Процессор обрабатывает: Урок 3. Как работает компьютер (и другие вычислительные устройства) – Центральный процессор — Википедия

Содержание

интерактивный урок для начинающих / Habr

Simple CPU — маленький урок, который знакомит новичка с ключевыми понятиями информатики. Хотя урок далеко не полный и предназначен для «самых маленьких», но даже образованному человеку приятно видеть, насколько доступно и элегантно можно изложить сложный материал.

Урок состоит из 8 интерактивных примеров.

1. Бинарное счисление.

2. Логические операции на примере штриха Шеффера (NAND gate).

Штрих Шеффера (NAND gate)


3. Триггер. Демонстрирует, как хранится информация в компьютере. Верхний переключатель изменяет значение бита, а нижний включает/отключает хранение.

D-триггер (триггер задержки)

Восемь триггеров сохраняют 1 байт информации.

4. Логические операции AND, OR, XOR. Щёлкая мышкой по входящим значениям, можно наглядно посмотреть, как они работают.

Что делать с числами, которые мы храним в памяти?

5. На схеме показано устройство под названием сумматор, которое складывает два бита. Если нужно сложить несколько бит, то последовательно используется несколько сумматоров: вход одного (carry in) подключается к выходу другого (carry out).

Опять же, это интерактивная схема.

Далее, как из калькулятора сделать компьютер?

6. Программирование.

С точки зрения CPU, программа не отличается от данных в том смысле, что здесь такой же двоичный код. Но он воспринимаются как инструкции. Например:




Инструкция

Код
«Добавить одно число к другому»    00000001
«Вычесть одно число из другого»    00000010

У каждого байта в памяти есть свой адрес, так что мы можем обратиться к CPU и попросить сделать что-то с конкретным байтом. Например, если нужно обратиться к ячейке памяти № 5, то мы указываем её адрес 00000101.

Таким образом, команда «Сложить число в ячейке памяти № 5 с числом в ячейке памяти № 7 транслируется в машинный код:

00000001 00000101 00000111

(сложить)(адрес № 5)(адрес № 7)

7. Набор инструкций CPU.

8. Эмулятор CPU.

Здесь автор предлагает поиграться с простым эмулятором процессора, указывая инструкции в отдельных ячейках памяти. При этом инструкции меняют значение других ячеек, где тоже хранятся инструкции. Можно придумать забавные рекурсии. Компьютер понимает три инструкции: сложение, вычитание и перемещение данных из одной ячейки в другую.

Simple CPU на Github

Об автореP.S. Интересно, что проект родился на форумах Reddit, а его автор — только что закончивший школу пользователь r00nk. Поскольку r00nk двоечник, его сейчас не берут ни в один хороший колледж, так что он пытается пройти курс информатики самостоятельно, попутно изучая OpenGL.

Как работает процессор компьютера? | Losst

Процессор — это, без сомнения, главный компонент любого компьютера. Именно этот небольшой кусочек кремния, размером в несколько десятков миллиметров выполняет все те сложные задачи, которые вы ставите перед своим компьютером. Здесь выполняется операционная система, а также все программы. Но как все это работает? Этот вопрос мы попытаемся разобрать в нашей сегодняшней статье.

Процессор управляет данными на вашем компьютере и выполняют миллионы инструкций в секунду. И под словом процессор, я подразумеваю именно то, что оно на самом деле означает — небольшой чип из кремния, который фактически выполняет все операции на компьютере. Перед тем как перейти к рассмотрению как работает процессор, нужно сначала подробно рассмотреть что это такое и из чего он состоит.

Содержание статьи:

Что такое процессор или CPU?

Сначала давайте рассмотрим что такое процессор. CPU или central processing unit (центральное обрабатывающее устройство) — который представляет из себя микросхему с огромным количеством транзисторов, сделанную на кристалле кремния. Первый в мире процессор был разработан корпорацией Intel в 1971 году. Все началось с модели Intel 4004. Он умел выполнять только вычислительные операции и мог обрабатывать только 4 байта данных. Следующая модель вышла в 1974 году  — Intel 8080 и мог обрабатывать уже 8 бит информации. Дальше были 80286, 80386, 80486. Именно от этих процессоров произошло название архитектуры.

Тактовая частота процессора 8088 была 5 МГц, а количество операций в секунду только 330 000 что намного меньше чем в современных процессоров. Современные устройства имеют частоту до 10 ГГц и несколько миллионов операций в секунду.

Мы не будем рассматривать транзисторы, переместимся на уровень выше. Каждый процессор состоит из таких компонентов:

  • Ядро — здесь выполняется вся обработка информации и математические операции, ядер может быть несколько;
  • Дешифратор команд — этот компонент относится к ядру, он преобразует программные команды в набор сигналов, которые будут выполнять транзисторы ядра;
  • Кэш — область сверхбыстрой памяти, небольшого объема, в которой хранятся данные, прочитанные из ОЗУ;
  • Регистры — это очень быстрые ячейки памяти, в которых хранятся сейчас обрабатываемые данные. Их есть всего несколько и они имеют ограниченный размер — 8, 16 или 32 бит именно от этот зависит разрядность процессора;
  • Сопроцессор — отдельное ядро, которое оптимизировано только для выполнения определенных операций, например, обработки видео или шифрования данных;
  • Адресная шина — для связи со всеми, подключенными к материнской плате устройствами, может иметь ширину 8, 16 или 32 бит;
  • Шина данных — для связи с оперативной памятью. С помощью нее процессор может записывать данные в память или читать их оттуда. Шина памяти может быть 8, 16 и 32 бит, это количество данных, которое можно передать за один раз;
  • Шина синхронизации — позволяет контролировать частоту процессора и такты работы;
  • Шина перезапуска — для обнуления состояния процессора;

Главным компонентом можно считать ядро или вычислительное-арифметическое устройство, а также регистры процессора. Все остальное помогает работать этим двум компонентам. Давайте рассмотрим какими бывают регистры и какое у них предназначение.

  • Регистры A, B, C — предназначены для хранения данных во время обработки, да, их только три, но этого вполне достаточно;
  • EIP — содержит адрес следующей инструкции программы в оперативной памяти;
  • ESP — адрес данных в оперативной памяти;
  • Z — содержит результат последней операции сравнения;

Конечно, это далеко не все регистры памяти, но эти самые главные и ими больше всего пользуется процессор во время выполнения программ. Ну а теперь, когда вы знаете из чего состоит процессор, можно рассмотреть как он работает.

Как работает процессор компьютера?

Вычислительное ядро процессора может выполнять только математические операции, операции сравнения и перемещение данных между ячейками и оперативной памятью, но этого вполне достаточно, чтобы вы могли играть игры, смотреть фильмы и просматривать веб-страницы и многое другое.

Фактически любая программа состоит из таких команд: переместить, сложить, умножить, делить, разница и перейти к инструкции если выполняется условие сравнения. Конечно, это далеко не все команды, есть другие, которые объединяют между собой уже перечисленные или упрощают их использование.

Все перемещения данных выполняются с помощью инструкции перемещения (mov), эта инструкция перемещает данные между ячейками регистров, между регистрами и оперативной памятью, между памятью и жестким диском. Для арифметических операций есть специальные инструкции. А инструкции перехода нужны для выполнения условий, например, проверить значение регистра A и если оно не равно нулю, то перейти к инструкции по нужному адресу. Также с помощью инструкций перехода можно создавать циклы.

Все это очень хорошо, но как же все эти компоненты взаимодействуют между собой? И как транзисторы понимают инструкции? Работой всего процессора управляет дешифратор инструкций. Он заставляет каждый компонент делать то, что ему положено. Давайте рассмотрим что происходит когда нужно выполнить программу.

На первом этапе дешифратор загружает адрес первой инструкции программы в памяти в регистр следующей инструкции EIP, для этого он активирует канал чтения и открывает транзистор-защелку чтобы пустить данные в регистр EIP.

Во втором тактовом цикле дешифратор инструкций преобразует команду в набор сигналов для транзисторов вычислительного ядра, которые выполняют ее и записывают результат в один из регистров, например, С.

На третьем цикле дешифратор увеличивает адрес следующей команды на единицу, так, чтобы он указывал на следующую инструкцию в памяти. Далее, дешифратор переходит к загрузке следующей команды и так до окончания программы.

Каждая инструкция уже закодирована последовательностью транзисторов, и преобразованная в сигналы, она вызывает физические изменения в процессоре, например, изменению положения защелки, которая позволяет записать данные в ячейку памяти и так далее. На выполнение разных команд нужно разное количество тактов, например, для одной команды может понадобиться 5 тактов, а для другой, более сложной до 20. Но все это еще зависит от количества транзисторов в самом процессоре.

Ну с этим все понятно, но это все будет работать только если выполняется одна программа, а если их несколько и все одновременно. Можно предположить, что у процессора есть несколько ядер, и тогда на каждом ядре выполняется отдельная программ. Но нет, на самом деле там таких ограничений нет.

В один определенный момент может выполняться только одна программа. Все процессорное время разделено между всеми запущенными программами, каждая программа выполняется несколько тактов, затем процессор передается другой программе, а все содержимое регистров сохраняется в оперативную память. Когда управление возвращается этой программе, то в регистры грузятся ранее сохраненные значения.

Выводы

Вот и все, в этой статье мы рассмотрели как работает процессор компьютера, что такое процессор и из чего он состоит. Возможно, это немного сложно, но мы рассмотрели все более просто. Надеюсь, теперь вам стало более ясно то, как работает это очень сложное устройство.

На завершение видео об истории создания процессоров:

Как работает процессор: краткая суть функцианальности cpu

 

Рад встрече с вами, мои дорогие читатели. Надеюсь, вы полны сил и серьезно настроены выяснить, как работает процессор. Этот сложный вопрос мне приходится слышать все чаще и чаще, и сегодня я попытаюсь все понятно объяснить.

Вообще-то это целая наука, на изучение которой уходит несколько курсов высшего учебного заведения. Но если вы мобилизуете уже имеющиеся у вас знания и примете некоторые условности, то сможете понять принципы функционирования этого «черного ящика».

 

Чем занимается проц?

Чтобы понять, как работает ЦПУ, нужно кратко уяснить, что он делает.

  • Используя данные с жесткого диска или из сети, выполняет программу и выдает конечный результат в виде файла или картинки, отображаемой на мониторе;
  • В процессе этого обеспечивается взаимодействие с устройствами ПК посредством операционной системы и определенных инструкций (драйверов).

Например, процессор сам производит сложные расчеты, занося промежуточные и конечные результаты в оперативную память. Так же параллельно дает команды видеокарте визуализировать их.

  • CPU работает с оцифрованными данными, представленным в виде двоичного кода. Фактически с ними он выполняет арифметические и логические операции. Если вы имели дело с простыми программками или алгоритмами, то это как раз оно.

Вот здесь обычно начинаются сложности в дальнейшем понимании процесса. Ведь всем известно, что CPU– это небольшая пластина, представляющая кристалл кремния, на который что-то там наносят. И он становиться центром компьютерного разума.

Но как работает эта схема?

«Не зная прошлого, невозможно понять подлинный смысл настоящего и цели будущего». (М. Горький)

Давайте вернемся к истории создания вычислительных машин, первыми из которых были, конечно, счеты. По сути, они выполняли функции ячеек памяти, помогающие человеку выполнять арифметические операции.

Потом появились механические устройства, выполняющие сложение и вычитание.

В XVII веке известный математик Лейбниц не только создал арифмометр, способный еще делить и умножать, но и открыл преимущества двоичной системы вычислений, что в последующем упростило работу создателям первых компьютеров.

Джордж Буль в XIX веке предложил систему логических операций И, ИЛИ, НЕ и их производные элементы (алгебру логики).

Не мене важное событие произошло в 1937 году, кода Клод Шеннон, исследуя цифровые цепи, смог создать вычислитель двоичных систем на основе электронных реле.

Все эти идеи объединил немецкий изобретатель Конрад Цузе.

Он в 1941 году создал устройство Z3, по праву считающееся прообразом современных компьютеров. В нем телефонные реле были объединены в модули, которые с помощью логических операций выполняли действия и математические вычисления с двоичными данными.

Спустя три года Цузе усовершенствовал свое детище, но главное, он предложил первый язык программирования «Планкалкюль».

 

Прогресс не стоит на месте

С тех пор вычислительные принципы практически не менялись. Все силы разработчиков были брошены на увеличение быстродействия вычислительной системы. Также на уменьшение ее размеров и на снижение нагрева при работе.

Сначала реле были заменены ламповыми приборами.

А в 1957 год компания NCR из США поразила мир компактной ЭВМ на полупроводниковых транзисторах. Через пару лет Несколькими изобретателями были заложены основы технологии объединения электронных схем на одном кристалле.

 

На что способны миллиарды транзисторов?

Надеюсь, что с этими знаниями вам легче будет представить себе работу процессора.

Итак, что же представляет собой современный ЦПУ?

Это действительно кристалл кремния. На его поверхности путем фототравления нанесена сложнейшая структуру из проводников и огромного количества полупроводниковых транзисторов.

  • в 2004 году их число на кристалле было чуть больше 500 миллионов;
  • 2006-й год – 1 миллиард;
  • в 2008 – 2 миллиарда транзисторов.

Темпы роста увеличения плотности транзисторов немного упали, что обусловлено возможностями технологии их нанесения.

Сейчас для этого используется многоядерность и нанотехнология (актуальна 14 нм, ожидают от производителей 10 нм).

Вот пример процессора 2017 года.

Intel SKL Core i9-7000X заявлены около 6,5–7 миллиардов транзисторов. Но если честно транзисторы сейчас никто не считает.

Всех интересует тактовая частота, число ядер и разрядность (64 или 32 бита) и энергопотребление.

 

Структура ЦПУ и распределение функциональных «обязанностей»

Разговор о количестве транзисторов я повел к тому, чтобы вы оценили растущую вычислительную мощность процессоров. Из полупроводниковых элементов состоят все рабочие компоненты CPU и нам пора выяснить, что они собой представляют и как взаимодействуют.

  • Вычислительное ядро, которых может быть несколько. Состоит из Устройства управления, направляющего данные и команды в виде сигналов в соответствии с полученными инструкциями и Арифметико-логического устройства, непосредственно занимающегося вычислением и реализацией условий сложных алгоритмов.
  • За преобразование цифровых данных из памяти компьютера в поток сигналов, понятных процессору отвечает дешифратор.
  • При этом данные разбиваются на блоки по 8, 16, 32 или 64 бита, которые содержатся в специальных ячейках, именуемых регистрами.Они выполнены по схеме триггера. Их максимальный размер означает разрядность процессора. И вместе с тактовой частотой обработки данных этот параметр определяет его производительность. Каждый регистр имеет свое назначение, так, например, A, B и C предназначены для обрабатываемых данных. ESP – их адрес в ОЗУ, Z – для последней операции сравнения, EIP – сообщает об адресации следующей инструкции в оперативке. Связка регистров и ядра – базовый элемент процессора.
  • Важным компонентом CPU является многоуровневая кэш память, подгружающая информацию из ОЗУ. Непосредственно с ядром связана сверхбыстрая но самая маленькая L1, потом идет промежуточная L2, и на внешнем уровне находится большая по объему, но менее скоростная L В любом случае получение данных из нее происходит намного быстрее, чем из оперативки.
  • Взаимодействие ЦПУ с другими компонентами ПК на физическом уровне происходит посредством шин, контакты от которых выводятся на сокет процессора на материнской плате. Они так же имеют разрядность соответствующую размеру основных реестров. Шина данных работает с ОЗУ, шина синхронизации – с генератором частотных импульсов. Адресная шина общается с другими устройствами, а шина перезапуска – обнуляет текущее состояние CPU.

Иногда на одном кристалле с ЦПУ располагают вспомогательный графический процессор, заточенный под выполнение специализированных задач и берущий значительную часть нагрузки на себя.

 

Команды, которые слышит процессор

Что же заставляет процессор корректно и эффективно работать с кодами, написанными порой на разных языках программирования. Языки то может и разные, но все они состоят из простых операций, предусматривающих:

  • математические и логические операции с данными;
  • их перемещение;
  • сравнение;
  • действие при выполнении условия;
  • переадресацию.

Все эти функции прописаны для CPU в виде набора определенных инструкций.

Некоторые из них так же специально усовершенствованы для решения конкретных задач.

Поскольку компьютер работает не с реальными объектами, а с их математическими моделями, то процессор с помощью имеющихся в нем модулей легко справляется с обработкой цифровой информации и выдает требуемый результат.

Быстродействие процессора, как я уже сказал, зависит от тактовой частоты.

Например, не самый мощный четырех ядерный AMD Ryzen 5 2400G при 3.6GHz будет способен выполнить более 14 миллиардов операций в секунду. Поверьте, этого вполне достаточно для решения большинства компьютерных задач.

Пожалуй, дальше углубляться в работу процессора не стоит, ведь это уже епархия крутых айтишников. Но если есть такое желание, то я уверен, что полученные сегодня знания станут вам отличным подспорьем в боле серьёзном изучении ЦПУ.

На этом я желаю закончить статью и попрощаться с вами, пожелав всем успехов!

 

 

Итоговая контрольная работа. Резерв

Главная | Информатика и информационно-коммуникационные технологии | Планирование уроков и материалы к урокам | 7 классы | Планирование уроков на учебный год (по учебнику Н.Д. Угриновича) | Итоговая контрольная работа. Резерв

Задания с выборочным ответом:

1. Процессор обрабатывает информацию, представленную:

1. в десятичной системе счисления

2. на английском языке

3. на русском языке

4. на машинном языке (в двоичном коде)

2. При несоблюдении санитарно-гигиенических требований компьютера вредное влияние на здоровье человека может оказывать следующее устройство компьютера:

1. принтер

2. монитор

3. системный блок

4. мышь

3. В целях сохранения информации жесткие магнитные диски необходимо оберегать от:

1. пониженной температуры

2. перепадов атмосферного давления

3. света

4. ударов при установке

4. В целях сохранения информации гибкие магнитные диски необходимо оберегать от:

1. пониженной температуры

2. магнитных полей

3. света

4. перепадов атмосферного давления

5. В целях сохранения информации лазерные диски необходимо оберегать от:

1. пониженной температуры

2. магнитных полей

3. загрязнений

4. света

6. Компьютерная программа может управлять работой компьютера, если она находится:

1. в оперативной памяти

2. на гибком диске

3. на CD-диске

4. на жестком диске

7. Файл – это:

1. данные в оперативной памяти

2. программы или данные на диске, имеющие имя

3. программа в оперативной памяти

4. текст, распечатанный на принтере

8. При быстром форматировании гибкого диска:

1. стираются все данные

2. производится дефрагментация диска

3. производится проверка поверхности диска

4. производится очистка каталога диска

9. При полном форматировании гибкого диска:

1. стираются все данные

2. производится очистка каталога диска

3. диск становится системным

4. производится дефрагментация диска

10. В процессе дефрагментации диска каждый файл записывается:

1. в нечетных секторах

2. в произвольных секторах

3. обязательно в последовательно расположенных секторах

4. в четных секторах

11. При выключении компьютеров вся информация теряется:

1. на гибком диске

2. на жестком диске

3. на CD-диске

4. в оперативной памяти

12. Системный диск необходим для:

1. загрузки операционной системы

2. хранения важных файлов

3. систематизации файлов

4. лечения компьютеров от вирусов

13. В процессе загрузки операционной системы происходит:

1. копирование файлов операционной системы с гибкого диска на жесткий диск

2. копирование файлов операционной системы с CD-диска на жесткий диск

3. последовательная загрузка файлов операционной системы в оперативную память

4. копирование содержимого оперативной памяти на жесткий диск

14. Драйвер – это:

1. устройство компьютера

2. программа, обеспечивающая работу устройства

3. язык программирования

4. прикладная программа

15. Вершиной иерархической системы папок графического интерфейса Windows является папка:

1. рабочий стол

2. корневого каталога диска

3. мой компьютер

4. сетевое окружение

16. Растровые графические изображения формируются из:

1. линий

2. окружностей

3. прямоугольников

4. пикселей

17. Векторные графические изображения хорошо поддаются масштабированию (изменению размеров) так как:

1. используется высокое пространственное разрешение

2. они формируются из графических примитивов (линий, окружностей, прямоугольников, так далее)

3. они формируются из пикселей

4. используется палитра с большим количеством цветов.

Ответы:


1-4  
2-2  
3-4  
4-2  
5-3  
6-1  
7-2  
8-4  
9-1  
10-3  
11-4  
12-1  
13-1  
14-2  
15-1 
16-4  
17-2

Автор: Дуракова Людмила Васильевна
МБОУ «Ключевская СОШ»

Cкачать материалы урока

основные технические характеристики, рабочая температура, производители и самостоятельный разгон

 

Что такое центральный процессор, и для чего он нужен

Само слово процессор происходит от английского глагола to process, что в переводе на русский будет звучать, как обрабатывать. В общем понимании, под данным термином подразумевается устройство или набор программ, которые используются для совершения вычислительных операций или обработки массива данных или процесса.

Содержание: 

[show/hide]

В персональном компьютере процессор выполняет функцию «мозга», являясь основной микросхемой, которая требуется для бесперебойной и правильной работы ПК. Под управлением CPU находятся все внутренние и периферийные устройства.

Внешне процессор представляет собой небольшую квадратную плату, верхняя часть которой закрыта металлической крышкой, служащей для защиты микросхем, а нижняя поверхность усыпана большим количеством контактов. Именно этой стороной процессор устанавливается в специальный разъём или сокет, располагающийся на материнской плате. ЦП, или центральный процессор, является самой важной деталью современного компьютера. Без команды, которую отдаёт CPU, не происходит выполнение ни одной, даже самой простой, операции, например, сложение двух чисел или запись одного байта информации.

Как работает процессор

  • Принцип работы процессора – это последовательная обработка разных операций. Они происходят очень быстро, основные из них:
    При запуске любого процесса, заключающегося в исполнении программного кода, управляющий блок ЦП извлекает все необходимые данные и набор операндов, требуемых к исполнению. Далее это отгружается в буферную или кэш-память.
  •  На выходе из кэша весь поток информации делится на две категории – инструкции и значения. Они перенаправляются в соответствующие ячейки памяти, которые называются регистры. Первые помещаются в регистры команд, вторая категория − в регистры данных.
  •  Находящуюся в регистрах памяти информацию обрабатывает арифметически-логическое устройство. Это одна из частей ЦП, которая требуется для проведения арифметических и логических операций.
  •  Результаты вычислений разделяются на два потока – законченные и незаконченные, которые, в свою очередь, отправляются обратно в кэш-память.
  •  По завершению цикла вычислений конечный итог записывается в оперативную память. Это требуется для высвобождения места в буфере, которое необходимо для проведения новых вычислительных операций. При переполнении кэша все неактивные процессы перемещаются в ОЗУ или на нижний уровень.

shema cp

shema cp

Упрощённая схема работы центрального процессора

Из чего состоит процессор

Чтобы представить, как работает ЦПУ, нужно понимать, из каких частей он состоит. Основными составляющими процессора являются:

  1. Верхняя крышка, которая представляет собой металлическую пластину, выполняющую функции защиты внутреннего содержимого и теплоотведения.
  2.  Кристалл. Это самая важная часть CPU. Кристалл изготавливается из кремния и содержит на себе большое количество мельчайших микросхем.
  3.  Подложка из текстолита, которая служит контактной площадкой. На ней крепятся все детали ЦП и располагаются контакты, через которые происходит взаимодействие со всей остальной системой.

При креплении верхней крышки применяется клей-герметик, способный выдерживать воздействие высоких температур, а для устранения зазора внутри собранного процессора используется термопаста. После застывания она образует своеобразный «мостик», который требуется для обеспечения оттока тепла от кристалла.

Что такое ядро процессора

Если сам центральный процессор можно назвать «мозгом» компьютера, то ядро считается основной деталью самого ЦП. Ядро – это набор микросхем, расположенных на площадке из кремния, размер которой не превышает квадратного сантиметра. Совокупность микроскопических логических элементов, посредством которых реализована принципиальная схема работы, носит название архитектуры.

Немного технических подробностей: в современных процессорах крепление ядра к платформе чипа осуществляется с помощью системы «флип-чип», такие стыки обеспечивают максимальную плотность соединения.

Каждое ядро состоит из определённого количества функциональных блоков:

  1.  блок работы с прерываниями, который необходим для быстрого переключения между задачами;
  2.  блок выработки инструкций, отвечающий за получение и направление команд для последующей обработки;
  3.  блок декодирования, который нужен для обработки поступающих команд и определения действия, необходимых для этого;
  4.  управляющий блок, который занимается передачей обработанных инструкций на прочие функциональные части и координацией нагрузки;

 последними являются блоки выполнения и сохранения.

5 27

5 27

Ядро процессора представляет собой мельчайшую плату, на которой расположены рабочие элементы

Что такое сокет процессора

Термин socket переводится с английского языка как «гнездо» или «разъём». Для персонального компьютера данный термин одновременно относится непосредственно к материнской плате и процессору. Сокет – это место крепления ЦП. Они различаются между собой такими характеристиками, как размер, количество и тип контактов, особенностями монтажа охлаждения.

 Два крупнейших производителя процессоров – Intel и AMD − ведут давнюю маркетинговую войну, предлагая каждый свой собственный сокет, подходящий только под CPU своего производства. Цифра в маркировке конкретного сокета, например, LGA 775, обозначает количество контактов или контактных ножек. Также в технологическом плане сокеты могут различаться между собой:

  •  присутствием дополнительных контроллеров;
  •  возможностью технологии поддержи графического ядра процессора;
  •  производительностью.

Сокет также может оказывать влияние на следующие параметры работы компьютера:

  • вид поддерживаемой ОЗУ;
  • частоту работы шины FSB;
  • косвенно, на версию PCI-e и разъём SATA.

Создание специального гнезда для крепления центрального процессора требуется, чтобы пользователь мог совершать апргрейд системы и менять ЦПУ в случае его выхода из строя.

Сокет процессор – это гнездо для его установки на материнской плате

Графическое ядро в процессоре: что это такое

Одной из деталей ЦП, кроме непосредственно основного ядра, может быть графический процессор. Что это такое, и для чего требуется применение подобного компонента? Сразу следует отметить, что встраивание графического ядра не является обязательным и присутствует не в каждом процессоре. Это устройство требуется для исполнения основных функций CPU в виде решения вычислительных задач, а также поддержку графики.

 Причинами, по которым производители используют технологии объединения двух функций в одном ядре, являются:

  •  сокращение энергопотребления, поскольку меньшие по размеру устройства требуют меньше питания и затрат на охлаждение;
  •  компактность;
  •  снижение стоимости.

Применение интегрированной или встроенной графики чаще всего наблюдается в ноутбуках или недорогих ПК, предназначенных для офисной работы, где нет завышенных требований к графике.

7 29

7 29

Графическое ядро – это вынесенный на ЦП графический сопроцессор

Основные понятия процессора в информатике

Что такое потоки в процессоре

Поток выполнения в ЦП – это наименьшая единица обработки, которая назначается ядром, необходимая для разделения кода и контекста исполняемого процесса. Одномоментно может существовать несколько процессов, которые одновременно используют ресурсы ЦП. Существует оригинальная разработка компании Intel, которая стала применяться в моделях, начиная с процессора Intel Core i3, которая именуется HyperThreading. Это технология деления физического ядра на два логических. Таким образом, операционная система создаёт дополнительные вычислительные мощности и увеличивает поточность. Получается, что только показатель количества ядер не будет решающим, поскольку в некоторых случаях компьютеры, имеющие 4 ядра, проигрывают по быстродействию тем, которые имеют всего 2.

Что такое техпроцесс в процессоре

Под техпроцессом в информатике понимается размер транзисторов, применяемых в ядре компьютера. Процесс изготовления ЦП происходит по методу фотолитографии, когда из покрытого диэлектрической плёнкой кристалла под действие света вытравливаются транзисторы. Используемое оптическое оборудование имеет такой показатель, как разрешающая способность. Это и будет технологическим процессом. Чем она выше, тем большее количество транзисторов можно уместить на одном кристалле.

 Снижению размеров кристалла способствует:

  • снижение тепловыделения и энергопотребления;
  • производительность, поскольку при сохранении физического размера кристалла удаётся поместить на нём большее количество рабочих элементов.

Единицей измерения техпроцесса является нанометр (10-9). Большинство современных процессоров изготавливается по 22 нм технологическому процессу.

 Техпроцесс – это увеличение количества рабочих элементов процессора при сохранении его размеров

Что такое виртуализация процессора

Основа метода заключается в разделении ЦП на гостевую и мониторную часть. Если требуется переключение с основной на гостевую ОС, тогда процессор автоматически осуществляет эту операцию, сохраняя видимыми только те значения регистра, которые требуются для стабильной работы. Поскольку гостевая операционная система взаимодействует напрямую с процессором, то работа виртуальной машины будет значительно быстрее.

 Включение виртуализации возможно в настройках BIOS. Большая часть материнских плат и процессоров от AMD не поддерживает технологию создания виртуальной машины аппаратными методами. Тут на помощь пользователю приходят программные способы.

10 28

10 28

Виртуализация активируется в БИОС

Что такое регистры процессора

Регистр процессора – это специальный набор цифровых электрических схем, которые относятся к сверхбыстрой памяти, необходимой ЦП для хранения результатов промежуточных операций. Каждый процессор содержит великое множество регистров, большая часть которых недоступна программисту и зарезервирована для исполнения основных функций ядра. Существуют регистры общего и специального назначения. Первая группа доступна для обращения, вторая используется самим процессором. Поскольку скорость взаимодействия с регистрами ЦП выше, чем обращение в оперативной памяти, они активно применяются программистами для написания программных продуктов.

11 24

11 24

Основные технические характеристики процессора

Что такое тактовая частота процессора

Многие пользователи слышали такое понятие, как тактовая частота, но не все до конца представляют себе, что это такое. Говоря простым языком, это количество операций, которое может выполнять ЦП за 1 секунду. Здесь действует правило – чем выше показатель такта, тем более производительный компьютер.

Единицей измерения тактовой частоты является Герц, который по физическому смыслу является отображением количества колебаний за установленный отрезок времени. Образование тактовых колебаний происходит за счёт действия кристалла кварца, который располагается в тактовом резонаторе. После подачи напряжения происходит возникновение колебаний электрического тока. Они передаются на генератор, преобразующий их в импульсы, которые посылаются на шины данных. Тактовая частота процессора не единственная характеристика оценки скорости работы ПК. Также требуется учитывать количество ядер и объём буферной памяти.

Что такое разрядность процессора

Каждый пользователь ОС от Windows при установке новых программ сталкивался с выбором версии под разрядность системы. Что же такое разрядность ЦПУ? Выражаясь простым языком, это показатель, называемый иначе машинным словом, показывающий, сколько бит информации ЦП обрабатывает за один такт. В современных процессорах этот показатель может быть кратным 32 или 64.

Разрядность может иметь значение 32 и 64 бита

Что такое троттлинг процессора

Троттлинг, или дросселирование, – это защитный механизм, который применяется для предотвращения перегрева центрального процессора или возникновения аппаратных сбоев при работе. Функция активна по умолчанию и срабатывает при повышении температуры до критической отметки, которая установлена для каждой конкретной модели ЦП производителем. Защита осуществляется путём снижения производительности ядра. При возвращении температуры к нормальным показателям функция автоматически отключается. Существует возможность принудительно поменять параметры троттлинга через БИОС. Она активно используется любителями разгона ЦП или оверклокерами, но для простого пользователя подобные изменения чреваты поломкой ПК.

 При превышении допустимых температур ЦП автоматически включается система защиты, или троттлинг

Температура процессора и видеокарты

При работе ядра и прочих элементов ЦП выделяется большое количество тепла, именно поэтому в современных компьютерах используются мощные системы охлаждения, как центрального процессора, так и основных узлов материнской платы. Требовательные программы, которые активно используют мощности ЦП и видеокарты (обычно это игры), нагружают процессор, что приводит к быстрому повышению температуры. В этом случае включается троттлинг. Многие производители видеокарт утверждают, что их продукция способна нормально функционировать даже при 100°C. В реальности предельной температурой будет та, которая указана в технической документации.

Самостоятельно контролировать температурный режим можно посредством специального софта для мониторинга (AIDA64, GPU Temp, Speccy). Если при работе или игре наблюдается подтормаживание, значит, вполне вероятно, температура возросла до критической отметки, и автоматически сработала защита.

Самостоятельно отслеживать температуру ЦП и видеокарты можно посредством специального софта

Что такое турбо буст в процессоре

Turbo Boost – это запатентованная технология компании Intel, которая применяется в процессорах Intel Core i5 и i7 первых трёх генераций. Она применяется для аппаратного ускорения работы ЦП на определённое время. С использованием технологии процедура разгона осуществляется с учётом всех важных параметров – силы тока, температуры, напряжения, состояния ОС, поэтому она полностью безопасна для компьютера. Прирост в скорости работы процессора носит временный характер и будет зависеть от типа нагрузки, количества ядер и конфигурации платформы. Дополнительно следует отметить, что технология поддерживается только операционными системами Windows 7 и 8.

 Фирменная технология от компании Intel позволяет добиться временного улучшения производительности компьютера

Виды процессоров

Всего принято выделять 5 основных видов процессоров в компьютере:

  • Буферный. Это сопроцессор, который требуется для предварительной обработки информации между периферией и ЦП.
  • Препроцессор. По своей сути, это аналогичный предыдущему процессор, назначением которого является промежуточная обработка данных.
  • CISC. ЦП, выпускаемый компанией Intel, который отличается от обычного увеличенным набором команд.
  • RISC. Альтернативная версия CISC, имеющая сокращённое количество команд. Большинство крупных производителей процессоров работает на сочетании двух разновидностей (CISC и RISC), что позволит увеличить мощность и скорость работы ядра.
  • Клоны. Это процессоры, которые выпускаются некрупными производителями по лицензии или полностью пиратским способом.

Самые популярные модели и производители

Рынок микропроцессоров делят два крупных производителя – Intel и AMD, которые ведут непримиримую борьбу на протяжении всего времени своего существования. Каждая компания предлагает свои готовые решения. Выбор конкретной модели является субъективным решением конечного пользователя, поскольку каждый производитель предлагает широкую линейку моделей, имеющую как бюджетные варианты, так и топовые игровые ЦП.

Наибольшую популярность в линейке процессоров от Intel приобрели модели Intel Core i3, i5 и i7. В зависимости от модификации они могут использоваться как в игровых ПК, так и в офисных машинах. У AMD одними из лучших считаются процессоры серии Ryzen, демонстрирующие хорошие показатели производительности. Серия Athlon до сих пор встречается, но относится уже к архивным. Для нетребовательного пользователя подойдут процессоры AMD A серии.

AMD и Intel являются двумя самыми крупными компаниями по производству процессоров

Что такое скальпирование процессора

Скальпирование процессора – это процедура снятия крышки для замены термопасты. Проведение данной процедуры является одной из составных частей разгона или может потребоваться для снижения нагрузки на аппаратную часть ЦП.

 Сама процедура заключается в:

  •  снятии крышки;
  •  удалении старой термопасты;
  •  очистке кристалла;
  •  нанесении нового слоя термопасты;
  •  закрытии крышки.

При проведении процедуры следует учитывать тот факт, что одно неверное движение может привести к выходу процессора из строя. Поэтому лучше доверить это мероприятие профессионалам. Если решение провести скальпирование в домашних условиях принято окончательно, то можно посоветовать приобрести специальный прибор в виде зажима для ЦП, что облегчит снятие крышки без повреждения кристалла.

krishka processora

krishka processora

Скальпирование процессора – это процедура вскрытия крышки для замены термопасты

Как разогнать процессор

Проведение оверклокинга, или разгона центрального процессора, может быть целесообразно при наличии устаревшего оборудования и отсутствии средств для покупки нового камня. Обычно проведение процедуры позволяет получить прирост производительности от 10 до 20%. Существует два метода, как провести разгон, – путём увеличения частоты шины FSB или повышения множителя процессора. Современные компьютеры, по общему правилу, поставляются с заблокированным множителем, поэтому самым доступным будет способ изменения частоты системной шины.

19 8

19 8

Разгон процессора осуществляется путём повышения частоты шины или множителя процессора

Основные советы по разгону:

  •  Трогать питание ядра при отсутствии опыта не рекомендуется.
  •  Повышение показателя частоты следует проводить поэтапно, увеличивая за один раз не более чем на 100 МГц.
  •  Отслеживать температуру, поскольку при повышении частоты увеличивается тепловыделение.
  •  При решении увеличить питание ядра шаг составляет 0,05В, при этом максимальный предел не должен превышать 0,3В, иначе велика вероятность выхода ЦП из строя.
  •  После каждого повышения требуется тестировать стабильность работы. При первых сбоях разгон необходимо прекратить.

Упростить процесс разгона можно посредством применения специальных программ, которые самостоятельно контролируют основные параметры, затрагиваемые при оверклокинге.

Процессор – это сердце вашего ПК. Именно здесь идёт администрирование всех процессов машины. От того, насколько эффективно будет работать этот блок, зависит качество работы всего компьютера. А значит, и ваша уверенность и спокойствие полностью зависят от выбора качественной начинки аппаратно-вычислительной машины.

Если у вас есть вопросы к нашим экспертам, можно оставить их ниже.

 

Как работает процессор

Чем отличаются процессоры?

Начало здесь

Рассмотрим важные моменты, касающиеся того, как работает процессор компьютера. Начнем с того, чем отличаются процессоры?

Различные процессоры могут иметь отличающийся набор команд, которые они могут исполнять. Чем больше команд может исполнять процессор, тем быстрее он обрабатывает информацию.Если же система команд более «бедная», то такой процессор должен делать бОльшее число более простых операций, чтобы выполнить обработку данных, по сравнению с процессором с более «богатой» системой команд.

Процессоры, у которых система команд отличается в большую сторону от остальных, называют процессорами с расширенной системой команд.

бездушный механизмВажно понимать, что процессор является совершенно «бездушным» механизмом, который совершенно не отдает себе отчета в том, что он делает. Процессор выполняет свою работу шаг за шагом, обрабатывает команду за командой, и он абсолютно «не видит» связи между этими шагами и командами.

Если следующая команда отменяет предыдущую (к примеру, первая команда позволяет записать данные в регистр, а вторая  команда удаляет данные из этого же регистра), то процессор будет выполнять такие команды, нисколько «не задумываясь» над бессмысленностью своих действий.

Или, например, если программа будет написана неправильно, и не будет иметь конца, то процессор будет ее обрабатывать непрерывно, и никогда сам не «примет решения» о прекращении работы. Остановить такую “зацикленную” программу можно только путем вмешательства извне.

Еще хуже, если программа будет направлена не на созидание (обработку данных), а на разрушение (например, на удаление важных и нужных данных, или на выгрузку этих данных несанкционированным образом), то процессор безупречно и без всяких «угрызений совести» в точности выполнит все инструкции на уничтожение или кражу важных данных.

вирус exe файл
Этим пользуются разработчики вирусных программ. Создавая программы, направленные на выполнение несанкционированных действий (удаление или банальное воровство данных, внесение помех в обработку данных и т.п.), разработчики вирусов стремятся к тому, чтобы их программы были записаны в оперативную память компьютера, и чтобы процессору был дан сигнал на обработку записанной в памяти последовательности команд.

В этом состоит их главная задача: обойти все виды контроля перед помещением программы в оперативную память. Остальное доделает процессор, выполнив все команды злоумышленников.

Наиболее просто попасть в оперативную память могут вирусы, записанные в файлах с расширением .exe, так как в них хранится набор команд практически пригодный без особой предварительной обработки или анализа для выполнения процессором.

разработчики антивирусных программТогда как команды из других типов файлов требуется предварительно обработать специальными программами, соответственно, при обработке можно выявить факт наличия вирусов и вредоносных программ. А .exe файлы можно сразу записать в память и отправить на обработку процессором, не распознав в них вирусов.

Именно поэтому разработчики вирусов так любят формат .exe файлов, а разработчики антивирусных программ, наоборот, не любят эти файлы и проверяют их самым тщательным образом.

Следует всегда помнить, что допуская выполнение .exe файлов, полученных из непроверенных источников, мы открываем доступ к самому сердцу нашего компьютера, к процессору, и позволяем ему делать то, что может навредить компьютеру и нашим данным, которые мы ему доверили. И тогда процессор из нашего помощника превратится в саморазрушителя.

В заключение следует отметить, что процессор выдерживает высокие нагрузки, может постоянно работать на полную мощность и непрерывно, если при этом работает система его охлаждения. Очень важно, чтобы эта система была исправна, иначе процессор может выйти из строя из-за перегрева.

В принципе, ничего другого с процессором произойти не может, устроен он достаточно надежно, если, конечно, по нему не стучать молотком, проверяя на прочность! Однако если процессор выйдет из строя из-за перегрева, то его отремонтировать невозможно в силу конструктивных особенностей. Неисправный процессор можно только заменить на другой, новый и исправный.

стоп кран

Поэтому в ПК имеются системы безопасности, автоматически отключающие электрическое питание компьютера, если температура процессора поднимается до предельной величины или выше нее. Такое аварийное выключение, как правило, происходит внезапно и без какого-либо предупреждения: щелк и ПК выключился.

Тогда как при других неисправностях могут выдаваться, например, предупреждения на экран монитора или в виде звуковых сигналов. Компьютер не удастся включить до тех пор, пока процессор не остынет до приемлемой температуры.

Если компьютер начал автоматически отключаться из-за перегрева процессора, то лучше всего отправить такой компьютер в ремонт для очистки от пыли, мешающей системе охлаждения поддерживать заданную температуру процессора.

Без исправного процессора – нет ПК. Процессор – это своего рода мозг компьютера, делающий его способным к обработке информации, что и обеспечивает выполнение компьютером всех возложенных на него задач.

P.S. Статья закончилась, но можно еще прочитать:

Оперативная память: заключение

Как работает ПК: часть 4. Включение и выключение компьютера

Здоровье компьютера

Представление информации в компьютере







Получайте актуальные статьи по компьютерной грамотности прямо на ваш почтовый ящик.
Уже более 3.000 подписчиков

.

Важно: необходимо подтвердить свою подписку! В своей почте откройте письмо для активации и кликните по указанной там ссылке. Если письма нет, проверьте папку Спам.


Автор: Юрий Воробьев


19 июня 2011




Основные компоненты компьютера и их функции

Главная | Информатика и информационно-коммуникационные технологии | Планирование уроков и материалы к урокам | 7 классы | Планирование уроков на учебный год (ФГОС) | Основные компоненты компьютера и их функции

Содержание урока

2.1.1. Компьютер

2.1.2. Устройства компьютера и их функции

Вопросы и задания

Электронное приложение к учебнику

Единая коллекция цифровых образовательных ресурсов. Задания 1 — 5

Единая коллекция цифровых образовательных ресурсов. Задания 6 — 11

Практическая часть урока

Практическая работа №2. «Компьютеры и их история». Задания 1 — 2

Практическая работа №2. «Компьютеры и их история». Задания 3 — 4

2.1.2. Устройства компьютера и их функции

Любой компьютер состоит из процессора, памяти, устройств ввода и вывода информации. Функции, выполняемые этими устройствами, в некотором смысле подобны функциям мыслящего человека (рис. 2.3). Но даже столь очевидное сходство не позволяет нам отождествлять человека с машиной хотя бы потому, что человек управляет своими действиями сам, а работа компьютера подчинена заложенной в него программе.

imageПроцессор

Центральным устройством компьютера является процессор. Он организует приём данных, считывание из оперативной памяти очередной команды, её анализ и выполнение, а также отправку результатов работы на требуемое устройство. Основными характеристиками процессора являются его тактовая частота и разрядность.

Процессор обрабатывает поступающие к нему электрические сигналы (импульсы). Промежуток времени между двумя последовательными электрическими импульсами называется тактом. На выполнение процессором каждой операции выделяется определённое количество тактов. Тактовая частота процессора равна количеству тактов обработки данных, которые процессор производит за 1 секунду. Тактовая частота измеряется в мегагерцах (МГц) — миллионах тактов в секунду. Чем больше тактовая частота, тем быстрее работает компьютер. Тактовая частота современных процессоров уже превышает 1000 МГц = 1 ГГц (гигагерц).

Разрядность процессора — это максимальная длина двоичного кода, который может обрабатываться или передаваться одновременно. Разрядность процессоров современных компьютеров достигает 64.

imageПамять

Память компьютера предназначена для записи (приёма), хранения и выдачи данных. Представим её в виде листа в клетку. Тогда каждая клетка этого листа будет изображать бит памяти — наименьший элемент памяти компьютера. В каждой такой «клетке» может храниться одно из двух значений: 0 или 1. Один символ двух-символьного алфавита, как известно, несёт один бит информации. Таким образом, в одном бите памяти содержится один бит информации.

Различают внутреннюю и внешнюю память.

Внутренней называется память, встроенная в компьютер и непосредственно управляемая процессором. Во внутренней памяти хранятся исполняемые в данный момент программы и оперативно необходимые для этого данные. Внутренняя память компьютера позволяет передавать процессору и принимать от него данные примерно с такой же скоростью, с какой процессор их обрабатывает. Поэтому внутренняя память иначе называется оперативной (быстрой). Объём оперативной памяти современных компьютеров измеряется в гигабайтах.

Электрические импульсы, в форме которых информация сохраняется в оперативной памяти, существуют только тогда, когда компьютер включён. После выключения компьютера вся информация, содержащаяся в оперативной памяти, теряется.

К внутренней памяти компьютера относится также ПЗУ — постоянное запоминающее устройтво. В нём хранится информация, необходимая для первоначальной загрузки компьютера в момент включения питания. После выключения компьютера информация в ПЗУ сохраняется.

Для долговременного хранения программ и данных предназначена внешняя (долговременная) память. Внешняя память позволяет сохранять огромные объёмы информации. Информация во внешней памяти после выключения компьютера сохраняется. Различают носители информации — магнитные и оптические диски, энергонезависимые электронные диски (карты флеш-памяти и флеш-диски) и накопители (дисководы) — устройства, обеспечивающие запись данных на носители и считывание данных с носителей. Жёсткий диск — устройство, совмещающее в себе накопитель (дисковод) и носитель (непосредственно диск).

При запуске пользователем некоторой программы, хранящейся во внешней памяти, она загружается в оперативную память и после этого начинает выполняться.

На сайте http://sc.edu.ru размещён анимационный ролик «Внутренняя память ЭВМ: оперативная память» (135117), иллюстрирующий информационный обмен между внешней и внутренней памятью.

imageУстройства ввода и вывода информации.

Приложив значительные усилия, человек может представить текстовую, графическую, звуковую информацию в двоичном коде.

Значительно труднее человеку понять двоичный код. И совсем уже невозможно человеку понять информацию, представленную последовательностью электрических импульсов. Входящие в состав компьютера устройства ввода «переводят» информацию с языка человека на язык компьютера; устройства вывода «переводят» электрические импульсы в форму, доступную для человеческого восприятия. Примеры устройств ввода: клавиатура, мышь, микрофон. Примеры устройств вывода: монитор, принтер.

Различные устройства компьютера связаны между собой каналами передачи информации (рис. 2.4).

Оставьте комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *