе.

https://youtu.be/v6IZTY4__Sc
Guardbot – роботизированная сферическая система, главная цель которой – поиск взрывчатых устройств и наблюдение за территорией или акваторией. В основе движителя лежит запатентованный механизм с маятником. Передвигается робот за счет изменения центра тяжести. При этом он способен работать на земле, песке, воде и по снегу. Скорость перемещения по суше – до 20 км/ч, на воде – 6,5 км/ч. В комплект входят дневные и ночные камеры, сенсор определения ОМП, лазерный сканер. Весит конструкция 26 кг, диаметр в тонкой части – 60 см, в широкой – 91,5 см. Оснащен двумя электродвигателями и может работать автономно до 25 часов. Несмотря на сферическую конструкцию, преодолевает склоны до 30º. Работает при температурах от -30 °C до +40 °C.

Впереди — третья часть.

Что такое робототехника? Понятие и классификации

Робототехника – это техническая наука, изучающая автоматизацию производственных и иных систем при помощи роботов. Предполагает проектирование, создание и использование роботов для взаимодействия с внешней средой выполнения различных задач без участия человека.

Понятия робот и робототехника

Термин «робот» ввел чешский писатель Карел Чапек, использовав его в своем произведении «Универсальные роботы Россума». В переводе с чешского «robota» означает — рабство, работа. Вот и в романе Чапека роботы были рабами, созданными человеком.

Робот

Механизированное устройство, цель которого выполнение определенных операций и действий, заранее заданных по заложенной программе.

Слово «робототехника» обязано своим появлением американскому писателю российско-еврейского происхождения Айзеку Азимову, который внес немалый вклад в популяризацию науки.

Робототехника

Прикладная наука, цель которой разработка автоматических роботизированных систем, направленных на улучшение и автоматизацию производства.

История появления роботов берет начало с появления первых механических машин андроидного типа, а развитие робототехники, как отрасли, начинается с первых индустриальных конвеерных роботов, использующихся на производствах.

Ключевые даты в развитии робототехники:

1913 год. Создание Чарльзом Маколи машины, находящей решения логических проблем.

1921 год. Первое упоминание слова «робот» в пьесе «R.U.R.» Карела Чапека.

1934 год. Создание индустриального конвейерного робота для покраски поверхностей.

1946 год. Презентация механизма управления машинами посредствам магнитного записывающего устройства.

1950-е годы. Активная разработка механических роботов-манипуляторов.

1971 год. Изобретение первого в мире микропроцессора.

1980 годы. Сильнейший скачок роста рынка робототехники, произошедший благодаря коммерческой реализации японских роботов.

2000 год. Компания Electrolux в эфире телеканала BBC представила робот-пылесос Trilobite.

2010 год. Корейская фирма Ilshim Global презентует первого в мире робота для мойки окон Windoro.

С 2017 года. Основное направление робототехники – это прогресс искусственного интеллекта.

Строение робота

Каждый робот состоит из следующих базовых компонентов:

  • Рама или тело робота;
  • Блок управления;
  • Манипуляторы;
  • Ходовая часть.

строение робота (Titan)

(Наглядное устройство робота)

Робот может быть любых форм и размеров. Именно рама или тело робота является основой его конструкции и определяет внешний облик. Среднестатистический человек при слове «робот» представляет человекоподобное существо из металла. Этот образ навязан многочисленными фантастическими кинофильмами.

На самом же деле большинство роботов совершенно не похоже на человека. Главное для робота – это его функциональность, а не то, как он выглядит.

Контроль за работой робота осуществляется при помощи системы управления. Она включает в себя огромное количество датчиков, которые помогают технике взаимодействовать с внешним миром.

строение робота (Humanoid)

(На картинке робот Humanoid)

Система управления роботом предполагает целый набор алгоритмов, благодаря которым решаются те или иные задачи. В работе робота происходит постоянный обмен данными между датчиками и центральным процессором (ЦП). Алгоритмы и программное обеспечение создаются человеком.

Для физического контакта с объектами внешней среды используется манипулятор. Данный элемент не является обязательным. Как правило, манипулятор не является частью рамы/тела робота. Используется для решения конкретных задач в различных отраслях.

Ходовая часть робота также не является обязательной, и наличествует лишь у тех роботов, которым необходимо передвижение в пространстве. В качестве средств для перемещения чаще всего используются колеса.

Классификация робототехники

Роботов можно разделить по нескольким типам:

  • по способу передвижения;
  • по способу управления;
  • по области применения.

виды роботов

Перемещение робота в пространстве не всегда является обязательным. Если данная задача от робота не требуется, он является статичным.

Наземное передвижение робота осуществляется при помощи колес. Для повышения проходимости используется гусеничный ход. Перемещение роботов на двух ногах, как мы привыкли видеть в фантастических фильмах, не является практичным и используется в робототехнике редко.

Существуют летательные роботы, в создании которых используются достижения аэродинамики. Роботы также используются для полетов в космос.

Управлять роботом можно программно, с использованием алгоритмов для автоматической деятельности. При необходимости в программу робота могут быть внесены коррективы, чтобы оптимизировать его работу в соответствии с текущими задачами. Существует также ручное управление роботом, осуществляемое оператором.

Области робототехники

Применяются роботы самых различных сферах, но основными являются следующие:

  • Промышленность: промышленные роботы;
  • Исследовательская деятельность: роботы-ученые, исследователи;
  • Боевые роботы: безпилотники, роботы-саперы, охрана и безопасность;
  • Нанотехнологии: микро- и нано-роботы в исследовательских и медицинских целях;
  • Домашние технологии: бытовые роботы, пылесосы, мойщики окон и персональные.

виды роботов

В сфере промышленности роботы позволяют выполнять большой объем работ с высокой скоростью и точностью. Они позволяют решать такие задачи, с которыми невозможно справиться человеческими силами.

Очень многие места нашей планеты и за ее пределами не исследованы по той причине, что делать это человеку невозможно. Например, о том, что творится в океанных глубинах и в космосе мы знаем благодаря роботам-исследователям.

Рост инновационных технологий позволяет оптимистически смотреть в будущее. Робототехника стремительно развивается, открывая человечеству новые возможности.

Групповая робототехника — Википедия

Материал из Википедии — свободной энциклопедии

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 20 июня 2015;
проверки требуют 8 правок.
Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 20 июня 2015;
проверки требуют 8 правок.

Групповая робототехника представляет собой новый подход к координации систем многих роботов, которые состоят из большого числа в основном простых физических роботов.[1] Предполагается, что желаемое коллективное поведение возникает из взаимодействия роботов между собой и их взаимодействия с окружающей средой. Такой подход относится к научному направлению по искусственному роевому интеллекту, возникшему при проведении биологических исследований насекомых, в частности, муравьёв, пчёл, а также при исследовании в других областях природы, где имеет место роевое поведение.

Исследование групповой робототехники — это изучение конструкции роботов, их внешнего вида и контроля поведения. Её появление связано (но не ограничивается) с системным эффектом поведения, наблюдаемого у социальных насекомых и называемого роевым интеллектом. Относительно простые правила индивидуального поведения могут создавать сложное организованное поведение всего роя. Ключевым моментом является взаимодействие между членами группы, которое создаёт систему постоянной обратной связи. Поведение роя включает постоянную смену участников, взаимодействующих друг с другом, а также поведение всей группы в целом.

В отличие от просто распределённых робототехнических систем, групповая робототехника подчёркивает большое количество роботов, а также предполагает масштабируемость, например, с использованием только локальной связи. Эта локальная связь может быть сделана, например, на базе беспроводных систем передачи данных в радиочастотном или инфракрасном диапазонах.

Важным инструментом для систематического изучения поведения группы является видеотрекинг, хотя имеются и другие методы отслеживания. Недавно[когда?] в лаборатории робототехники Бристоля разработали ультразвуковую систему слежения за роем для исследовательских целей. Необходимы дальнейшие исследования, чтобы найти методики, которые обеспечат достоверный прогноз поведения группы, когда заданы только свойства отдельных её членов.

Ключевыми факторами в групповой робототехнике являются миниатюризация и стоимость. Это две главные проблемы в создании больших групп роботов, поэтому простоте каждого члена команды должно уделяться особое внимание, и оправданным является подход с использованием роевого интеллекта для достижения значимого поведения на уровне группы, а не на индивидуальном уровне.

Потенциальные приложения групповой робототехники включают задачи, которые требуют миниатюризации (нанороботов, микроботов), а также решение распределённых задач зондирования в микроэлектромеханических системах или в человеческом теле. С другой стороны, групповая робототехника может подходить для решения задач, которые требуют дешёвых изделий, например, для создания протяженных в пространстве постановщиков помех[2], при разминировании или фуражировке сельскохозяйственных животных. Кроме того, некоторые художники используют методы групповой робототехники для реализации новых форм интерактивного искусства.

В июне 2019 года американское Агентство перспективных оборонных исследований (DARPA) продемонстрировало работу системы Squad X, состоящей из наземных и летающих роботов-дронов, и предназначенную для разведки поля боя. дальнейшим развитием этой идеи должна стать разрабатываемая система OFFensive Swarm-Enabled Tactics (OFFSET), объединяющая 250 роботов-беспилотников, передающих информацию о требуемом участке земной поверхности.[3]

От централизованного интеллекта к роевому[править | править код]

Основа программного кода будущего, т.е. диффузный прикладной код, базируется на трёх основных принципах:

  1. Взаимодействия между кодами двух объектов становится слабее, если количество объектов увеличивается. Поэтому несинхронизированные взаимодействия — это будущее программ, основанных на роевом интеллекте, и работают они параллельно друг с другом.
  2. Понятие микро-компонентов тесно связано с распространением кода, которое контролируется на макроскопическом уровне.
  3. Алгоритмы необходимо адаптировать к определённым проблемам, т. е. они должны найти способы, чтобы решать проблемы самостоятельно. Будущие программы будут развиваться в соответствии с задачей, которую они осуществляют в рамках своей среды. Концепция использует мутацию приложений.[4]
  1. ↑ H. Hamann, Swarm Robotics: A Formal Approach, Springer, New York, 2018.
  2. Слюсарь В.И. Микропланы: от шедевров конструирования к серийным системам. //Конструктор. – 2001. — № 8. – С. 58 — 59.- [1].
  3. ↑ OFFSET: летающие помощники для городского боя (рус.). warspot.ru. Дата обращения 12 августа 2019.
  4. ↑ Jean-Baptiste Waldner, Nanocomputers and Swarm Intelligence. ISTE, 2007, pp. 242-248, isbn = 1847040020 (англ.)

Конструкторы по робототехнике для детей

В наши дни конструкторы по робототехнике для детей набирают все большую популярность среди юных инженеров и их родителей. И это неудивительно, ведь детская робототехника, а соответственно, и конструкторы, объединяет целый ряд научных дисциплин – от физики до программирования – и позволяет в игровой форме погрузиться в данные области знаний. Сейчас на рынке представлен широкий выбор комплектов, рассчитанных на детей разных возрастов, с разными интересами и разным уровнем подготовки.

Что отличает конструкторы по робототехнике?

В первую очередь все образовательные робототехнические конструкторы объединяет то, что в них заложена функция не только игры, но и обучения – об этом говорит уже само название таких комплектов. Наборы для школьников могут сопровождаться учебниками, рабочими тетрадями, глоссариями, материалами для учителя и т.д. Конструкторы для младших групп, особенно для дошкольников, как правило, не подразумевают использование объемных педагогических материалов, но и здесь ребенок не просто играет, а в доступной форме изучает механизмы, физические законы т.д.

При этом акцент на работе механизмов, датчиков, в целом на физике или программировании – еще одна черта данных комплектов. Конечно, конструктор роботов для детей 4-6 лет не предлагает малышу собрать и запрограммировать человекоподобного андроида. Робототехника на начальных этапах – это изучение различных моделей, простая работа с моторами и т.д. В свою очередь, ученику средних классов вполне можно предложить программируемый конструктор по робототехнике, где надо не просто собрать модель, но и самому задать ее поведение.

Многие конструкторы предполагают, что из одного набора можно собрать сразу несколько моделей (как правило, они перечислены на коробке или в описании к комплекту). И это не считая тех, которые придумает сам ребенок.

Большая часть образовательных конструкторов подходит для использования как в классе, так и дома.

Конструкторы по робототехнике: возрастные группы

В целом свой конструктор для изучения робототехники найдут дети от 4-5 до 14-15 лет. Продуманный набор будет соответствовать уровню знаний юного инженера, при этом чем старше ребенок, тем сложнее будут модели. Большинство производителей предлагает решения для следующих возрастных групп (деление достаточно условное и зависит от конкретного бренда).

  • 4-6 лет. Понятные модели, крупные и яркие детали, увлекательное содержание – вот основные черты наборов для дошкольников. Как правило, здесь малышу предлагается собрать различные машинки, самолетики, животных, понять, что такое механизм, и т.д. Задача таких комплектов, помимо прочего, развить мелкую моторику, внимательность, усидчивость, фантазию и креативность, научить работе в команде.

  • 7-9 лет. Конструктор по робототехнике для начинающих учебу в школе становится более сложным: это касается как собственно моделей, так и изучаемых тем. Дети подробнее знакомятся с законами и явлениями физики, изучают работу различных датчиков и т.д. Именно поэтому такие наборы могут использоваться на уроках физики или окружающего мира в качестве иллюстративного материала. Многие комплекты предлагают не просто построить машинку, но и заставить ее двигаться: отъезжать от края стола, ехать по черной линии и т.д.

  • 10-15 лет. Конструкты для старшей группы подразумевают почти полное погружение в робототехнику (за исключением моделирования и печати деталей, хотя один из наборов от Fischertechnik как раз позволяет собрать и настроить настоящий 3D-принтер). Работа с механизмами в данном случае сочетается с программированием – конструкторы могут поставляться с программируемыми и непрограммируемыми платами, чтобы будущий инженер мог посмотреть, как они в принципе функционируют, и попробовать самостоятельно задать команды.

Бренды на рынке конструкторов по робототехнике

Среди наиболее популярных брендов в мире детских конструкторов по робототехнике можно отметить LEGO Education, Engino, Huna, Fischertechnik, Makeblock и другие. Познакомимся поближе с предлагаемыми ими наборами.

LEGO Education

Один из самых известных в мире брендов конструкторов также является и одним из лидеров по образовательному направлению. Во многих школах и кружках на занятиях используются решения именно от LEGO. Немалую роль здесь сыграли универсальность конструктора, широкий набор материалов для учителей, наличие рабочих тетрадей и т.д.

Производитель предлагает ряд линеек для разных возрастов.

  • Для совсем маленьких хорошим вариантом станут «Первые механизмы» (5+) или «Простые механизмы» (7+). Игра с этими конструкторами не требует дополнительных знаний, а сам набор познакомит ребенка с тем, что такое механизм и как он функционирует. Будущий инженер узнает о принципах работы рычагов, зубчатых колес и о многом другом.

  • Линейки WeDo и WeDo 2.0 позволят детям 7-10 лет собрать своего первого настоящего робота. Комплекты включают множество деталей для его тела, а также различные датчики (движения, наклона и т.д.), специализированное программное обеспечение, дидактические материалы и т.д.

  • В отдельную группу выделим конструкторы, где подробно разбираются различные темы, связанные не только с физикой, но и с технологией и некоторыми другими дисциплинами. Речь идет о таких комплектах, как «Пневматика», «Возобновляемые источники энергии» и пр.

  • MINDSTORMS Education EV3 – самые сложные из предлагаемых производителем конструкторов, и предназначены они для учеников средней школы. Эти наборы позволяют собрать полноценного программируемого робота с различными датчиками, который сможет даже взаимодействовать с другими роботами от LEGO.

Наборы LEGO бывают базовыми, ресурсными (предлагают детали для сборки новых моделей) и дополнительными (расширяют возможности базового набора).

Fischertechnik

Немецкий производитель также подготовил комплекты для детей разных возрастов. Например, для юных инженеров от 5 лет – это «Набор для малышей» и «Супернабор для малышей». Каждый такой конструктор позволит построить по несколько моделей машинок, самолетов, подъемный кран и другие знакомые и понятные ребенку объекты.

Детям от 7 лет бренд предлагает более сложные задачи. Например, построить трактор с дистанционным управлением или машину, которая будет двигаться от солнечных батарей. Также Fischertechnik разработал комплекты для изучения пневматики, оптических явлений, законов динамики, топливных элементов и различных типов двигателей. Эти и другие подобные образовательные конструкторы помогут в игровой форме погрузиться в различные стороны школьной физики, а главное – применить теоретические выкладки на практике.

Huna

Принцип, которым руководствуется Huna при разработке своих конструкторов: «От простого к сложному». Уже 6-8-летним детям бренд предлагает собрать несложных роботов с двигателем, звуковым сопровождением, датчиками, определяющими расстояние или черный цвет. В основе таких наборов лежат знакомые каждому ребенку модели: герои сказок (например, персонажи из «Трех поросят» или Паровозик Томас), животные, машинки и т.д. Каждый комплект сопровождается понятной инструкцией, которая поможет малышу (возможно, под присмотром родителей или педагога) собрать интересную движущуюся модель.

Для ребят постарше предназначена линейка MRT (My Robot Time), в которой представлены наборы различной степени сложности. Во все комплекты входят датчики, мотор и другие необходимые составляющие. Одна из особенностей конструкторов от Huna – детали соединяются по всем 6 сторонам. Благодаря этому, один комплект позволяет получить множество различных моделей – как указанных производителем, так и тех, что придумает сам ребенок.

Интересное решение от Huna – наборы для групповой работы: дети могут построить зоопарк, город или порассуждать на темы «Мечты и реальность», «Новый год и Рождество».

Engino

Бренд Engino – это широкий выбор самых разных образовательных конструкторов: программируемых и непрограммируемых; с мотором и без него. Отдельные комплекты посвящены сборке автомобилей, мотоциклов, самолетов, спецтехники и т.д. – такой набор позволит собрать ряд моделей соответствующей тематики. Также Engino предлагает специальную серию для девочек – с деталями пастельных цветов и моделями, более близкими прекрасной половине человечества.

Отметим и серии Engino Mechanical Science и Engino Discovering STEM. Благодаря им, во время игры ребенок изучит различные явления физики, такие как работа рычагов, клиньев, кривошипов, червячной передачи, узнает о законах Ньютона и солнечной энергии, а также погрузится во многие другие области. STEM расшифровывается как Science (наука), Technology (технология), Engineering (инженерное дело) и Mathematics (математика) – именно этим областям и посвящены данные наборы.

Аббревиатуру STEM используют различные производители образовательных конструкторов, ведь робототехника объединяет все перечисленные в ней области знаний.

Makeblock

Самые интересные конструкторы от Makeblock – пожалуй, те, которые после сборки и настройки можно использовать по прямому назначению. Это, например, «Laserbot гравировщик» или Airblock Drone, позволяющий собрать дрон или катер на воздушной подушке. Такие наборы поставляются со всем необходимым для последующей полноценной работы устройства. Скажем, для гравировщика это, соответственно, лазерная головка, кронштейны, двигатели, программное обеспечение и многое другое.

Однако данные конструкторы относятся к категории сложных и рассчитаны на учеников средней школы, а если вы ищете набор для более юного инженера, то предложите ему, например, комплект из серии mBot. Такой конструктор познакомит ребенка от 8 лет с основами программирования, работы с датчиками и т.д. Управлять роботом можно будет как с пульта, так и с мобильного телефона (если выбранный вами комплект будет поддерживать Bluetooth).

Роботы в культуре — Википедия

Роботы, как культурный феномен появились с пьесой Карела Чапека «R.U.R.», описывающую конвейер, на котором роботы собирают самих себя. С развитием технологии люди всё чаще видели в механических созданиях что-то больше, чем просто игрушки. Литература отразила страхи человечества, о возможности замены людей их собственными творениями. В дальнейшем эти идеи развиваются в фильмах «Метрополис» (1927), «Бегущий по лезвию» (1982) и «Терминатор» (1984). Как роботы с искусственным интеллектом становятся реальностью и взаимодействуют с человеком, показано в фильмах «Искусственный разум» (2001) режиссёра Стивена Спилберга и «Я, робот» (2004) режиссёра Алекса Пройяса.

В повести Л. Ф. Баума «Озма из Страны Оз» (1904) появляется Тик-Ток — механический человек из меди, которого надо заводить ключом. В правой подмышке расположена замочная скважина для заведения мышления, в левой подмышке — для заведения речи, в спине — для заведения движения.

Значительный вклад в формирование образа «робота» в литературе внес Айзек Азимов. Им были сформулированы «Три Закона Роботехники»:

  1. Робот не может причинить вреда человеку или своим бездействием допустить, чтобы человеку был причинён вред.
  2. Робот должен выполнять приказы человека в той мере, в которой это не противоречит Первому Закону.
  3. Робот должен заботиться о своей безопасности в той мере, в которой это не противоречит Первому и Второму Законам[1].

Азимов в своих произведениях показывает, что эти законы, будучи заложены в программу-мозг робота в виде обязательных (безусловно исполняемых роботом) законов исключают возможность проявления любых недружественных действий робота по отношению к человеку. Приводятся также примеры негативных последствий, возникающих в случае, когда люди пренебрегая требованиям обязательности трех законов блокируют на этапе программирования робота один из законов (например, вторую часть первого закона). В этом случае робот может найти логически непротиворечивое решение, позволяющее ему нарушить 1-й закон и стать опасным для человека.

Также Айзеком Азимовым (в романах «Роботы и Империя», «На пути к основанию») сформулирован так называемый «нулевой» закон робототехники: «Робот не может причинить вред человечеству или своим бездействием способствовать этому»

«…Нулевой. Робот не может причинить вред человечеству или, своим бездействием, способствовать этому. Тогда Первый Закон следует читать следующим образом: Первый. Робот не может причинить вред человеческому существу или, своим бездействием, способствовать этому, кроме тех случаев, когда это противоречит Нулевому Закону. Таким же образом следует трактовать и последние два…» — Айзек Азимов «На пути к основанию»

В творчестве С. Лема роботы занимают значительное место. Цикл рассказов «Кибериада», где действуют только роботы, а люди считаются старинными сказочными чудовищами — «бледнотиками». В приключениях И. Тихого также внимание уделено роботам, особенно в «Стиральной трагедии» (из цикла «Из воспоминаний Ийона Тихого»), где в гротескной форме описывается роль робота в человеческом обществе с точки зрения законодательства.[источник не указан 3167 дней]

Аниме[править | править код]

В Японии получили популярность аниме, в которых фигурируют боевые роботы, что привело к появлению отдельного жанра — Меха. Среди наиболее известных представителей этого жанра — Transformers, Gundam, Voltron, Neon Genesis Evangelion.

Сюжет в основном базировался на угрозе планете со стороны ранее неизвестных и сильных монстров, победить которых могли лишь пилоты (часто несовершеннолетние для основной аудитории подобных аниме) которые управляли гигантскими человекоподобными роботами либо роботами, имеющими «душу» и контролирующими все свои поступки, как например в сериале Трансформеры. Но роботы также появлялись и в антиутопических и постапокалиптических сюжетах как в аниме Призрак в доспехах и Евангелион. Впоследствии черты этого жанра перешли в кинофантастику.

Западная мультипликация[править | править код]

Робот из фильма «День, когда Земля остановилась» ставший прообразом многих роботов в кино-фантастике

Существует жанр видео игр — симуляторы меха. Наиболее известным представителем этого жанра является серия игр MechWarrior. В таких играх как Lost Planet, Shogo: Mobile Armor Division, Quake IV, Chrome, Unreal Tournament 3, Battlefield 2142, F.E.A.R. 2: Project Origin имеется возможность управлять роботами. Ещё одним примером видео игры с участием роботов является Scrapland.

Иногда тема роботов обыгрывается в песнях, исполняемых эстрадными певцами. В качестве примера можно привести одну из первых песен Аллы Пугачевой «Робот» (Л.Мерабов — М. Танич, 1965)[2], с которой началось её восхождение к вершинам популярности. В песне речь шла о транзисторных механизмах.

В 1978 году немецкая группа Kraftwerk выпустила сингл «Die Roboter», в котором есть строчки на русском языке: «Я твой слуга, я твой работник». На этот трек впоследствии было выпущено много ремиксов, но оригинал и по сей день остается любимым среди DJs и ценителей электронной музыки.

Тема роботов всегда являлась благодатной почвой для появления всевозможного народного фольклора — частушек, анекдотов и проч. В его основе обычно были юмористические попытки «вписать» роботов в контекст обыденной жизни и посмотреть — что же из этого может получиться. Серию анекдотов в СССР породил, например, отечественный телесериал «Приключения Электроника».
С распространением Интернета роботы стали фигурировать и в т. н. Интернет-мемах. Всевозможные шутки, картинки и видеоролики с участием роботов стали распространяться по сети по вирусной схеме.
В англоязычном секторе Интернет, например, особенно популярными являются интернет-мемы в которых фигурирует робот Бендер из Футурамы, Терминатор и прочие.

Обзор роботов-манипуляторов Universal Robots / Top 3D Shop corporate blog / Habr

Здравствуйте! Рассказываем о линейке коллаборативных роботов-манипуляторов Universal Robots.

Компания Юниверсал-роботс родом из Дании, занимается выпуском коллаборативных роботов-манипуляторов для автоматизации циклических производственных процессов. В этой статье приведем их основные технические характеристики и рассмотрим области применения.

Что это?

Продукция компании представлена линейкой из трех облегченных промышленных манипуляционных устройств с разомкнутой кинематической цепью: UR3, UR5, UR10.
Все модели имеют 6 степеней подвижности: 3 переносные и 3 ориентирующие. Устройства от Юниверсал-роботс производят только угловые перемещения.
Роботы-манипуляторы разделены на классы, в зависимости от предельно допустимой полезной нагрузки. Другими отличиями являются — радиус рабочей зоны, вес и диаметр основания.
Все манипуляторы UR оснащены датчиками абсолютного положения высокой точности, которые упрощают интеграцию с внешними устройствами и оборудованием. Благодаря компактному исполнению, манипуляторы UR не занимают много места и могут устанавливаться в рабочих секциях или на производственных линиях, где не помещаются обычные роботы.

Характеристики:

Чем интересны

Простота программирования

Специально разработанная и запатентованная технология программирования позволяет операторам, не владеющим специальными навыками, быстро выполнить настройку роботов-манипуляторов UR и управлять ими с помощью интуитивной технологии 3D-визуализации. Программирование происходит путем серии простых передвижений рабочего органа манипулятора в необходимые положения, либо нажатием стрелок в специальной программе на планшете.

UR3:

UR5:

UR10:

Быстрая настройка

Оператору, выполняющему первичный запуск оборудования, потребуется менее часа для распаковки, монтажа и программирования первой простой операции.

UR3:

UR5:

UR10:

Коллаборативность и безопасность

Манипуляторы UR способны заменить операторов, выполняющих рутинные задачи в опасных и загрязненных условиях. В системе управления ведется учет внешних возмущающих воздействий, оказываемых на робот-манипулятор в процессе работы. Благодаря этому, манипуляционные системы UR можно эксплуатировать без защитных ограждений, рядом с рабочими местами персонала. Системы безопасности роботов одобрены и сертифицированы TÜV – Союзом работников технического надзора Германии.

UR3:

UR5:

UR10:

Многообразие рабочих органов

На конце промышленных манипуляторов UR предусмотрено стандартизированное крепление для установки специальных рабочих органов. Между рабочим органом и конечным звеном манипулятора можно установить дополнительные модули силомоментных сенсоров или камер.

Возможности применения

С промышленными роботами-манипуляторами UR открываются возможности автоматизации практически всех циклических рутинных процессов. Устройства компании Юниверсал-роботс отлично зарекомендовали себя в различных областях применения.

Перекладка

Установка манипуляторов UR на участках перекладки и упаковки позволяет увеличить точность и уменьшить усадку. Большинство операций по перекладке может осуществляться без надзора.

Полировка, буферовка, шлифовка

Встроенная система датчиков позволяет контролировать точность и равномерность прикладываемого усилия на криволинейных и неровных поверхностях.

Литье под давлением

Высокая точность повторяющихся движений позволяет применять роботы UR для задач переработки полимеров и инжекционного литья.

Обслуживание станков с ЧПУ

Класс защиты оболочки обеспечивает возможность установки манипуляционных систем для совместной работы со станками ЧПУ.

Упаковка и штабелирование

Традиционные технологии автоматизации отличаются громоздкостью и дороговизной. Легко настраиваемые роботы UR способны работать без защитных экранов рядом с сотрудниками или без них 24 часа в сутки, обеспечиваю высокую точность и производительность.

Контроль качества

Роботизированный манипулятор с видеокамерами пригоден для проведения трехмерных измерений, что является дополнительной гарантией качества выпускаемой продукции.

Сборка

Простое устройство крепления рабочего органа позволяет оснащать роботы UR подходящими вспомогательными механизмами, необходимыми для сборки деталей из дерева, пластика, металла и других материалов.

Свинчивание

Система управления позволяет контролировать развиваемый момент во избегании избыточной затяжки и обеспечения требуемого натяжения.

Склеивание и <a href=»»>сварка

Высокая точность позиционирования рабочего органа позволяет сократить количество отходов при выполнении операций склейки или нанесения веществ.

Промышленные роботы-манипуляторы UR могут выполнять различные типы сварки: дуговую, точечную, ультразвуковую и плазменную.

Итого:

Промышленные манипуляторы от Юниверсал-роботс компактны, легки, просты в освоении и обращении. Роботы UR – гибкое решение для широкого круга задач. Манипуляторы можно запрограммировать на любые действия присущие движениям человеческой руки, а вращательные движения им удаются намного лучше. Манипуляторам не свойственны усталость и боязнь получить травму, не нужны перерывы и выходные.

Решения от Юниверсал-роботс позволяют автоматизировать любой рутинный процесс, что увеличивает скорость и качество производства.

Обсудите задачи автоматизации производственных процессов с помощью манипуляторов от Юниверсал-роботс с официальным дилером — в Top 3D Shop.

Хотите больше интересных новостей из мира 3D-технологий?

Подписывайтесь на нас в соц. сетях:

Оставьте комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *