Радиооптических фазированных антенных решеток – Радиооптическая фазированная антенная решетка (РОФАР)

Содержание

Фотонные радары, радиофотоника и стелс-технологии

«Фотонный радар на истребителе Су-57 превращает американский истребитель F-35 в очень дорогую воздушную мишень».

 

На самом деле статья неоднозначная

 

С напускной грустью, китайский журналист пишет  в ней о том, что «к сожалению, военные проекты России за последние 20 лет, за исключением атомных подводных лодок и ядерных ракет, идут очень плохо: танки Т-90, новые военные корабли постоянно откладываются, что хуже всего, как и новая эра России» . 

 

Упоминет о том, что «истребитель Су-57 стоил миллиарды долларов, и 20 лет исследований и разработок потерпели неудачу. У российского правительства не было иного выбора, кроме как отвлечь свое внимание и перенести первоначально заказанные заказы Су-57 на Су-35, что составляет половину цены».  И, наконец, радует информацией о «луче света —  микроволновом фотонном радаре».

 

После перечислений достоинств радара следует вывод: «Если русские смогут воспользоваться этой возможностью, истребитель Су-57 может действительно превратить поражение в победу!»

«Особенность этого типа радаров заключается в том, что он компактный, легкий и имеет большой радиус действия. Он может напрямую отображать силуэт самолета с разрешением в несколько десятков раз выше, чем у обычного радара, вес и объемы нового радара примерно в два раза меньше, чем у нынешних,», – рассказывает  автор статьи.

 

Оставим мнение о «победах» и «поражениях»  на совести китайского автора и поговорим о фотонном радаре.

 

По мнению издания, радар можно сделать в форме тонкой пластины, крепящейся к поверхности истребителя, благодаря этому самолет станет легче и получит улучшенные летные характеристики. mil.news.sina.com.cn

 

 

РОФАР

 

Проект РОФАР (радиоптические фазированные антенные решетки) был начат в феврале 2015 года, а заканчивается в июле 2019 года.  «Концерн Радиоэлектронные технологии» (КРЭТ) Госкорпорации Ростех ведет разработку технологии радиофотоники не имеющей аналогов в мире.

 

Анонсировалось, что новая технология позволит снизить массу радиоэлектронного оборудования боевых кораблей в 5-7 раз), радар нового поколения сможет делать «рентгеновские снимки» самолетов, находящихся на удалении более 500 километров, а радиооптические фазированные антенные решетки значительно расширят возможности современных средств связи и радаров — их масса снизится более чем вдвое, а разрешающая способность увеличится в десятки раз.

 

Радар на основе квантовой визуализации. Фото: engadget.com

«РОФАР позволит нам увидеть самолет, находящийся в 500 километрах, так, словно мы стоим в 50 метрах от него на аэродроме, его портрет в видеодиапазоне. Более того, если нужно, эта технология позволит заглянуть и в сам самолет, узнать, какие люди и техника в нем находятся, поскольку сигнал может пройти любые препятствия, даже метровые свинцовые стены, благодаря использованию широкого диапазона частот, проникающих на различную глубину внутрь объекта»

 

КРЭТ писал о том, что радиооптические фазированные антенные решетки значительно расширят возможности современных средств связи и радаров – их разрешающая способность увеличится в десятки раз. Если у современного локатора частота излучения 10 ГГц, 3 см с шириной спектра 1-2 ГГц, то у РОФАР эта частота может составлять от 1 Гц до 100 ГГц одновременно. На практике это означает, что РОФАР может давать детализированное, объемное изображение того, что происходит на расстоянии сотен километров от него. К примеру, на дальности 400 км можно не просто увидеть человека, но даже узнать его лицо.

 

«В отличии от традиционных РЛС заглушить РОФАР традиционными средствами РЭБ не получится физически. Динамический диапазон фотонного кристалла — это примерно 200 Дб. Современный радиоэлектронный приемник, для сравнения, имеет диапазон 40 — 60 Дб, а мы современными комплексами РЭБ обеспечиваем подачу сигнала на вход радиоприемного устройства – в 70-80 Дб относительно его пороговой чувствительности. Таким образом, устройство, которое должно принимать сигнал выводиться из работоспособного состояния. Даже после снятия помехи у него внутри еще идут процессы, которые не дают ему работать. Но на Земле просто нет источника энергии для подачи сигнала мощностью, превышающей 200 Дб, поэтому эта логика в случае с РОФАР просто не работает. Его можно запутать так называемым интеллектуальным противодействием, но это уже совсем другая история.»  

Новой радар российских истребителей. Инфографика: s9.stc.all.kpcdn.net

«Фотоника по сути является аналогом электроники, использующим вместо электронов кванты электромагнитного поля оптической частоты — фотоны. Радиофотоника является составной частью нанофотоники, изучающей направленное взаимодействие оптических волн с наноструктурами, в то время как радиофотоника изучает направленное взаимодействие оптических волн, промодулированных радиочастотой в специализированных наноструктурах и позволяет создавать радиочастотные устройства с параметрами, недостижимыми для традиционной электроники, благодаря тому, что фотоны, в отличие от электронов, не имеют массы покоя и заряда, что дает потенциально сверхвысокое быстродействие и уникальную помехоустойчивость».

 

Принцип работы фотонного радара

 

По западной терминологии «квантовый радар» (quantum radar)  — его принцип работы основывается на особенностях фотонов как квантовых частиц. Сигнал, излучаемый таким радаром очень помехоустойчивый. 

Принцип работы фотонного (квантового) радара. Фото: engadget.com

Идея заключается в использовании для обнаружения цели и получения ее изображения фотонов, имеющих определенную поляризацию. Цель освещается потоком специально поляризованного света, а отраженные от цели фотоны позволяют составить изображение цели. Но противник может перехватить фотоны, изменить их и отправить назад эти фотоны, которые исказят для радара форму цели и ее местоположение. Такой процесс приведет к изменению квантовых свойств фотонов, в частности, их поляризацию. Определив поляризацию отраженных фотонов можно не только зарегистрировать сам факт постороннего вмешательства, но и полностью избавиться от него, «выбросив» фотоны с неправильной поляризацией.

Разработанная технология базируется на квантовых свойствах фотонов света, в частности на факте, что любая попытка воздействия на фотон приведет к разрушению его квантовых свойств.

Противодействие сигналам радаров является достаточно сложным делом. Для этого существует несколько различных методов, таких как, подавление полезного сигнала шумом на частоте работы радара или сброс ложных целей, создающих ложные отражения. Но современные радарные системы, вооруженные компьютерами и процессорами обработки сигналов, легко справляются с таким противодействием, поэтому подразделениям радиоэлектронной борьбы приходится применять все более и более сложные методы. Одним из таких сложных методов является перехват сигнала радара и его изменение таким образом, который дает ложную информацию о самой цели и ее местоположении. И с таким методом противодействия бороться намного труднее.

 

Стелс-технологии

 

Если осветить поляризованным светом самолет и проверить измерения количества отраженных фотонов, имеющих ошибочную поляризацию, то данных от фотонов, имеющих правильную поляризацию, будет вполне достаточно для того, что бы составить четкое и узнаваемое изображение самолета.

Исследователи обнаружили, что природа фотонов позволяет справиться даже с самыми продвинутыми стелс-технологиями. Если стелс-самолет попытается перехватить поток фотонов или исказить свое местонахождение каким-либо образом, то тем самым выдаст себя с головой, изменив свойства фотонов.

 

Используемый в работе системы принцип похож на тот, что лежит в основе квантовых криптографических систем с разделенной передачей ключа: любая попытка вклиниться в передачу ключа влияет на его квантовые характеристики и сразу выдает присутствие интервента. 

Радиофотонный локатор не будет стоять отдельным модулем в носу самолета, это будет распределенная система. Фото: sdelanounas.ru/blogs/96305
 

 

Простыми словами

В работе используется непрерывный стабилизированный лазер, амплитудные модуляторы и узкополосные оптические фильтры для преобразования радиолокационного сигнала в диапазон низких частот. Оптическая несущая и одна из боковых полос могут быть подавлены с помощью оптических полосовых фильтров на основе, например, микрорезонаторов или волоконных брегговских решеток.

 

Часть лазерного луча модулируется по амплитуде несущим СВЧ сигналом и также фильтруется для подавления оптической несущей и одной из боковых полос. После этого оптические сигналы, содержащие принимаемый сигнал и сигнал СВЧ несущей, могут быть смешаны на фотоприемнике и оцифрованы медленным электронным АЦП.

 

Для современных оптических элементов отношение сигнал/шум на выходе преобразователя может достигать 60-70 дб и более для СВЧ сигнала с несущей в десятки гигагерц и полосой 100 МГц и выше.

Работа радиофотонного приемного канала с оптическим гетеродинированием может быть использованы в исследованной схеме для ее применения в качестве универсального приемного канала, обеспечивающего ширину полосы до 100 МГЦ (длительность сигналов до 10 нс) с частотой несущей в десятки ГГц при отношении сигнал/шум, равном 60-70 дб (10-11 эффективных бит оцифрованного сигнала). Перспективным может быть также применение режима подавления несущей оптической частоты в модуляторах приемного канала. В этом случае в несколько раз повышается отношение сигнал/шум, а также не требуется использовать узкополосные оптические фильтры в схеме.

Радиофотоника, изучающая взаимодействие оптических и СВЧ-сигналов, позволяет создавать электронные устройства с параметрами, недостижимыми традиционными средствами.

На основе экспериментального образца построен излучатель и приемник. Все это работает, ведет локацию. В эксперименте излучается СВЧ- сигнал (сверхвысокочастотный), который отражается назад,  его принимают и обрабатывает, получая радиолокационную картинку объекта. Фото: sdelanounas.ru/blogs/96305

 

Основные преимущества радиофотонных устройств:

  • Сверхнизкие потери и дисперсия оптического волокна (менее 0.2 дБ/км на 1550 нм, оптическая несущая ~200 ТГц).
  • Сверхширокополосность (доступная полоса частот оптического волокна ~50ТГц, полоса частот современных фотодиодов и модуляторов до 100 ГГц и выше).
  • Низкий уровень фазовых шумов (процесс прямого оптического детектирования с помощью фотодиода не восприимчив к фазе оптического излучения (к фазе и фазовым шумам оптической несущей).
  • Высокая фазовая стабильность оптического волокна. Невосприимчивость к электромагнитным помехам, не создает помехи.
  • Гальваническая развязка фотонных схем.
  • Малая масса и размеры оптического волокна.
  • Механическая гибкость оптического волокна (облегчает конструктивное исполнение).

 

Родом из СССР

Из книги Радиооптические антенные решетки Воскресенского Д.И. (Год издания:1986):
«Описаны методы формирования пространственных характеристик направленности приемных антенных решеток (АР) произвольной формы с использованием средств когерентной оптики и голографии. Рассмотрены когерентные оптические процессоры АР. обладающие различными функциональными возможностями, приведены результаты экспериментальных исследований. Для инженерно-технических работников, специализирующихся в области оптической обработки информации, антенной техники, радио- и гидролокации».

Радиооптические антенные решетки / Воскресенский, Д. И.; Гринев, А.Ю. ; Воронин, Е.Н. Место издания:Москва : Радио и связь Год издания:1986

 

От автора

Так как исследования и разработки по радиофотонным технологиям проводят и США, и ЕС, и Япония, и Южная Корея и Китай стоит смотреть шире и помнить, что использование систем радиооптических фазированных антенных решеток (РОФАР) в перспективе даст возможность построения сети уникальных синхронизированных космических и наземных радиотелескопов, а также покрыть фюзеляж самолетов и вертолетов «умной» обшивкой нового типа.

 

Фотоника может также эффективно применяться в ЖКХ, например, в городских и поселковых системах теплоснабжения, где вместо горячей воды энергоносителями будут выступать фотоны, распространяющиеся в фотоннокристаллических волокнах толщиной с человеческий волос почти без потерь, энергия которых будет преобразовываться в тепло с почти 100% КПД в устройствах, вмонтированные в квартирные радиаторы.

 

Также радиофотоника может совершить революцию в метеорологии, качественно улучшив точность прогнозирования погоды на Земле.

Поэтому радиофотоника призвана стать новой цивилизационной ступенью развития всего человечества.

 

 

Нашли опечатку? Выделите фрагмент и нажмите Ctrl+Enter.

Новости о науке, технике, вооружении и технологиях.

Подпишитесь и будете получать свежий дайджест лучших статей за неделю!

Email*

Подписаться

naukatehnika.com

11. Радиооптические антенные решетки (роар)

11.1. Основные понятия

Широкому внедрению
сканирующих фазированных антенных
решеток (ФАР) в радиолокации, связи,
радиоастрономии препятствует их
сложность и высокая стоимость как
управления, так и эксплутационных
расходов.

В последнее время в связи с интенсивным
развитием оптоэлектроники сформировалось
новое научное направление – радиооптические
антенные решетки
(РОАР),которые
позволяют упростить систему управления
АР средствами когерентной оптики и
голографии. При этом удается реализовать
некоторые задачи, которые трудно решить
традиционными электронными методами,
например, панорамный обзор в широком
диапазоне частот и углов вреальном
масштабе времени (РМВ)
.

Основной особенностью РОАР является
то, что собственно АР работает в
радиодиапазоне (СВЧ), а система управления
ее элементами осуществляется в оптическом
диапазоне.

Основными методами оптического управления
ФАР являются: управление задержками в
РМВ, использование гибридных оптических
Фурье – процессоров и «экзотические»
методы управления [7,8].

На этих же принципах строятся и
гидроакустические оптические антенные
решетки.

11.2. Оптическое управление задержками свч — сигналов

11.2.1. Принцип оптического управления
задержками СВЧ сигналов основан на том,
что при прохождении по ВОЛС оптического
сигнала с частотой fопт,промодулированного СВЧ сигналом с
частотойFСВЧ,временные задержкиtопт,tСВЧэтих сигналов связанны (по
аналогии с работой ФАР управляемых на
промежуточной частоте [9]) соотношением:

, (11.1)

откуда набег фаз для оптического сигнала
и для его огибающейодинаковы, т.е..
Таким образом, управляяtопт(длиной отрезка ВОЛС) мы можем управлять
набегом фаз СВЧ сигнала.

Передающая радиооптическая активная
ФАР (АФАР)
использует фазовый метод
сканирования
за счет переключаемых
отрезков ВОЛС задержки (рис.11.1,а) [8].

Рис. 11.1. Передающая радиооптическая
активная ФАР

Излучение лазерного диода (ЛД) – 1
модулируется СВЧ сигналом модулятором
– 2, разветвляется на N– каналов в разветвителе – 3 и поступает
в когерентный оптический процессор –
4, в котором в каждом канале обеспечивается
требуемая фаза и амплитуда. Амплитуда
обеспечивается любым оптическим
модулятором, а фаза за счет переключаемых
отрезков. На рис. 11.1,б показан один из
вариантов подключения трех модуляторов
– переключателей на основе двухканальных
направленных ответвителей. Например,
при подаче управляющего напряжения,
если,
то обеспечивается отключение второго
канала ответвителей и задержка обусловлена
полной длиной отрезка – петли длиной...
Без управляющего напряжения (или при
другом напряжении) энергия передается
во второй канал ответвителей, минуя
петлю. Набор длин отрезков и их количество
определяется из тех же соображений, что
и при использовании дискретных
фазовращателей на СВЧ.

Для уменьшения количества каналов
управления апертура ФАР делится на Мподрешеток сКэлементами каждая:N = M
K. В этом случае
вместоN отдельных
задержек в оптимизированной конфигурации
используется толькоM
+
K –2задержек.
Например, приN= 10000
получимM + K
–2
= 198.

11.2.2. Передающая или приемная РОАФАР
с диаграммообразующей схемой (ДОС)
использует амплитудный способ
сканирования
. При этом возможны
оптические аналоги схем Ротмана, Батлера,
Бласса [9] используемых на СВЧ.

На рис. 11.2. представлена схема РОАФАР,
являющаяся волоконно-оптическим аналогом
схемы Ротмана для работы в режиме приема
[7]. Принятый каждым элементом (n
= 1…
N) СВЧ сигнал
после усиления модулирует свой ЛД.
Модулированное оптическое излучение
поступает на разветвитель (мультиплексор)
– 1 после которого разветвляется наМканалов одномодовых ВОЛС с длинами,
обеспечивающими линейное распределение
фазы. Эти ВОЛС подходят кМсумматорам
(демультиплексорам) – 2 таким образом,
что с каждого направления сигналы
синфазно приходят на определенный
выход. С выходов сумматоров оптические
сигналы поступают на фотодиоды, с которых
СВЧ сигналы после усиления поступают
на выходы1…М.

На рис. 11.2. показан случай, когда M
=
N, но возможна
оптимизация схем с применением быстрого
преобразования Фурье, позволяющая
уменьшить число сумматоров и разветвителей.
Для режима передачи активные элементы
на входах и выходах меняются местами,
а передающие модули работают от
коммутатора. Для одновременной работы
в режиме передачи и приема нужна
коммутация в каждом элементе. Как уже
указывалось, временные задержки принятых
сигналов обеспечиваются подбором длинВОЛС. При этом точностьзависит
отFСВЧ.

11.2.3. Схема ФАР с оптической ДОС в виде
волоконной дисперсионной призмыпоказана на рис.10.3 [8]. В этой схеме
реализованчастотный метод сканирования
в оптическом диапазоне. Для этого
используется перестраиваемый лазер
или несколько лазеров с разной частотой.
После модуляции СВЧ сигналом перестраиваемое
излучение разветвляется наNканалов, каждый из которых состоит из
двух отрезков одномодовых ВОЛС с низкой
и высокой дисперсией и определенным
образом подобранными длинами.

Рис. 11.2. Приемная РОАФАР с ДОС

Рис. 11.3. РОАФАР с ДОС в виде волоконной
дисперсионной призмы

На центральной частоте
полные временные задержки в каждом
канале равны, так что парциальные ДН
направлены по нормали к апертуре АФАР.
На частотах больших или меньшихкаждое высокодисперсное волокно
добавляет или вычитает задержку,
пропорционально его дисперсии, в
результате изменяется наклон фазового
распространения, и луч смещается в
сторону убывания фазы.

Другим аналогом
схемы с частотным методом сканирования
является использование отрезков
специального, чувствительного к
ультрафиолетовому излучению, оптического
волокна, на сердцевине которого с помощью
ультрафиолетового излучения создана
(записана) продольная зависимость
показателя преломления с линейно
изменяющимся периодом. Такое волокно
играет роль Брэгговской решетки.
Попадающая в него оптическая несущая
отражается назад от определенного места
и с определенной задержкой, зависящих
от частоты, т.е. тоже используется
дисперсия. Отрезок такого волокна играет
роль дисперсного отражательного
фазовращателя, набор из которых может
использоваться в ДОС [8].

studfile.net

Фазированные антенные решетки / Habr

На хабре уже есть статья, посвященная антеннам. Продолжая тему, хочу рассказать хабраобществу о принципах работы фазированных антенных решеток (ФАР). ФАР нашли широкое применение в радиолокационных комплексах, противоракетной обороне, космической связи; применение в гражданских объектах (коммерческих) затруднено сложностью изготовления и дороговизной. Возможно кто-то заинтересуется тематикой и придумает эффективное применение ФАР для коммерческого применения.

Что это?

ФАР это группа излучателей (фазовращателей, ФВ), в которых относительные фазы сигналов изменяются комплексно по определенному закону так, что эффективное излучение ФАР усиливается в желаемом направлении и подавляется во всех остальных. ФАР это матрица, где элементом матрицы является ФВ, но конечно же ФВ в пространстве могут иметь и другие конфигурации. На рисунке 1 показана РЛС секторного обзора «Имбирь», входит в состав зенитно-ракетного комплекса С300В. Можно увидеть и ФАР, и облучающий рупор.
Рисунок 1.

Как происходит фазирование?

Есть простая формула из курса физики: V = c/sqrt(mu*eps). В этой формуле V – фазовая скорость электромагнитной волны, с c – скорость света в вакууме, mu – магнитная проницаемость, eps – диэлектрическая проницаемость. Из этой формулы видно, что фазовая скорость зависит от мю и эпсилон, и меняя эти величины мы можем вводить задержку ЭМ волны через ФВ. Поэтому ФВ бывают ферритовые (можем менять их магнитную проницаемость) и сегнетоэлектрические (можем менять их диэлектрическую проницаемость). Питание к фазовращателям осуществляется по воздушному тракту (как на рис. 1) или посредством волноводов (например, в малогабаритных зенитно-ракетных комплексах, рис. 2).

image

Рисунок 2. ЗРК «Тор».

Схема ФАР на рис. 4 [1]: антенна представляет собой линейку излучателей, между разделителем мощности и излучателями включены ФВ. Ферритовый ФВ представляет собой аналоговый феррит цилиндрической формы, на который намотаны обмотки управления. Изменяя ток в обмотках управления (задается блоком управления ФВ) изменяется магнитная проницаемость и соответственно фазовая скорость ЭМ волны в ФВ. Таким образом, последовательно изменяя уровень сигнала управления в обмотках процесс формирования волнового фронта может представлен как показано на рисунке 3, 4 (одномерный случай). Можно провести аналогию с камешками, которые последовательно кидаем в воду. Еще одной аналогией работы ФАР может служить линза. На рисунке 5 показано изменение формы волнового фронта с помощью линзы [4].


Рисунок 3. Формирование волнового фронта.


Рисунок 4. Схема ФАР.


Рисунок 5.

Основной луч располагается перпендикулярно фазовому фронту. Из диаграммы направленности (рис. 6) видно, что кроме основного луча есть обратный и боковые лепестки, которые являются паразитными и уменьшение их уровня является вопросом распределения ЭМ поля в апертуре решетки. Изменение положения луча в пространстве происходит электрическим образом (практически безынерционно) – именно это качество особенно важно.


Рисунок 6. Типичная диаграмма направленности.

Электрическое сканирование обеспечивает создание разнообразных фазовых сдвигов по всему раскрыву и значительную скорость изменения этих сдвигов при сравнительно небольших потерях мощности. Управление работой фазовращателей осуществляется при помощи быстродействующей электронной системы, которая в простейших случаях управляет группами элементов (например, строками и столбцами в плоских ФАР с прямоугольным расположением излучателей), а в наиболее сложных – каждым фазовращателем в отдельности. Качание луча в пространстве может производиться как по заранее заданному закону, так и по программе, вырабатываемой в ходе работы всего радиоустройства, в которое входит ФАР [2,3].

Рисунки к статье можно найти в указанной литературе, кроме рисунка 3. Для более подробного ознакомления с ФАР и управлением ими могу порекомендовать книгу Самойленко и Шишова, «Управление фазированными антенными решетками».

Литература:

1. О. Г. Вендик, «Фазированная антенная решетка – глаза радиотехнической системы», 1997 г.
2. ru.wikipedia.org/wiki Фазированная_антенная_решетка
3. en.wikipedia.org/wiki/Phased_array
4. ru.wikipedia.org/wiki/Линза

habr.com

В России завершается создание «радара будущего» на основе технологий радиофотоники

Российский истребитель пятого поколения ПАК ФА (Т-50) может быть оснащен разрабатываемым в России радаром, основанным на использовании радиооптических фазированных антенных решеток (РОФАР), сообщил советник первого заместителя гендиректора концерна «Радиоэлектронные технологии» Владимир Михеев.

«На выходе нашей работы по РОФАР будет получен полный перечень летательных аппаратов – пилотируемых и беспилотных – которые мы планируем предложить оснастить радарами на основе радиооптических фазированных антенных решеток. Я думаю, что ПАК ФА тоже будет в этом списке, и по нему будут выданы определенные предложения», – передает РИА «Новости» слова Михеева.

Михеев  сообщил, что радиооптические фазированные антенные решетки значительно расширят возможности современных средств связи и радаров – их масса снизится более чем вдвое, а разрешающая способность увеличится в десятки раз.

Сверхширокополосность сигнала РОФАР позволяет получить практически телевизионное изображение в радиолокационном диапазоне. Технология радиофотоники, в частности, должна открыть новые возможности для улучшения «умной обшивки» на российских вертолетах и самолетах последнего поколения.

«РОФАР позволит нам увидеть самолет, находящийся в 500 километрах, так, словно мы стоим в 50 метрах от него на аэродроме, его портрет в видеодиапазоне. Более того, если нужно, эта технология позволит заглянуть и в сам самолет, узнать, какие люди и техника в нем находятся, поскольку сигнал может пройти любые препятствия, даже метровые свинцовые стены», – сказал Михеев.

Он добавил, что РОФАР способны делать «рентгеновские снимки» самолетов благодаря использованию широкого диапазона частот, проникающих на различную глубину внутрь объекта.

В рамках проекта РОФАР на базе КРЭТ была создана лаборатория радиофотоники. Концерн уже начал лабораторные исследования для создания РОФАР. Рассчитанная на 4,5 года работа идет по графику, который был согласован с Фондом перспективных исследований. Как сообщил в ноябре первый заместитель гендиректора КРЭТ Игорь Насенков, концерн намерен создать натурный образец радиолокационной станции будущего до 2018 года.

P.S. Подробнее о российской технологии радиофотоники — КРЭТ готовит радиофотонный прорыв в электронике.

Слава Российской Империи!

dima-piterski.livejournal.com

Фазированная антенная решётка — Википедия

Материал из Википедии — свободной энциклопедии

Радиолокационная станция с ФАР, входящая в систему PAVE PAWS (Аляска, США)

Фазированная антенная решётка (ФАР) — антенная решётка[1], направление излучения и (или) форма соответствующей диаграммы направленности которой регулируются изменением амплитудно-фазового распределения токов или полей возбуждения на излучающих элементах[2].

Излучающий элемент (антенной решётки) — составная часть антенной решётки, антенна или группа антенн с заданным относительным возбуждением[2]. В антенной решётке требуемая диаграмма направленности формируется благодаря специальным образом организованной интерференции электромагнитных волн, излучаемых в пространство её излучающими элементами. Для этого обеспечивают необходимое амплитудно-фазовое распределение — необходимые относительные амплитуды и начальные фазы переменных токов или полей возбуждения каждого излучающего элемента антенной решётки. Отличие фазированной антенной решётки заключается в том, что амплитудно-фазовое распределение не является фиксированным, оно может регулироваться (управляемо изменяться) при эксплуатации[2]. Благодаря этому можно перемещать луч (главный лепесток диаграммы направленности) антенной решётки в определённом секторе пространства (антенная решётка с электрическим сканированием луча[3] как альтернатива антенне с механическим сканированием, то есть альтернатива механически вращающейся антенне[4]) или изменять форму диаграммы направленности.

Эти и некоторые другие свойства ФАР, а также возможность применять для управления ФАР современные средства автоматики и вычислительной техники обусловили их перспективность и широкое использование в радиосвязи, радиолокации, радионавигации, радиоастрономии и т. д. ФАР, содержащие большое число управляемых элементов, входят в состав различных наземных (стационарных и подвижных), корабельных, авиационных и космических радиотехнических систем. Ведутся интенсивные разработки в направлении дальнейшего развития теории и техники ФАР и расширения области их применения.

Преимущества

wiki2.red

Справочник по антеннам для радаров / Habr

Статья на перевод предложена alessandro893. Материал взят с обширного справочного сайта, описывающего, в частности, принципы работы и устройство радаров.

Антенна – это электрическое устройство, преобразующее электроэнергию в радиоволны и наоборот. Антенна используется не только в радарах, но и в глушилках, системах предупреждения об облучении и в системах коммуникаций. При передаче антенна концентрирует энергию передатчика радара и формирует луч, направляемый в нужную сторону. При приёме антенна собирает возвращающуюся энергию радара, содержащуюся в отражённых сигналах, и передаёт их на приёмник. Антенны часто различаются по форме луча и эффективности.

Слева – изотропная антенна, справа – направленная


Дипольная антенна, или диполь – самый простой и популярный класс антенн. Состоит из двух одинаковых проводников, проводов или стержней, обычно с двусторонней симметрией. У передающих устройств к ней подаётся ток, а у принимающих – принимается сигнал между двумя половинами антенны. Обе стороны фидера у передатчика или приёмника соединены с одним из проводников. Диполи – резонирующие антенны, то есть их элементы служат резонаторами, в которых стоячие волны переходят от одного конца к другому. Так что длина элементов диполя определяется длиной радиоволны.

Диаграмма направленности

Диполи – это ненаправленные антенны. В связи с этим их часто используют в системах связи.

Несимметричная антенна представляет собой половину дипольной, и монтируется перпендикулярно проводящей поверхности, горизонтальному отражающему элементу. Коэффициент направленного действия монопольной антенны вдвое больше, чем у дипольной антенны удвоенной длины, поскольку под горизонтальным отражающим элементом нет никакого излучения. В связи с этим КНД такой антенны в два раза выше, и она способна передавать волны дальше, используя ту же самую мощность передачи.

Диаграмма направленности

Антенна Яги – направленная антенна, состоящая из нескольких параллельных элементов, расположенных на одной линии. Часто состоят из одного элемента-облучателя, обычно диполя или петлевого вибратора. Только этот элемент испытывает возбуждение. Остальные элементы паразитные – они отражают или помогают передавать энергию в нужном направлении. Облучатель (активный вибратор) обычно находится вторым с конца, как на картинке ниже. Её размер подбирается с целью достижения резонанса при наличии паразитных элементов (для диполя это обычно 0,45 – 0,48 от длины волны). Элемент слева от облучателя – отражатель (рефлектор). Он обычно длиннее облучателя. Отражатель обычно один, поскольку добавление дополнительных отражателей мало влияет на эффективность. Он влияет на отношение мощностей сигналов антенны, излучаемых в направлениях назад/вперед (усиление в максимальном направлении по отношению к противоположному). Справа от облучателя находятся элементы-директоры, которые обычно короче облучателя. У антенны Яги очень узкий диапазон рабочих частот, а максимальное усиление составляет примерно 17 дБ.

Диаграмма направленности

Тип антенны, часто используемой на УКВ и УВЧ-передатчиках. Состоит из облучателя (это может быть диполь или массив Яги), укреплённого перед двумя плоскими прямоугольными отражающими экранами, соединёнными под углом, обычно в 90°. В качестве отражателя может выступать лист металла или решётка (для низкочастотных радаров), уменьшающая вес и уменьшающая сопротивление ветру. У уголковых антенн широкий диапазон, а усиление составляет порядка 10-15 дБ.

Диаграмма направленности

Вибраторная логопериодическая (логарифмическая периодическая) антенна, или логопериодическая решетка из симметричных вибраторов

Логопериодическая антенна (ЛПА) состоит из нескольких полуволновых дипольных излучателей постепенно увеличивающейся длины. Каждый состоит из пары металлических стержней. Диполи крепятся близко, один за другим, и подключаются к фидеру параллельно, с противоположными фазами. По виду такая антенна похожа на антенну Яги, но работает она по-другому. Добавление элементов к антенне Яги увеличивает её направленность (усиление), а добавление элементов к ЛПА увеличивает её полосу частот. Её главное преимущество перед другими антеннами – чрезвычайно широкий диапазон рабочих частот. Длины элементов антенны относятся друг к другу по логарифмическому закону. Длина самого длинного из элементов составляет 1/2 от длины волны самой низкой из частот, а самого короткого – 1/2 от длины волны самой высокой частоты.

Диаграмма направленности

Спиральная антенна состоит из проводника, закрученного в виде спирали. Обычно они монтируются над горизонтальным отражающим элементом. Фидер соединяется с нижней частью спирали и горизонтальной плоскостью. Они могут работать в двух режимах – нормальном и осевом.

Нормальный (поперечный) режим: размеры спирали (диаметр и наклон) малы по сравнению с длиной волны передаваемой частоты. Антенна работает так же, как закороченный диполь или монополь, с такой же схемой излучения. Излучение линейно поляризуется параллельно оси спирали. Такой режим используется в компактных антеннах у портативных и мобильных раций.

Осевой режим: размеры спирали сравнимы с длиной волны. Антенна работает как направленная, передавая луч с конца спирали вдоль её оси. Излучает радиоволны круговой поляризации. Часто используется для спутниковой связи.

Диаграмма направленности

Ромбическая антенна – широкополосная направленная антенна, состоящего из одного-трёх параллельных проводов, закреплённых над землёй в виде ромба, поддерживаемого в каждой вершине вышками или столбами, к которым провода крепятся при помощи изоляторов. Все четыре стороны антенны одинаковой длины, обычно не менее одной длины волны, или длиннее. Часто используются для связи и работы в диапазоне декаметровых волн.

Диаграмма направленности

Двумерная антенная решётка

Многоэлементный массив диполей, используемых в КВ диапазонах (1,6 – 30 МГц), состоящий из рядов и столбцов диполей. Количество рядов может быть 1, 2, 3, 4 или 6. Количество столбцов – 2 или 4. Диполи горизонтально поляризованы, а отражающий экран располагается за массивом диполей для обеспечения усиленного луча. Количество столбцов диполей определяет ширину азимутального луча. Для 2 столбцов ширина диаграммы направленности составляет около 50°, для 4 столбцов — 30°. Главный луч можно отклонять на 15° или 30° для получения максимального охвата в 90°.

Количество рядов и высота самого нижнего элемента над землёй определяет угол возвышения и размер обслуживаемой территории. Массив из двух рядов обладает углом в 20°, а из четырёх – в 10°. Излучение двумерной решётки обычно подходит к ионосфере под небольшим углом, и из-за низкой частоты часто отражается обратно к поверхности земли. Поскольку излучение может многократно отражаться между ионосферой и землёй, действие антенны не ограничено горизонтом. В результате такая антенна часто используется для связи на дальние расстояния.

Диаграмма направленности

Рупорная антенна состоит из расширяющегося металлического волновода в форме рупора, собирающего радиоволны в луч. У рупорных антенн очень широкий диапазон рабочих частот, они могут работать с 20-кратным разрывом его границ – к примеру, от 1 до 20 ГГц. Усиление варьируется от 10 до 25 дБ, и часто они используются в качестве облучателей более крупных антенн.

Диаграмма направленности

Одна из самых популярных антенн для радаров – параболический отражатель. Облучатель располагается в фокусе параболы, и энергия радара направляется на поверхность отражателя. Чаще всего в качестве облучателя используется рупорная антенна, но можно использовать и дипольную, и спиральную.

Поскольку точечный источник энергии находится в фокусе, он преобразуется в волновой фронт постоянной фазы, что делает параболу хорошо приспособленной для использования в радарах. Изменяя размер и форму отражающей поверхности, можно создавать лучи и схемы излучения различной формы. Направленность параболических антенн гораздо лучше, чем у Яги или дипольной, усиление может достигать 30-35 дБ. Главный их недостаток – неприспособленность к низким частотам из-за размера. Ещё один – облучатель может блокировать часть сигнала.

Диаграмма направленности

Антенна Кассегрена очень похожа на обычную параболическую, но использует систему из двух отражателей для создания и фокусировки луча радара. Основной отражатель параболический, а вспомогательный – гиперболический. Облучатель находится в одном из двух фокусов гиперболы. Энергия радара из передатчика отражается от вспомогательного отражателя на основной и фокусируется. Возвращающаяся от цели энергия собирается основным отражателем и отражается в виде сходящегося в одной точке луча на вспомогательный. Затем она отражается вспомогательным отражателем и собирается в точке, где расположен облучатель. Чем больше вспомогательный отражатель, тем ближе он может быть к основному. Такая конструкция уменьшает осевые размеры радара, но увеличивает затенение раскрыва. Небольшой вспомогательный отражатель, наоборот, уменьшает затенение раскрыва, но его нужно располагать подальше от основного. Преимущества по сравнению с параболической антенной: компактность (несмотря на наличие второго отражателя, общее расстояние между двумя отражателями меньше, чем расстояние от облучателя до рефлектора параболической антенны), уменьшение потерь (приёмник можно разместить близко от рупорного излучателя), уменьшение интерференции по боковому лепестку для наземных радаров. Основные недостатки: сильнее блокируется луч (размер вспомогательного отражателя и облучателя больше, чем размер облучателя обычной параболической антенны), плохо работает с широким диапазоном волн.

Диаграмма направленности

Слева – антенна Грегори, справа — Кассегрена

Параболическая антенна Грегори очень похожа по структуре на антенну Кассегрена. Отличие в том, что вспомогательный отражатель искривлён в противоположную сторону. Конструкция Грегори может использовать меньший по размерам вспомогательный отражатель по сравнению с антенной Кассегрена, в результате чего перекрывается меньшая часть луча.

Как следует из названия, излучатель и вспомогательный отражатель (если это антенна Грегори) у офсетной антенны смещены от центра основного отражателя, чтобы не блокировать луч. Такая схема часто используется на параболических антеннах и антеннах Грегори для увеличения эффективности.

Антенна Кассегрена с плоской фазовой пластиной

Ещё одна схема, предназначенная для борьбы с блокированием луча вспомогательным отражателем,- это антенна Кассегрена с плоской пластиной. Она работает с учётом поляризации волн. У электромагнитной волны есть 2 компоненты, магнитная и электрическая, всегда находящиеся перпендикулярно друг другу и направлению движения. Поляризация волны определяется ориентацией электрического поля, она бывает линейной (вертикальной/горизонтальной) или круговой (круговой или эллиптической, закрученной по или против часовой стрелки). Самое интересное в поляризации – это поляризатор, или процесс фильтрации волн, оставляющий только волны, поляризованные в одном направлении или в одной плоскости. Обычно поляризатор изготавливают из материала с параллельным расположением атомов, или это может быть решётка из параллельных проводов, расстояние между которыми меньше, чем длина волны. Часто принимается, что расстояние должно быть примерно в половину длины волны.

Распространённое заблуждение состоит в том, что электромагнитная волна и поляризатор работают схожим образом с колеблющимся тросом и дощатым забором – то есть, к примеру, горизонтально поляризованная волна должна блокироваться экраном с вертикальными щелями.

На самом деле, электромагнитные волны ведут себя не так, как механические. Решётка из параллельных горизонтальных проводов полностью блокирует и отражает горизонтально поляризованную радиоволну и пропускает вертикально поляризованную – и на оборот. Причина следующая: когда электрическое поле, или волна, параллельны проводу, они возбуждают электроны по длина провода, и поскольку длина провода многократно превышает его толщину, электроны могут легко двигаться и поглощают большую часть энергии волны. Движение электронов приведёт к появлению тока, а ток создаст свои волны. Эти волны погасят волны передачи и будут вести себя как отражённые. С другой стороны, когда электрическое поле волны перпендикулярно проводам, оно будет возбуждать электроны по ширине провода. Поскольку электроны не смогут активно двигаться таким образом, отражаться будет очень малая часть энергии.

Важно отметить, что, хотя на большинстве иллюстраций у радиоволн всего 1 магнитное и 1 электрическое поле, это не значит, что они осциллируют строго в одной плоскости. На самом деле можно представлять, что электрические и магнитные поля состоят из нескольких подполей, складывающихся векторно. К примеру, у вертикально поляризованной волны из двух подполей результат сложения их векторов вертикальный. Когда два подполя совпадают по фазе, результирующее электрическое поле всегда будет стационарным в одной плоскости. Но если одно из подполей медленнее другого, тогда результирующее поле начнёт вращаться вокруг направления движения волны (это часто называют эллиптической поляризацией). Если одно подполе медленнее других ровно на четверть длины волны (фаза отличается на 90 градусов), то мы получим круговую поляризацию:

Для преобразования линейной поляризации волны в круговую поляризацию и обратно необходимо замедлить одно из подполей относительно других ровно на четверть длины волны. Для этого чаще всего используется решётка (четвертьволновая фазовая пластина) из параллельных проводов с расстоянием между ними в 1/4 длины волны, расположенных под углом в 45 градусов к горизонтали.

У проходящей через устройство волны линейная поляризация превращается в круговую, а круговая – в линейную.

Работающая по этому принципу антенна Кассегрена с плоской фазовой пластиной состоит из двух отражателей равного размера. Вспомогательный отражает только волны с горизонтальной поляризацией и пропускает волны с вертикальной поляризацией. Основной отражает все волны. Пластина вспомогательного отражателя располагается перед основным. Он состоит из двух частей – это пластина со щелями, идущими под углом в 45°, и пластина с горизонтальными щелями шириной менее 1/4 длины волны.

Допустим, облучатель передаёт волну с круговой поляризацией против часовой стрелки. Волна проходит через четвертьволновую пластину и превращается в волну с горизонтальной поляризацией. Она отражается от горизонтальных проводов. Она опять проходит через четвертьволновую пластину, уже с другой стороны, и для неё провода пластины ориентированы уже зеркально, то есть, будто бы повёрнуты на 90°. Предыдущее изменение поляризации отменяется, так что волна снова приобретает круговую поляризацию против часовой стрелки и идёт обратно к основному отражателю. Отражатель меняет поляризацию с идущей против часовой стрелки на идущую по часовой. Она проходит через горизонтальные щели вспомогательного отражателя без сопротивления и уходит в направлении целей вертикально поляризованной. В режиме приёма всё происходит наоборот.

Хотя у описанных антенн довольно большое усиление по отношению к размеру апертуры, у всех них есть общие недостатки: большая восприимчивость по боковым лепесткам (подверженность мешающим отражениям от земной поверхности и чувствительность к целям с низкой эффективной площадью рассеяния), уменьшение эффективности из-за блокирования луча (проблема с блокированием есть у малых радаров, которые можно использовать на летающих аппаратах; большие радары, где проблема с блокированием меньше, нельзя использовать в воздухе). В результате была придумана новая схема антенны – щелевая. Она выполнена в виде металлической поверхности, обычно плоской, в котором прорезаны отверстия или щели. Когда её облучают на нужной частоте, электромагнитные волны испускаются из каждого слота – то есть, слоты выступают в роли отдельных антенн и формируют массив. Поскольку луч, идущий из каждого слота, слабый, их боковые лепестки также очень малы. Щелевые антенны характеризуются высоким усилением, малыми боковыми лепестками и малым весом. В них могут отсутствовать выступающие части, что в ряде случаев является их важным преимуществом (например, при установке на летательных аппаратах).

Диаграмма направленности

Пассивная фазированная антенная решётка (ПФАР) [passive electronically scanned array, PESA]

Радар с МИГ-31

С ранних времён создания радаров разработчиков преследовала одна проблема: баланс между точностью, дальностью и временем сканирования радара. Она возникает оттого, что у радаров с более узкой шириной пучка повышается точность (увеличивается разрешение) и дальность при той же мощности (концентрация мощности). Но чем меньше ширина пучка, тем дольше радар сканирует всё поле зрения. Более того, радару с большим усилением потребуются антенны большего размера, что неудобно для быстрого сканирования. Для достижения практичной точности на низких частотах радару потребовались бы настолько громадные антенны, что их было бы затруднительно поворачивать с механической точки зрения. Для решения этой проблемы была создана пассивная фазированная антенная решётка. Она полагается не на механику, а на интерференцию волн для управления лучом. Если две или более волн одного типа осциллируют и встречаются в одной точке пространства, суммарная амплитуда волн складывается примерно так же, как складываются волны на воде. В зависимости от фаз этих волн интерференция может усиливать или ослаблять их.

Луч можно формировать и управлять им электронным способом, контролируя разность фаз группы передающих элементов – таким образом можно контролировать, в каких местах происходит усиливающая или ослабляющая интерференция. Из этого следует, что в радаре самолёта для управления лучом из стороны в сторону должно быть не менее двух передающих элементов.

Обычно радар с ПФАР состоит из 1 облучателя, одного МШУ (малошумящего усилителя), одного распределителя мощности, 1000-2000 передающих элементов и равного количества фазовращателей.

Передающими элементами могут быть изотропные или направленные антенны. Некоторые типичные виды передающих элементов:

На первых поколениях истребителей чаще всего использовались патч-антенны (полосковые антенны), поскольку их проще всего разрабатывать.

Современные массивы с активной фазой используют желобковые излучатели из-за их широкополосных возможностей и улучшенного усиления:

Вне зависимости от типа используемой антенны увеличение количества излучающих элементов улучшает характеристики направленности радара.

Как мы знаем, при одинаковой частоте радара увеличение апертуры приводит к уменьшению ширины пучка, что увеличивает дальность и точность. Но у фазированных решёток не стоит увеличивать расстояние между излучающими элементами в попытке увеличения апертуры и уменьшения стоимости радара. Поскольку если расстояние между элементами больше, чем рабочая частота, могут появляться побочные лепестки, заметно ухудшающие эффективность радара.

Самая важная и дорогая часть ПФАР – фазовращатели. Без них невозможно управлять фазой сигнала и направлением луча.

Они бывают разных видов, но в целом их можно разделить на четыре типа.

Фазовращатели с временной задержкой

Простейший тип фазовращателей. Сигналу на прохождение линии передачи нужно время. Эта задержка, равная фазовому сдвигу сигнала, зависит от длины линии передачи, частоты сигнала и фазовой скорости сигнала в передающем материале. Переключая сигнал между двумя или более линиями передач заданной длины, можно управлять фазовым сдвигом. Переключающие элементы – это механические реле, pin-диоды, полевые транзисторы или микроэлектромеханические системы. pin-диоды часто используются из-за высокой скорости, низких потерь и простых цепей смещения, обеспечивающих изменение сопротивления от 10 кОм до 1 Ом.

Задержка, сек = фазовый сдвиг ° / (360 * частота, Гц)

Их недостаток в увеличении фазовой ошибки с увеличением частоты и увеличении размера с уменьшением частоты. Также изменение фазы изменяется в зависимости от частоты, поэтому для слишком малых и больших частот они неприменимы.

Отражательный/квадратурный фазовращатель

Обычно это квадратурное устройство связи, разделяющее входной сигнал на два сигнала, различающихся по фазе на 90°, которые затем отражаются. Затем они комбинируются по фазе на выходе. Эта схема работает благодаря тому, что отражение сигнала от проводящих линий могут быть смещены по фазе по отношению к падавшему сигналу. Сдвиг по фазе изменяется от 0° (открытая цепь, нулевая ёмкость варактора) до -180° (цепь закорочена, ёмкость варактора бесконечна). Такие фазовращателя обладают широким диапазоном работы. Однако физические ограничения варакторов приводят к тому, что на практике сдвиг по фазе может достигать только 160°. Но для большего сдвига возможно комбинировать несколько таких цепей.

Векторный IQ-модулятор

Так же, как и у отражательного фазовращателя, здесь сигнал разделяется на два выхода с 90-градусным смещением фазы. Входящая фаза без смещения называется I-каналом, а квадратура с 90-градусным смещением называется Q-каналом. Затем каждый сигнал проходит через двухфазный модулятор, способный сдвигать фазу сигнала. Каждый сигнал подвергается сдвигу фазы на 0° или 180°, что позволяет выбрать любую пару квадратурных векторов. Затем два сигнала рекомбинируются. Поскольку затухание обоих сигналов можно контролировать, у выходящего сигнала контролируется не только фаза, но и амплитуда.

Фазовращатель на фильтрах верхних/нижних частот

Был изготовлен для решения проблемы фазовращателей с временной задержкой, не способных работать на большом диапазоне частот. Работает путём переключения пути сигнала между фильтрами верхних и нижних частот. Похож на фазовращатель с временной задержкой, только вместо линий передачи используются фильтры. Фильтр верхних частот состоит из последовательности индукторов и конденсаторов, обеспечивающих опережение по фазе. Такой фазовращатель обеспечивает постоянный сдвиг фазы в диапазоне рабочих частот. Также его размер гораздо меньше, чем у предыдущих перечисленных фазовращателей, поэтому он чаще всего используется в радарах.

Если подытожить, то по сравнению с обычной отражающей антенной, основными преимуществами ПФАР будут: высокая скорость сканирования (увеличение количества отслеживаемых целей, уменьшение вероятности обнаружения станцией предупреждения об облучении), оптимизация времени нахождения на цели, высокое усиление и малые боковые лепестки (тяжелее заглушить и обнаружить), случайная последовательность сканирования (сложнее заглушить), возможность использовать особые техники модуляции и обнаружения для извлечения сигнала из шума. Основные недостатки – высокая стоимость, невозможность сканирования шире 60 градусов в ширину (поле зрения стационарного фазового массива – 120 градусов, механический радар может расширить его до 360).

Активная фазированная антенная решётка [Active Electronically Scanned Array, AESA]

Снаружи АФАР (AESA) и ПФАР (PESA) отличить сложно, но внутри они кардинально различаются. ПФАР использует один или два высокомощных усилителя, передающего один сигнал, который затем делится на тысячи путей для тысяч фазовращателей и элементов. Радар с АФАР состоит из тысячи модулей приёма/передачи. Поскольку передатчики находятся непосредственно в самих элементах, у него нет отдельных приёмника и передатчика. Различия в архитектуре представлены на картинке.

У АФАР большинство компонентов, таких, как усилитель слабых сигналов, усилитель большой мощности, дуплексор, фазовращатель уменьшены и собраны в одном корпусе под названием модуля приёма/передачи. Каждый из модулей представляет собой небольшой радар. Архитектура их следующая:

Хотя АФАР (AESA) и ПФАР (PESA) используют интерференцию волн для формирования и отклонения луча, уникальный дизайн АФАР даёт много преимуществ по сравнению с ПФАР. К примеру, усилитель слабого сигнала находится рядом с приёмником, до компонентов, где теряется часть сигнала, поэтому у него отношение сигнал/шум лучше, чем у ПФАР.

Во-вторых, у обычного радара возможность уменьшения паразитной интерференции ограничена ошибками нестабильности аппаратуры. Больше всего в эти ошибки вносят вклад аналого-цифровой преобразователь, преобразователь с понижением частоты, усилителей высокой мощности, усилители слабых сигналов и генератор волн. У АФАР с распределённой группой усилителей высокой мощности и усилителей слабых сигналов такие ошибки можно уменьшать. В результате у АФАР повышается чувствительность в шумных условиях.

Более того, при равных возможностях обнаружения у АФАР меньше рабочий цикл и пиковая мощность. Также, поскольку отдельные модули АФАР не полагаются на один усилитель, они могут одновременно передавать сигналы с разными частотами. В результате АФАР может создавать несколько отдельных лучей, разделяя массив на подмассивы. Возможность работать на нескольких частотах приносит многозадачность и способность развёртывать системы радиоэлектронного подавления в любом месте по отношению к радару. Но формирование слишком большого количества одновременных лучей уменьшает дальность действия радара.

Два главных недостатка АФАР – высокая стоимость и ограниченность поля зрения 60 градусами.

Гибридные электронно-механические фазированная антенные решётки

Очень высокая скорость сканирования ФАР сочетается с ограничением поля зрения. Для решения этой проблемы на современных радарах ФАР располагаются на подвижном диске, что увеличивает поле зрения. Не стоит путать поле зрения с шириной пучка. Ширина пучка относится к лучу радара, а поле зрения – общий размер сканируемого пространства. Узкие пучки часто нужны для улучшения точности и дальности действия, а узкое поле зрения обычно не нужно.

habr.com

9.4 Фазированные антенные решетки

Фазированные
антенные решетки (ФАР) представляют
собой системы излучателей, фазы
возбуждающих токов в которых подобраны
так, чтобы в заданном направлении
получить остронаправленное излучение.
Реализация линейных фазовых распределений
возбуждения в них осуществляется путем
разбиения раскрыва на большое число
отдельных излучателей с независимым
управлением фазой возбуждения каждого
из них. Посредством изменения фаз
возбуждающих токов главный лепесток
амплитудной ДН антенной решетки
перемещают (сканируют) в пространстве
по определенному закону, причем этот
процесс возможен как в передающем, так
и в приемном режимах работы решетки.

В
качестве элементов ФАР применяют
слабонаправленные и направленные
антенны с различными частотными
свойствами и поляризацией излучения.
Это могут быть вибраторы, спиральные,
логопериодические, диэлектрические
стержневые, щелевые, рупорные антенны
и другие. Часто элементы ФАР, включая
схемы питания, выполняют по печатной
технологии. Ширина ДН излучателя в
решетке должна быть не менее сектора
сканирования луча.

Классификация
и типы ФАР

Классификацию
антенных решеток проводят в зависимости
от расположения излучателей в пространстве,
размещения их в решетке, шага решетки,
способа возбуждения и сканирования, а
также типа применяемого излучателя.
Различают линейные, криволинейные,
плоские, цилиндрические, конические и
сферические ФАР.

Цилиндрические
и конические ФАР (рис. 9.10 и 9.11) предназначены
для кругового сканирования в плоскости
основания. Максимальное значение КУ
они имеют в направлении нормали к
поверхности. Сферические ФАР (рис. 9.12)
предназначены для полусферического
обзора пространства. По сравнению с
другими конформными ФАР они обладают
наибольшим КУ и минимальным его изменением
при сканировании, которое осуществляется
во всей сфере конформным перемещением
излучающей области. Форма и размеры
этой области определяются требуемой
формой и шириной главного лепестка ДН.
Недостатком сферической ФАР является
ее высокая стоимость, связанная с большим
числом излучающих элементов ().

Рис.
9.10 Цилиндрическая
ФАР Рис. 9.11Коническая ФАР

Рис. 9.12 Сферическая ФАР

В
зависимости от расположения излучателей
в пространстве принято выделять выпуклые
антенные решетки, к которым кроме
конических, цилиндрических и сферических
относятся также ФАР, размещаемые на
выпуклой поверхности объекта, например
летательного аппарата.Последние называют еще конформными,
подчеркивая связь между характеристиками
сканирования и размещением излучателей
в пространстве. Конформные ФАР обеспечивают
конформное сканирование (сканирование
без изменения параметров ДН) в широком
угловом секторе или во всей полусфере.
Это достигается перемещением излучающей
области по поверхности ФАР посредством
коммутации питания излучателей, причем
форма, размеры и АФР в пределах излучающей
области остаются неизменными; изменяется
только направление главного максимума.

Квыпуклым условно можно отнести и
многогранные ФАР, представляющие
пространственную систему плоских
подрешеток (модулей), располагаемых на
гранях выпуклых многогранников (рис.
9.13 и 9.14). При числе подрешеток
порядка ста радиотехнические параметры
многогранных ФАР близки к параметрам
выпуклых ФАР. Особенностью многогранных
ФАР является то , что при перемещении
излучающей области переключаются не
отдельные элементы, а подрешетки.

Рис. 9.13 
Многогранная ФАР Рис. 9.14 
Пирамидальная ФАР

Плоские
ФАР имеют ограниченный сектор сканирования,
не превышающий
±(40…50°), и
являются узкополосными.
Широкоугольное электрическое сканирование,
в том числе и круговой обзор, при работе
в широкой полосе частот можно обеспечить,
перейдя от плоских решеток к выпуклым.
Расширить сектор сканирования плоских
решеток также можно, применяя гибридные
ФАР. Гибридными ФАР называют электрические
сканирующие устройства, включающие ФАР
в качестве облучателя и пассивную
неуправляемую фокусирующую систему, —
зеркальную или линзовую.

Гибридные
ФАР зеркального типа строят по
однозеркальной (рис. 9.15, а,
б
) и
двухзеркальной (рис. 9.15, в,
г
) схемам, в
которых ФАР используется в качестве
облучателя. Если она располагается в
фокальной плоскости зеркала (рис. 9.15,
а, в),
то ее фазовый центр при сканировании
смещается из фокуса посредством
электрических коммутаторов. Элементы
ФАР в этом варианте включаются поочередно,
что ограничивает мощность излучения
решетки. Другой вариант (рис. 9.15, б,
г
) предполагает
расположение ФАР вне фокальной плоскости
и одновременную работу всех ее элементов
для создания необходимой формы АФР в
апертуре зеркала, а это повышает мощность
излучения. Гибридные ФАР зеркального
типа имеют небольшое число (порядка
сотни) элементов, что уменьшает их
стоимость. Однако они позволяют
осуществлять сканирование в сравнительно
небольшом угловом секторе (10…20)
.

Рис.
9.15 
Гибридные ФАР зеркального типа

Рис.
9.16 
Гибридная ФАР с линзой Люнеберга

Гибридная
дуговая или вогнутая ФАР с линзой
Люнеберга (рис. 9.16) обеспечивает
неискаженное (конформное) сканирование
в значительно более широком (по сравнению
с зеркальными системами) плоском или
пространственном секторах.

Сканирование во всей полусфере может
обеспечить плоская ФАР с куполообразной
линзой (рис. 9.17). Антенна состоит
из плоской ФАР, сканирующей в секторе

(от нормали к решетке) и куполообразной
линзы сферической формы с переменным
коэффициентом преломления, находящейся
в ближней зоне ФАР. Для обеспечения
фокусировки на плоской ФАР должно быть
создано нелинейное фазовое распределение.

Рис.
9.17 
Плоская ФАР с куполообразной линзой

Схемы
возбуждения ФАР

Система
распределения мощности ФАР обеспечивает
подведение к каждому элементу требуемой
доли общей мощности (при работе на
передачу) и суммирование в общем фидерном
тракте сигналов, поступивших в каждый
элемент (при работе на прием). По способам
возбуждения или схемам распределения
мощности различают пространственный
способ возбуждения, при котором ФАР,
также как зеркальная или линзовая
антенны, возбуждается облучателем. В
этом случае возможны два варианта ФАР:
отражательный (рис. 9.18, а)
и проходной (рис. 9.18, б).
Оба варианта конструктивно просты и
позволяют обеспечить требуемое
амплитудное распределение соответствующим
выбором облучателя. Проходной вариант
несколько лучше отражательного
благодаря отсутствию затенения
раскрыва, но конструкция проходного
излучающего элемента сложнее
отражательного. Недостатками
пространственных систем распределения
мощности являются значительные продольные
размеры (глубина) системы и потери
мощности из-за ее неполного перехвата
поверхностью ФАР.

Рис.
9.18 
Пространственный способ возбуждения
ФАР

studfile.net

Оставьте комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *