Принцип работы и конструкция трансформатора – Трансформаторы — устройство, принцип работы и область применения, основные типы и характеристики

Содержание

Устройство и принцип работы трансформатора

Здравствуйте, уважаемые читатели сайта sesaga.ru. Продолжаем знакомство с электронными компонентами и в этой статье рассмотрим устройство и принцип работы трансформатора.

Трансформаторы нашли широкое применение в радио и электротехнике и применяются для передачи и распределения электрической энергии в сетях энергосистем, для питания схем радиоаппаратуры, в преобразовательных устройствах, качестве сварочных трансформаторов и т.п.

Трансформаторы

Трансформатор предназначен для преобразования переменного напряжения одной величины в переменное напряжение другой величины.

В большинстве случаев трансформатор состоит из замкнутого магнитопровода (сердечника) с расположенными на нем двумя катушками (обмотками) электрически не связанных между собой. Магнитопровод изготавливают из ферромагнитного материала, а обмотки мотают медным изолированным проводом и размещают на магнитопроводе.

Одна обмотка подключается к источнику переменного тока и называется первичной (I), с другой обмотки снимается напряжение для питания нагрузки и обмотка называется вторичной (II). Схематичное устройство простого трансформатора с двумя обмотками показано на рисунке ниже.

Схематичное устройство трансформатора

1. Принцип работы трансформатора.

Принцип работы трансформатора основан на явлении электромагнитной индукции.

Если на первичную обмотку подать переменное напряжение U1, то по виткам обмотки потечет переменный ток Io, который вокруг обмотки и в магнитопроводе создаст переменное магнитное поле. Магнитное поле образует магнитный поток Фo, который проходя по магнитопроводу пересекает витки первичной и вторичной обмоток и индуцирует (наводит) в них переменные ЭДС – е1 и е2. И если к выводам вторичной обмотки подключить вольтметр, то он покажет наличие выходного напряжения U2, которое будет приблизительно равно наведенной ЭДС е2.

Работа трансформатора без нагрузки

При подключении к вторичной обмотке нагрузки, например, лампы накаливания, в первичной обмотке возникает ток I1, образующий в магнитопроводе переменный магнитный поток Ф1 изменяющийся с той же частотой, что и ток I1. Под воздействием переменного магнитного потока в цепи вторичной обмотки возникает ток I2, создающий в свою очередь противодействующий согласно закону Ленца магнитный поток Ф2, стремящийся размагнитить порождающий его магнитный поток.

Работа трансформатора под нагрузкой

В результате размагничивающего действия потока Ф2 в магнитопроводе устанавливается магнитный поток Фo равный разности потоков Ф1 и Ф2 и являющийся частью потока Ф1, т.е.

Формула магнитного потока

Результирующий магнитный поток Фo обеспечивает передачу магнитной энергии из первичной обмотки во вторичную и наводит во вторичной обмотке электродвижущую силу е2, под воздействием которой во вторичной цепи течет ток I2. Именно благодаря наличию магнитного потока Фo и существует ток I2, который будет тем больше, чем больше Фo. Но и в то же время чем больше ток I2, тем больше противодействующий поток Ф2 и, следовательно, меньше Фo.

Из сказанного следует, что при определенных значениях магнитного потока Ф1 и сопротивлений вторичной обмотки и нагрузки устанавливаются соответствующие значения ЭДС е2, тока I2 и потока Ф2, обеспечивающие равновесие магнитных потоков в магнитопроводе, выражаемое формулой приведенной выше.

Таким образом, разность потоков Ф1 и Ф2 не может быть равна нулю, так как в этом случае отсутствовал бы основной поток Фo, а без него не мог бы существовать поток Ф2 и ток I2. Следовательно, магнитный поток Ф1, создаваемый первичным током I1, всегда больше магнитного потока Ф2, создаваемого вторичным током I2.

Величина магнитного потока зависит от создающего его тока и от числа витков обмотки, по которой он проходит.

Напряжение вторичной обмотки зависит от соотношения чисел витков в обмотках. При одинаковом числе витков напряжение на вторичной обмотке будет приблизительно равно напряжению, подаваемому на первичную обмотку, и такой трансформатор называют разделительным.

Схематичное изображение разделительного трансформатора

Если вторичная обмотка содержит больше витков, чем первичная, то развиваемое в ней напряжение будет больше напряжения, подаваемого на первичную обмотку, и такой трансформатор называют повышающим.

Схематичное изображение повышающего трансформатора

Если же вторичная обмотка содержит меньшее число витков, чем первичная, то и напряжение ее будет меньше, чем напряжение подаваемое на первичную обмотку, и такой трансформатор называют понижающим.

Схематичное изображение понижающего трансформатора

Следовательно. Путем подбора числа витков обмоток, при заданном входном напряжении U1 получают желаемое выходное напряжение U2. Для этого пользуются специальными методиками по расчету параметров трансформаторов, с помощью которых производится расчет обмоток, выбирается сечение проводов, определяются числа витков, а также толщина и тип магнитопровода.

Трансформатор может работать только в цепях переменного тока. Если его первичную обмотку подключить к источнику постоянного тока, то в магнитопроводе образуется магнитный поток постоянный во времени, по величине и направлению. В этом случае в первичной и вторичной обмотках не будет индуцироваться переменное напряжение, а следовательно, не будет передаваться электрическая энергия из первичной цепи во вторичную. Однако если в первичной обмотке трансформатора будет течь пульсирующий ток, то во вторичной обмотке будет индуцироваться переменное напряжение частота которого будет равна частоте пульсации тока в первичной обмотке.

2. Устройство трансформатора.

2.1. Магнитопровод. Магнитные материалы.

Назначение магнитопровода заключается в создании для магнитного потока замкнутого пути, обладающего минимальным магнитным сопротивлением. Поэтому магнитопроводы для трансформаторов изготавливают из материалов, обладающих высокой магнитной проницаемостью в сильных переменных магнитных полях. Материалы должны иметь малые потери на вихревые токи, чтобы не перегревать магнитопровод при достаточно больших значениях магнитной индукции, быть достаточно дешевыми и не требовать сложной механической и термической обработки.

Магнитные материалы, используемые для изготовления магнитопроводов, выпускаются в виде отдельных листов, либо в виде длинных лент определенной толщины и ширины и называются электротехническими сталями.
Листовые стали (ГОСТ 802-58) изготавливаются методом горячей и холодной прокатки, ленточные текстурованные стали (ГОСТ 9925-61) только методом холодной прокатки.

Также применяют железноникелевые сплавы с высокой магнитной проницаемостью, например, пермаллой, перминдюр и др. (ГОСТ 10160-62), и низкочастотные магнитомягкие ферриты.

Для изготовления разнообразных относительно недорогих трансформаторов широко применяются электротехнические стали, имеющие небольшую стоимость и позволяющие трансформатору работать как при постоянном подмагничивании магнитопровода, так и без него. Наибольшее применение нашли холоднокатаные стали, имеющие лучшие характеристики по сравнению со сталями горячей прокатки.

Магнитопроводы из электротехнической стали

Сплавы с высокой магнитной проницаемостью применяют для изготовления импульсных трансформаторов и трансформаторов, предназначенных для работы при повышенных и высоких частотах 50 – 100 кГц.

Недостатком таких сплавов является их высокая стоимость. Так, например, стоимость пермаллоя в 10 – 20 раз выше стоимости электротехнической стали, а пермендюра – в 150 раз. Однако в ряде случаев их применение позволяет существенно снизить массу, объем и даже общую стоимость трансформатора.

Другим их недостатком является сильное влияние на магнитную проницаемость постоянного подмагничивания, переменных магнитных полей, а также низкая стойкость к механическим воздействиям – удар, давление и т.п.

Магнитопроводы из сплавов с высокой магнитной проницаемостью

Из магнитомягких низкочастотных ферритов с высокой начальной проницаемостью изготавливают прессованные магнитопроводы, которые применяют для изготовления импульсных трансформаторов и трансформаторов, работающих на высоких частотах от 50 – 100 кГц. Достоинством ферритов является невысокая стоимость, а недостатком является низкая индукция насыщения (0,4 – 0,5 Т) и сильная температурная и амплитудная нестабильность магнитной проницаемости. Поэтому их применяют лишь при слабых полях.

Магнитопроводы из магнитомягких прессованных ферритов

Выбор магнитных материалов производится исходя из электромагнитных характеристик с учетом условий работы и назначения трансформатора.

2.2. Типы магнитопроводов.

Магнитопроводы трансформаторов разделяются на шихтованные (штампованные) и ленточные (витые), изготавливаемые из листовых материалов и прессованные из ферритов.

Шихтованные магнитопроводы набираются из плоских штампованных пластин соответствующей формы. Причем пластины могут быть изготовлены практически из любых, даже очень хрупких материалов, что является достоинством этих магнитопроводов.

Шихтованные магнитопроводы

Магнитопровод из плоских шихтовых пластин

Ленточные магнитопроводы изготавливаются из тонкой ленты, намотанной в виде спирали, витки которой прочно соединены между собой. Достоинством ленточных магнитопроводов является полное использование свойств магнитных материалов, что позволяет уменьшить массу, размеры и стоимость трансформатора.

Ленточные магнитопроводы

Трансформатор с ленточным магнитопроводом

Тороидальный трансформатор из ленточного магнитопровода

В зависимости от типа магнитопровода трансформаторы подразделяются на стрежневые, броневые и тороидальные. При этом каждый из этих типов может быть и стрежневым и ленточным.

Стержневые.

В магнитопроводах стержневого типа обмотки располагается на двух стержнях (стержнем называют часть магнитопровода, на которой размещают обмотки). Это усложняет конструкцию трансформатора, но уменьшает толщину намотки, что способствует снижению индуктивности рассеяния, расхода проволоки и увеличивает поверхность охлаждения.

Схематичное изображение трансформатора стержневого типа

Трансформатор стержневого типа

Стержневые магнитопроводы используют в выходных трансформаторах с малым уровнем помех, так как они малочувствительны к воздействию внешних магнитных полей низкой частоты. Это объясняется тем, что под влиянием внешнего магнитного поля в обеих катушках индуцируются напряжения, противоположные по фазе, которые при равенстве витков обмоток компенсируют друг друга. Как правило, стержневыми выполняются трансформаторы большой и средней мощности.

Броневые.

В магнитопроводе броневого типа обмотка располагается на центральном стержне. Это упрощает конструкцию трансформатора, позволяет получить более полное использование окна обмоткой, а также создает некоторую механическую защиту обмотки. Поэтому такие магнитопроводы получили наибольшее применение.

Схематичное изображение трансформатора броневого типа

Трансформатор броневого типа

Некоторым недостатком броневых магнитопроводов является их повышенная чувствительность к воздействию магнитных полей низкой частоты, что делает их малопригодными к использованию в качестве выходных трансформаторов с малым уровнем помех. Чаще всего броневыми выполняются трансформаторы средней мощности и микротрансформаторы.

Тороидальные.

Тороидальные или кольцевые трансформаторы позволяют полнее использовать магнитные свойства материала, имеют малые потоки рассеивания и создают очень слабое внешнее магнитное поле, что особенно важно в высокочастотных и импульсных трансформаторах. Но из-за сложности изготовления обмоток не получили широкого применения. Чаще всего их делают из феррита.

Схематичное изображение тороидального трансформатора

Тороидальный трансформатор

Для уменьшения потерь на вихревые токи шихтованные магнитопроводы набираются из штампованных пластин толщиной 0,35 – 0,5 мм, которые с одной стороны покрывают слоем лака толщиной 0,01 мм или оксидной пленкой.

Лента для ленточных магнитопроводов имеет толщину от нескольких сотых до 0,35 мм и также покрывается электроизолирующей и одновременно склеивающейся суспензией или оксидной пленкой. И чем тоньше слой изоляции, тем плотнее происходит заполнение сечения магнитопровода магнитным материалом, тем меньше габаритные размеры трансформатора.

За последнее время наряду с рассмотренными «традиционными» типами магнитопроводов находят применение новые формы, к числу которых следует отнести магнитопроводы «кабельного» типа, «обращенный тор», катушечный и др.

Новые формы магнитопроводов

На этом пока закончим. Продолжим во второй части.
Удачи!

Литература:

1. В. А. Волгов – «Детали и узлы радио-электронной аппаратуры», Энергия, Москва 1977 г.
2. В. Н. Ванин – «Трансформаторы тока», Издательство «Энергия» Москва 1966 Ленинград.
3. И. И. Белопольский – «Расчет трансформаторов и дросселей малой моности», М-Л, Госэнергоиздат, 1963 г.
4. Г. Н. Петров – «Трансформаторы. Том 1. Основы теории», Государственное Энергетическое Издательство, Москва 1934 Ленинград.
5. В. Г. Борисов, – «Юный радиолюбитель», Москва, «Радио и связь» 1992 г.

sesaga.ru

принцип работы и типы приборов

маленький трансформатор

Трансформатор — незаменимое устройство в электротехнике.

Без него энергосистема в ее нынешнем виде не могла бы существовать.

Присутствуют эти элементы и во многих электроприборах.

Желающим познакомиться с ними поближе предлагается данная статья, тема которой — трансформатор: принцип работы и виды приборов, а также их назначение.

 

Что такое трансформатор

Так называют устройство, изменяющее величину переменного электрического напряжения. Существуют разновидности, способные менять и его частоту.

Таким аппаратами оснащают многие приборы, также они применяются в самостоятельном виде.

Например, установки, повышающие напряжение для передачи тока по электромагистралям.

Генерируемое электростанцией напряжение они поднимают до 35 – 750 кВ, что дает двойную выгоду:

  • уменьшаются потери в проводах;
  • требуются провода меньшего сечения.

В городских электросетях напряжение снова уменьшается до величины в 6,1 кВ, опять же с использованием трансформатора. В распределительных сетях, раздающих электричество потребителям, напряжение понижают до 0,4 кВ (это привычные нам 380/220 В).

Принцип работы

Работа трансформаторного устройства основана на явлении электромагнитной индукции, состоящей в следующем: при изменении параметров магнитного поля, пересекающего проводник, в последнем возникает ЭДС (электродвижущая сила). Проводник в трансформаторе присутствует в форме катушки или обмотки, и общая ЭДС равна сумме ЭДС каждого витка.

Для нормальной работы требуется исключить электрический контакт между витками, потому используют провод в изолирующей оболочке. Эту катушку называют вторичной.

Магнитное поле, необходимое для генерации во вторичной катушке ЭДС, создается другой катушкой. Она подключается к источнику тока и называется первичной. Работа первичной катушки основана на том факте, что при протекании через проводник тока, вокруг него формируется электромагнитное поле, а если он смотан в катушку, оно усиливается.

принципы работы трансформатора

Как работает трансформатор

При протекании через катушку постоянного тока параметры электромагнитного поля не меняются и оно неспособно вызвать ЭДС во вторичной катушке. Поэтому трансформаторы работают только с переменным напряжением.

На характер преобразования напряжения влияет соотношение количества витков в обмотках – первичной и вторичной. Его обозначают «Кт» – коэффициент трансформации. Действует закон:

Кт = W1 / W2 = U1 / U2,

где,

  • W1 и W2 — количество витков в первичной и вторичной обмотках;
  • U1 и U2 — напряжение на их выводах.

Следовательно, если в первичной катушке витков больше, то напряжение на выводах вторичной ниже. Такой аппарат называют понижающим, Кт у него больше единицы. Если витков больше во вторичной катушке — трансформатор напряжение повышает и называется повышающим. Его Кт меньше единицы.

трансформатор на улице

Большой силовой трансформатор

Если пренебречь потерями (идеальный трансформатор), то из закона сохранения энергии следует:

P1 = P2,

где Р1 и Р2 — мощность тока в обмотках.

Поскольку P = U * I, получим:

  • U1 * I1 = U2 * I2;
  • I1 = I2 * (U2 / U1) = I2 / Кт.

Это означает:

  • в первичной катушке понижающего устройства (Кт > 1) протекает ток меньшей силы, чем в цепи вторичной;
  • с повышающими трансформаторами (Кт < 1) все наоборот: сила тока в первичной катушке выше, чем в цепи вторичной.

Данное обстоятельство учитывают при подборе сечения проводов для обмоток аппаратов.

Конструкция

Трансформаторные обмотки надевают на магнитопровод — деталь из ферромагнитной, трансформаторной или иной магнитомягкой стали. Он служит проводником электромагнитного поля от первичной катушки ко вторичной.

Под действием переменного магнитного поля в магнитопроводе также генерируются токи — они называются вихревыми. Эти токи приводят к потерям энергии и нагреву магнитопровода. Последний, с целью свести данное явление к минимуму, набирают из множества изолированных друг от друга пластин.

На магнитопроводе катушки располагают двояко:

  • рядом;
  • наматывают одну поверх другой.

Обмотки для микротрансформаторов изготавливают из фольги толщиной 20 – 30 мкм. Ее поверхность в результате окисления становится диэлектриком и играет роль изоляции.

части трансформатора

Конструкция трансформатора

На практике добиться соотношения Р1 = Р2 невозможно из-за потерь трех видов:

  1. рассеивание магнитного поля;
  2. нагрев проводов и магнитопровода;
  3. гистерезис.

Потери на гистерезис — это затраты энергии на перемагничивание магнитопровода. Направление силовых линий электромагнитного поля постоянно меняется. Каждый раз приходится преодолевать сопротивление диполей в структуре магнитопровода, выстроившихся определенным образом в предыдущей фазе.

Потери на гистерезис стремятся уменьшить, применяя разные конструкции магнитопроводов.

Итак, в реальности величины Р1 и Р2 отличаются и соотношение Р2 / Р1 называют КПД устройства. Для его измерения используются следующие режимы работы трансформатора:

  • холостого хода;
  • короткозамкнутый;
  • с нагрузкой.

В некоторых разновидностях трансформаторов, работающих с напряжением высокой частоты, магнитопровод отсутствует.

Режим холостого хода

Первичная обмотка подключена к источнику тока, а цепь вторичной разомкнута. При таком подключении в катушке течет ток холостого хода, в основном представляющий реактивный ток намагничивания.

Такой режим позволяет определить:

  • КПД устройства;
  • коэффициент трансформации;
  • потери в магнитопроводе (на языке профессионалов — потери в стали).

холостой ход

Схема трансформатора в режиме холостого хода

Короткозамкнутый режим

Выводы вторичной обмотки замыкают без нагрузки (накоротко), так что ток в цепи ограничивается лишь ее сопротивлением. На контакты первичной подают такое напряжение, чтобы ток в цепи вторичной обмотки не превышал номинального.

Такое подключение позволяет определить потери на нагрев обмоток (потери в меди). Это необходимо при реализации схем с применением вместо реального трансформатора активного сопротивления.

Режим с нагрузкой

В этом состоянии к выводам вторичной обмотки подключен потребитель.

Охлаждение

В процессе работы трансформатор греется.

Применяют три способа охлаждения:

  1. естественное: для маломощных моделей;
  2. принудительное воздушное (обдув вентилятором): модели средней мощности;
  3. мощные трансформаторы охлаждаются при помощи жидкости (в основном используют масло).

охлаждение прибора

Прибор с масляным охлаждением

Виды трансформаторов

Аппараты классифицируются по назначению, типу магнитопровода и мощности.

Силовые трансформаторы

Наиболее многочисленная группа. К ней относятся все трансформаторы, работающие в энергосети.

Автотрансформатор

У этой разновидности между первичной и вторичной обмотками имеется электрический контакт. При намотке провода делают несколько выводов — при переключении между ними задействуется разное число витков, отчего меняется коэффициент трансформации.

Достоинства автотрансформатора:

  • Повышенный КПД. Объясняется тем, что преобразованию подвергается только часть мощности. Это особенно важно при незначительной разнице между напряжением на входе и выходе.
  • Низкая стоимость. Это обусловлено меньшим расходом стали и меди (автотрансформатор имеет компактные размеры).

Эти устройства выгодно применять в сетях напряжением 110 кВ и более с эффективным заземлением при Кт не выше 3-4.

Трансформатор тока

Используется для снижения силы тока в подключенной к источнику питания первичной обмотке. Устройство находит применение в защитных, измерительных, сигнальных и управляющих системах. Преимущество в сравнении с шунтовыми схемами измерения, состоит в наличии гальванической развязки (отсутствие электроконтакта между обмотками).

Первичная катушка включается в цепь переменного тока – исследуемую или контролируемую –  с нагрузкой последовательно. К выводам вторичной обмотки подключают исполнительное индикаторное устройство, к примеру, реле, или прибор измерения.

типы трансформаторов

Трансформатор тока

Допустимое сопротивление в цепи вторичной катушки ограничено мизерными значениями — почти короткое замыкание. У большинства токовых трансформаторов величина номинального тока в этой катушке составляет 1 или 5 А. При размыкании цепи в ней формируется высокое напряжение, способное пробить изоляцию и повредить подключенные приборы.

Импульсный трансформатор

Работает с короткими импульсами, продолжительность которых измеряется десятками микросекунд. Форма импульса практически не искажается. В основном используются в видеосистемах.

Сварочный трансформатор

Данное устройство:

  • понижает напряжение;
  • рассчитано на номинальный ток в цепи вторичной обмотки до тысяч ампер.

Регулировать сварочный ток можно изменением числа витков обмоток, задействованных в процессе (они имеют по нескольку выводов). При этом изменяется величина индуктивного сопротивления или вторичное напряжение холостого хода. Посредством дополнительных выводов обмотки разбиты на секции, потому регулировка сварочного тока осуществляется ступенчато.

Габариты трансформатора во многом зависят от частоты переменного тока. Чем она выше, тем более компактным получится устройство.

ТДМ 70-460

Сварочный трансформатор ТДМ 70-460

На этом принципе основано устройство современных инверторных сварочных аппаратов. В них переменный ток перед подачей на трансформатор подвергается обработке:

  • выпрямляется посредством диодного моста;
  • в инверторе — управляемом микропроцессором электронном узле с быстро переключающимися ключевыми транзисторами — снова становится переменным, но уже с частотой 60 – 80 кГц.

Потому эти сварочные аппараты такие легкие и небольшие.

Также устроены блоки питания импульсного типа, например, в ПК.

Разделительный трансформатор

В этом устройстве обязательно присутствует гальваническая развязка (нет электрического контакта между первичной и вторичной обмотками), а Кт равен единице. То есть разделительный трансформатор напряжение оставляет неизменным. Он необходим для повышения безопасности подключения.

Прикосновение к токоведущим элементам оборудования, подключенного к сети через такой трансформатор, к сильному удару током не приведет.

В быту такой способ подключения электроприборов уместен во влажных помещениях— в ванных и пр.

Кроме силовых трансформаторов, существуют сигнальные разделительные. Они устанавливаются в электроцепи для гальванической развязки.

Магнитопроводы

Бывают трех видов:

  1. Стержневые. Выполнены в виде стержня ступенчатого сечения. Характеристики оставляют желать лучшего, но зато просты в исполнении.
  2. Броневые. Лучше стержневых проводят магнитное поле и вдобавок защищают обмотки от механических воздействий. Недостаток: высокая стоимость (требуется много стали).
  3. Тороидальные. Наиболее эффективная разновидность: создают однородное сконцентрированное магнитное поле, чем способствуют уменьшению потерь. Трансформаторы с тороидальным магнитопроводом имеют наибольший КПД, но они дороги из-за сложности изготовления.

Мощность

Мощность трансформатора принято обозначать в вольт-амперах (ВА). По данному признаку устройства классифицируются так:

  • маломощные: менее 100 ВА;
  • средней мощности: несколько сотен ВА;

Существуют установки большой мощности, измеряемой в тысячах ВА.

Трансформаторы отличаются назначением и характеристиками, но принцип действия у них одинаков: переменное магнитное поле, генерируемое одной обмоткой, возбуждает во второй ЭДС, величина которого зависит от числа витков.

Необходимость в преобразовании напряжения возникает очень часто, потому трансформаторы получили самое широкое распространение. Данное устройство можно изготовить самостоятельно.

proprovoda.ru

конструкция, принцип и режимы работы

Однофазный трансформатор – статическое устройство, имеющее две обмотки связанные индуктивно на магнитопроводе, предназначенное для преобразования одной величины напряжение и тока в другое в одной фазе.

Конструкция однофазного трансформатора

Любой однофазный трансформатор может работать только в цепях переменного тока. За счёт него полученное электрическое напряжение изменяется в нужную величину. Ток, полученный таким способом, повышается, в результате того, что мощность отдаётся в действительности без потерь. С этого и следует вывод, что основное использование такого прибора – вывести необходимое для решения задачи напряжение, после чего можно применять в определённых целях.

Вникнуть в работу прибора поможет детальный разбор конструкции трансформатора. Состоит он из следующих основных частей:

  • Сердечник, состоящий из материалов с ферромагнитными свойствами;
  • Две катушки, вторая находится на отдельном каркасе;
  • Защитный чехол (имеется не у всех моделей).

Конструкция однофазного трансформатораКонструкция однофазного трансформатора

Принцип работы

Однофазный трансформатор работает на определённом законе, ввиду которого идущее в витке переменное электромагнитное поле наводит электродвижущую силу в расположенном рядом проводнике. Действие названо законом электромагнитной индукции, которое было открыто Майклом Фарадеем в 1831 году. В результате обоснования закона учёный создал общую теорию, используемую в работе огромного числа современных электрических приборов.

При подключении первичной обмотки к источнику переменного тока в витках этой обмотки протекает переменный ток I1, который создает в сердечнике (магнитопроводе) переменный магнитный поток. Замыкаясь в сердечнике, этот поток сцепляется с первичной и вторичной обмотками и индуцирует в них ЭДС, пропорциональные числу витков W.

Принцип работы трансформатораПринцип работы трансформатора

В первичной обмотке ЭДС самоиндукции:
во вторичной обмотке ЭДС взаимоиндукции:
При подключение ко вторичной обмотке нагрузке потечет I2 и установиться U2.

Режимы работы

Как и любой другой преобразователь, однофазный трансформатор имеет три режима работы:

  1. Режим холостого хода. Из названия понятно, что ток проходить не будет, в виду разомкнутой вторичной цепью устройства. А по первичной обмотке проходит холостой ток, основной элемент которого представлен реактивным током намагничивания. Режим используется в качестве определения КПД трансформатора, либо для вывода потерь в сердечнике.режимы работы
  2. Режим нагрузки. Режим определяется работой трансформатора с подсоединённым источником в первичной цепи, и определённой нагрузкой во вторичном канале устройства. Для вторичной цепи характерен протекающий ток нагрузки (посчитанного из отношения количества витков обмотки и вторичного тока) и ток холостого хода.
  3. Режим короткого замыкания. Режим действует в процессе замыкания вторичной цепи из-за разностей значения потенциала. В этом режиме получаемое сопротивление от вторичной обмотки будет одним источником нагрузки. При проведении короткого замыкания можно вычислить убыток на нагрев обмотки в цепи устройства.

Коэффициент трансформации

Трансформаторы бывают повышающие и понижающие, что бы это определить нужно узнать коэффициент трансформации, с его помощью можно узнать какой трансформатор. Если коэффициент меньше 1 то трансформатор повышающий(также это можно определить по значениям если во вторичной обмотке больше чем в первичной то такой повышающий) и наоборот если К>1, то понижающий(если в первичной обмотке меньше витков чем во вторичной).

Формула по вычислению коэффициента трансформацииФормула по вычислению коэффициента трансформации

  • U1 и U2 — напряжение в первичной и вторичной обмотки,
  • N1 и N2 — количество витков в первичной и вторичной обмотке,
  • I1 и I2 — ток в первичной и вторичной обмотки.

Более подробно про расчёт коэффициента трансформации.

Виды магнитопроводов

виды-магнитопроводовВиды магнитопроводов

Классификация однофазных трансформаторов

Силовой трансформатор

Трансформатор используется в преобразовании электроэнергии в сетях и в устройствах, используемых для получения и применения нужной величины электрической энергии. «Силовой» подразумевает его работу с высоким напряжением. Использование силовых трансформаторов вынуждается разными показателями рабочей мощности ЛЭП, сетей в городской полосе, выводящее напряжение для конечных объектов, а также для общей работы электрических устройств и машин. Мощность разнится от нескольких единиц вольт до сотен киловатт.

Автотрансформатор – один из видов преобразователя, где первичная и вторичная обмотки не разделены, а соединены друг с другом напрямую. Ввиду этого между ними образуется как электромагнитная, так и электрическая связь. Обмотка сопровождается как минимум тремя выводами, подсоединяясь к каждой из них, можно использовать разные мощности. Главным достоинством такого трансформатора – это его высокий уровень КПД, так как преобразуется не всё напряжение, а лишь некоторая часть. Разница особенно заметна, когда входная и выходная мощность имеют незначительные отличия.

схема работы автотрансформатора

Трансформатор тока

Такой трансформатора используется в основном для уменьшения тока первичной обмотки до нужного значения, подходящего в применении цепей измерения, защиты, регулирования и сигнализации. Помимо этого используется в гальванической развязке (передача электроэнергии или сигнала связанными электрическими цепями, при этом электрический контакт между ними отсутствует).

Нормируемое значение параметров тока вторичной обмотки – 1 А или 5 А. Первичная обмотка трансформатора подсоединяется ступенчато в цепь с нагрузкой, при этом переменный ток подвергается контролю, ко вторичной обмотке подключаются измерительные устройства.

Вторичной обмотке трансформатора тока необходимо постоянно находиться в режиме около короткого замыкания. Ведь при любом варианте разъединения цепи на неё поступает высокая мощность, способная выбить изоляцию и выхода из строя включённых приборов.

Высоковольтный ТТ(слева) и низковольтный ТТ(справа)Высоковольтный ТТ(слева) и низковольтный ТТ(справа)

Читать более подробно про трансформатор тока.

Трансформатор напряжения

Такой трансформатор получает энергию от источника напряжения. Используется в основном для изменения высокого напряжения в низкое в различных цепях, в том числе измерительных и релейной защиты и автоматики. Имеет возможность проводить изоляцию цепей защиты и измерения от цепей повышенной мощности.

трансформатор напряженияВысоковольтный ТН(слева) и низковольтный ТН(справа)

Читать более подробно про ТН.

Импульсный трансформатор

Применяется для изменения импульсных сигналов с откликом импульса в точности до десятков микросекунд. При этом форма импульса сопровождается лишь незначительным искажением. Главным назначением импульсного трансформатора является передача прямоугольного электрического импульса. Используется для преобразования коротких видеоимпульсов напряжения, зачастую воспроизводящихся с высокой скважностью.

Важный параметр при использовании импульсного трансформатора – это неискажённый вид передачи импульсных систем напряжения. При влиянии на вход устройства мощности, отличающейся друг от друга, важно получить напряжение, в точности совпадающее с той же самой формой, разве что, с другой амплитудой или различающейся полярностью.

Виды трансформаторовВиды импульсных трансформаторов

Читать более подробно про импульсный трансформатор.

Особенности

Как правило, однофазные трансформаторы используют в электрических сетях и в роли источников питания различных устройствах.

Исходя из того факта, что нагрев провода прямо пропорционален квадрату току, идущего через провод, то при передаче энергии на дальние расстояния выгоднее будет использовать высокие напряжения и небольшие токи. Для исключения повреждений электроприборов и уменьшения объёма изоляции в домашних условиях лучше использовать низкие мощности.

Ввиду этого, для уменьшения затрат на транспортировку электрической энергии в общей электросети в большом количестве применяются силовые трансформаторы: вначале увеличивают напряжение генераторов на электростанциях перед передачей энергии по кабелю, а уже после транспортировки уменьшают напряжение линий электропередач до нужного уровня в повсеместном использовании.

однофазный трансформаторОднофазные трансформаторы

Эксплуатация

При использовании однофазных трансформаторов технике безопасности отводится особое место. Обусловлено это тем, что устройство находится под высоким напряжением, находящимся на первичных обмотках. При подключении и установке трансформатора в электрические схемы важно соблюдать ряд правил, для исключения поломок и нарушений работы прибора:

  • Чтобы обмотки не выходили из строя (выгорали), необходимо поставить защиту от короткого замыкания на вторичной цепи;
  • Необходимо контролировать температурный режим сердечника и обмоток. Желательно установить систему охлаждения, предусматривающую исключение критического повышения температуры при работе.

В случае различной нагрузки от электросети изменяется и её напряжение. Для стабильной работы устройств, получающих энергию, необходимо, чтобы напряжение не изменялось от установленного уровня выше допустимого диапазона. Ввиду этого допускается использование методов регулирования напряжения в сети.

ofaze.ru

Принцип работы силового трансформатора

Трансформаторные будки есть практически на каждой улице любого города вне зависимости от размеров. Вся планета подвержена власти электричества. Что такое силовой трансформатор? Для чего они? Принцип работы силового трансформатора? При должном объяснении все станет понятно любому школьнику.

Зачем это нужно?

Трансформатор служит для повышения или понижения подаваемой электроэнергии. Зачем нужно преобразовывать ток? Смысл в том, что согласно закону Джоуля-Ленца тепло, которое выделяет проводник при прохождении по нему электрического тока выделяется в зависимости от силы тока. Причем зависимость эта квадратичная, так как сила тока в формуле имеет вторую степень.

На практике это означает, что увеличение силы тока в 2 раза приведет к увеличению тепловыделений в 4 раза. Все бы ничего, но закон сохранения энергии пока никто не отменял. На нагрев проводника расходуется электроэнергия, которую с таким трудом добывает человечество. Единственный выход: повысить напряжение до максимум.

Согласно закону Ома всегда сохраняется некое равенство: произведение силы тока на сопротивление равняется напряжению в сети. Предположим, что сопротивление не изменяется, так как оно зависит от свойств проводящего материала. Тогда единственным выходом будет максимально задрать напряжение, чтобы уменьшить силу тока в сети.

Высоковольтные линии придумали не ради развлечения. Единственная цель столь сложной системы с трансформаторами: максимальное сокращение потерь.

Принцип работы силового трансформатора

Чтобы говорить о принципе работы силового трансформатора требуется вспомнить некоторые понятия из школьного курса физики. В итоге будет проще понять объяснения рабочей схемы устройства.

Индукция

Чтобы понять, как работает силовой трансформатор, надо разбираться в понятии индукции. Именно на ней основана львиная доля современной электроники. Суть этого явления в том, что при прохождении через проводник ток создает переменное электрическое поле. Движение электронов в свою очередь порождает переменное магнитное поле, которое при попадании в другой проводник породит так переменное электрическое поле.

То есть, если поставить рядом два проводника, причем один из них подключить к источнику тока, а другое не подключать – электричество будет течь в обоих проводниках. Причем во втором проводнике направление тока будет противоположным таковому в исходном варианте.

Свойство индукции используется достаточно часто: в усилителях, передатчиках и, конечно, школьных опытах

Устройство трансформатора

Корпус аппарата представляет собой бак, в который заливается масло. Масло насыщается минералами, чтобы лучше отводить тепло. Выбросы тепловой энергии при работе трансформатора огромны. Однако даже такие потери в тысячи раз меньше возможных утечек энергии при транспортировке.

Масло циркулирует по внутреннему и внешнему контуру трансформатора. Отдельно отметим, что внешний контур часто представляет собой оребренный радиатор. Увеличение площади теплоотдачи приводит к улучшению отдачи тепла. Проще говоря, чем больше площадь соприкосновения масла из внутреннего контура и внешнего радиатора – тем лучше будет отводится тепло, тем меньше вероятность аварии на трансформаторной подстанции.

Само устройство силового трансформатора представляет собой квадратного сечения сердечник, набранный из тонких электростальных пластинок. Используются именно наборные сердечники, чтобы свести к минимум появление самоиндукционных токов, которые приводят к перегреву и увеличению потерь энергии.

На противоположные стороны квадрата наносят обмотку. Обмотка, на которую поддается ток, называется первичной, обмотка, отдающая преобразованную энергию, вторичной.

Принцип работы

Схема работы силового трансформатора выглядит так:

  1. Ток подается на первичную обмотку.
  2. Первичная обмотка в результате прохождения электрического тока начинает генерировать переменное магнитное поле.
  3. Магнитное поле, проходящее сквозь вторичную обмотку, вызывает в ней электрический ток.

Вес секрет процесса в количестве витков. Отношение принятого напряжения к отданному равняется отношению количества витков первичной обмотки к количеству витков вторичного обмотки. Это же отношение называют коэффициентом трансформации. То есть коэффициент показывает, во сколько раз уменьшится или увеличится выходное напряжение на подстанции.

Схема простейшего трансформатораСхема простейшего трансформатора

Почему трансформатор называют силовым

Как мы уже сказали, силовые трансформаторы используют для понижения высоковольного тока до приемлемых для города параметров, то есть 220/360 В – в зависимости от местности и прочих условий. Но нужно отметить, что напряжение высоковольтных линий ненамного больше 1000 к В, а это больше миллиона вольт. Именно за трансформацию столь сильного напряжения, устройство и назвали таким красивым именем.

Установленный силовой трансформаторУстановленный силовой трансформатор

Именно силовые трансформаторы используются для преобразования электричества городских и квартальных сетей. Получается многоступенчатая система снабжения страны электроэнергией:

  1. Сначала повышающие трансформаторы увеличивают напряжение до огромных значений
  2. По проводам ток течет в города и села
  3. Понижающие трансформаторы понижают напряжение сначала до общегородских, а потом и до квартальных значений.

Отдельно нужно сказать, что иногда приходится понижать значение напряжения до 360 В в городе, потому что высоковольтные линии проводить в городской черте запрещено.

Виды трансформаторов

Уже были названы повышающие и понижающие трансформаторы. В зависимости от места использования можно выделить сетевые и силовые аппараты. Сетевые трансформаторы используются в устройствах, поскольку даже квартальные параметры тока слишком высоки для простого телевизора или ноутбука. Поэтому используется трансформатор, чтобы преобразовать ток в подходящий для конкретного предмета бытовой техники.

Сразу использовать маленькие параметры в городе нельзя из тех же соображений экономии. К тому же, разные приборы требуют разных параметров – всем производителям электроники не угодишь, а потому проще каждому встраивать в свой прибор трансформатор.

Отдельной строкой идут автомобильные трансформаторы, которые позволяют заводить машину с использованием небольшого электрического импульса. Выделяют и импульсные и многие другие трансформаторы, но всех их объединяет одно: принцип работы. Отличия кроются только в рабочих параметрах тока и предназначении трансформатора.

Сетевой трансформаторСетевой трансформатор

Контроль работы устройства

Во время сервисных работ строго запрещается заглядывать внутрь бака, сливать полностью масла и проводить какие-либо манипуляции с содержимым корпуса трансформатора. Работоспособность изделия проверяется путем химической оценки пробы масла и холостого подключения аппарата. В результате удается узнать, насколько трансформатор работоспособен в данный момент времени.

Даже к месту монтажа привозят уже готовую конструкцию, которую остается только подключить к сети. Заливка маслом производится на заводе, не говоря уже о более сложных процедурах. Для доставки оборудования используется специализированная техника.

Понравилась статья? Расскажите друзьям:

Оцените статью, для нас это очень важно:

Проголосовавших: 2 чел.
Средний рейтинг: 5 из 5.

principraboty.ru

Трансформатор: назначение, принципы работы и правила подключения

Автор Даниил Леонидович На чтение 9 мин. Просмотров 735 Опубликовано

Свойства магнитного поля изучаются учеными давно. Впервые электромагнитную индукцию описал Майкл Фарадей. А именно как появляется прочная электромагнитная взаимосвязь в обмотках при создании переменного тока в первой катушке. Во вторичной же катушке повышается напряжение, но мощность и частота остаются прежними. Конечно, несведущему человеку в электричестве сложно понять конструкцию, принцип действия, предназначение трансформатора. Однако, это неотъемлемый прибор с установкой во многих сферах: радиотехника, электроэнергетика.

Трансформаторы напряжения: назначение и принцип действия

Трансформатор – электрическое устройство. Преобразует переменный ток одного напряжения в электрический ток другого напряжения. Частота, согласно явлению электромагнитной индукции, остается неизменной.

Состоит статический трансформатор из:

  • первичной и вторичной обмотки;
  • сердечника.

Применяется устройство в разных схемах питания и электроприборах. Передает электроэнергию на большие расстояния и:

  • снижает потери энергии;
  • уменьшает площадь сечения проводов ЛЭП.

Трансформаторы напряжения

Разновидности прибора:

  • повышающий;
  • понижающий;
  • силовой;
  • вращающийся;
  • импульсный;
  • разделительный;
  • согласующий.

Понижающий трансформатор применяется в быту. Именно через него проходит и поступает ток в домашние розетки с мощностью 220 Вт.

Силовой агрегат в составе из сердечника и нескольких обмоток преобразует напряжение в электроцепи по принципу электромагнитной индукции. Также значение напряжения переменного тока без изменений его частоты. Применяется для распределения и передачи электрической энергии. Напряжение в обмотках – свыше 300 кВ. Мощность – от 4 кВ до 200000 кВА.

Справка! Трансформатор служит для понижения либо повышения переменного напряжения. Основой является ферромагнитный сердечник. В дополнение для бесперебойной работы – обмотки, изоляция, магнитопровод, система охлаждения.

Обмотки выполнены из изолированных медных проводов прямоугольного сечения. Между их слоями находятся пустоты для циркуляции охлаждающего масла. Роль которого – отбирать тепло у обмоток, передавать через радиаторные трубки в окружающую среду.

принцип действия трансформатора

Принцип действия устройства основан на:

  • изменении магнитного потока;
  • создании электромагнитной индукции при прохождении через обмотку;
  • подаче напряжения на первичную обмотку;
  • воспроизведении магнетизма электрическим током, изменяющимся во времени.

Переменный ток, протекая по первичной обмотке, начинает создавать в магнитопроводе магнитный ток. Постепенно приводит к потоку во всех обмотках, преобразуя гальваническую развязку (переменное напряжение), но без видоизменения частоты.

Стоит знать! Действие прибора основано на электромагнитной индукции. За счет переменного тока образуется магнитное переменное поле вокруг проводника, видоизменяется в электродвижущую силу. Напряжение на выходе полностью зависит от используемого (понижающего, повышающего) трансформатора. Коэффициент ЭДС в обмотках прямо пропорционален количеству витков.

Для чего нужен трансформатор напряжения?

Трансформатор напряжения – универсальное устройство. Передает и распределяет энергию.

Используются в:

  • электроустановках;
  • блоках питания;
  • агрегатах передачи электроэнергии;
  • устройствах обработки сигналов;
  • источниках питания приборов.

Силовой трансформатор с большим напряжением применяется для:

  • подачи энергии в электросети на электростанциях;
  • повышения напряжения генератора, линии электропередач;
  • снижения напряжения, доходящего до потребительского уровня.

принцип действия силового трансформатора

Трехфазный прибор со специальной системой охлаждения используется в электросетях. Сердечник в составе – общий для всех 3-ех фаз.

Область применения сетевого трансформатора – источники электропитания, узлы электроприборов с разным напряжением. Импульсные агрегаты незаменимы для радиотехнических, электронных устройств. Сначала выпрямляют переменное напряжение в блоках питания. Далее за счет инвертора преобразуют высокочастотные импульсы, стабилизирующие постоянное напряжение.

Трансформаторы входят в состав многих схем питания для обеспечения минимального уровня высокочастотных помех. Например, разделительные установки предотвращают угрозу поражения электрическим током для человека. Ведь включение бытовых приборов в сеть через трансформатор становится безопасным.

Вторая цепь у прибора будет изолирована от контактов с землей, если конечно, речь идет о заземлении электрического оборудования. Измерительные силовые приборы применяются в схемах генераторов переменного тока. Количество фаз у генератора из трансформатора должно совпадать для достижения стабильного напряжения на выходе.

Согласующие трансформаторы незаменимы для электронных устройств с высоким входным сопротивлением и высокочастотных линий, но с разным сопротивлением нагрузки.

Как работает трансформатор напряжения?

Приборы преобразуют энергию источника в необходимый коэффициент напряжения. Работают исключительно при переменном напряжении с постоянной частотой. В основе работы – электромагнитная индукция как явление, срабатываемое при изменении во времени магнитного потока, порождении ЭДС в обмотках.

Работа трансформатора начинается в первичной обмотке, где сердечник создает магнитный поток. Далее задействуется переменный ток, намагничивает сердечник, повышает индуктивность первичной обмотки, препятствует нарастанию тока на выводах обмотки напряжения. Если первичная обмотка отдает магнитный поток, то вторичная принимает его, изменяет с определенной скоростью, пронизывая все ветки и создавая ЭДС.

принцип действия трансформатора

Напряжение на ветках в полной мере зависит от быстроты изменения магнитного потока в сердечнике. Хотя получается одинаковым на ветках первичной и вторичной обмотки благодаря прохождению через них одного и того же магнитного потока.

Он в свою очередь создает вокруг себя электрическое поле в сердечнике, некий вихрь с воздействием на электроны, начиная толкать их в определенную сторону.

Справка! Если сказать проще, то принцип работы трансформатора напряжения основан на возбуждении напряжения во второй обмотке за счет возникшего переменного тока в магнитопроводе.

Чем отличается трансформатор тока от трансформатора напряжения?

Источником питания для трансформатора тока является непосредственно ток. Если он не будет проходить через обмотки, тот агрегат быстро выйдет из строя. Питание для трансформатора напряжения – источники напряжения и он также не будет функционировать при повышенных нагрузках тока.

Отличие между устройствами в разных электрических величинах и схемах включения.

Измерительные трансформаторы напряжения и тока

Приборы с работой под высоким напряжением нуждаются в периодическом измерении.

принцип действия измерительного трансформатора

Для чего этих целей в помощь – измерительные устройства, которые:

  • снижают величину напряжения до нужного уровня;
  • обеспечивают гальваническую развязку измерительному оборудованию от цепей с повышенной опасностью.

Номинальная мощность, напряжение и ток

Номинальная – мощность, с которой трансформатор работает в определенном классе точности и в соответствии с ГОСТом. Выражается в вольтах, амперах. Незначительные отклонения мощности допускаются, но не выше нормированных величин.

Важно! Во избежание повышения погрешности вторичной нагрузки суммарное потребление обмоток измерительных приборов и реле не должно быть более номинальной мощности трансформатора. Узнать номинальную мощность можно в паспорте к агрегату либо на щитке.

Порог номинального напряжения у трансформатора – 10кВ.

Разница в зависимости от мощности электроприборов составляет для:

  • питания электроприемников – 3-6,3кВ;
  • крупногабаритных электродвигателей – до 1000В.

Мощность трехфазного трансформатора вычитается по формуле: – S=квадратный корень цифры 3 UIU—номинальное междуфазное напряжение, В; / — ток в фазе, А. Коэффициенты рабочих токов в обмотках при рабочем состоянии трансформатора не должны быть выше номинальных Хотя кратковременные перегрузки в масляных и сухих агрегатах до определенных пределов (2,5 -3%) приемлемы.

Закон Фарадея

закон Фарадея

По закону электромагнитной индукции во вторичной обмотке создается ЭДС напряжение. Вычисляется по формуле – U2 = −N2*dΦ/dt.

Справка! Фарадея – основной закон электродинамики. Гласит о том, что генерируемая электродвижущая сила равняется скорости изменения магнитного потока, но взятой со знаком минус. Именно Майкл Фарадей сделал открытие, когда в ходе экспериментов объявил, что электродвижущая сила начинает появляться в проводнике только при изменении магнитного поля. Величина этой силы прямо пропорциональна скорости изменения магнитного поля.

Все факты содержатся в одном уравнении. Однако, знак минус в законе – правило Ленца, указывающее на возникновение индукционного электрического тока при изменении магнитного поля в проводнике. Действие тока направлено на магнитное поле, начинающего противодействовать изменению магнитного потока.

Правило Ленца не подчиняется законам электродинамики, ведь индукционный ток появляется как в обмотках, так и в сплошных металлических блоках.

Уравнения идеального трансформатора

В таком трансформаторе силовые линии проходят через все ветки первичной, вторичной обмотки. Значит, отсутствуют вихревые потоки и потери энергии. Магнитное поле изменяется, но порождает идентичную ЭДС во всех витках, поэтому становится прямо пропорциональным их общему числу.

Энергия при поступлении из первичной цепи трансформируется в магнитное поле, далее поступает во вторичной цепи.

Формула уравнения идеального трансформатора – P1 = I1 • U1 = P2 = I2 • U2:

  • R1 – коэффициент поступающей мощности из первой цепи на трансформатор;
  • R2 – коэффициент преобразованной мощности с поступлением во вторичную цепь.

Если повысить напряжение на концах вторичной обмотки, то снизится уровень тока первичной цепи. Согласно уравнению – U2/U1 = N2/N1 = I1/I2 преобразование сопротивления одной цепи к сопротивлению другой возможно только при умножении величины на квадрат отношения.

Как правильно подключить

Во всех тонкостях электрики сложно разобраться простому человеку, но при использовании трансформатора понижающего типа в быту важно понимать, как происходит процесс подключения.

Бывает, что возникает потребность подключения агрегата сразу на нескольких потребителей.

Стоит знать:

  1. При подключении трансформатора сразу на несколько потребителей важно учитывать количество выходных клемм.
  2. Общая потребляемая мощность для жильцов должна быть идентичной мощности трансформатора либо немного ниже. По мнению специалистов, идеальный второй показатель выше первого – на 20%.
  3. Подключается агрегат через электрическую проводку, размер которой не должен быть слишком большим. Достаточно 2 м при монтаже светодиодного освещения во избежании потери мощности.
  4. Суммарная мощность электроприборов не должна быть выше мощности трансформатора.

Если посмотреть на схему подключения понижающего трансформатора, то видно, что монтируется между распределительной коробкой мощностью 220 Вт и лампами накаливания. Провода из распредкоробки подключаются непосредственно к выключателю.

Подключение трансформатора напряженияПодключение трансформатора напряжения

Дополнительная информация! Стоит изначально определять правильное место установки электрического понижающего трансформатора. Нельзя его усердно прятать от посторонних глаз, ведь доступ для демонтажа либо замены должен быть свободным. При этом потребляемая мощность – не ниже мощности трансформатора, иначе процесс монтажа проводить запрещено.

При подключении важно, чтобы совпадали все уравнения, касающиеся модели прибора. Также существенное значение имеет фазировка, если в одну цепь подключается сразу несколько приборов параллельно. Во избежание больших потерь мощности фазы должны быть правильно соединены между собой с образованием замкнутого контура. При несовпадении фаз начнет расти нагрузка и падать мощность. Может произойти короткое замыкание.

Важно! Смотрите на фото, как выглядит упрощенный вид трансформатора.

Трансформатор – электромагнитный аппарат. Повышает либо понижает напряжение переменного тока. Он лишен подвижных частей. Значит, является статическим. По размерам бывает с трехэтажное здание либо миниатюрное, помещаемое в руку. В составе – сердечник и несколько обмоток с расположением на магнитопроводе. Хотя может содержать всего одну обмотку без сердечника.

При работе трансформатора срабатывает принцип электромагнитного взаимодействия. Переменный ток подается на первичную обмотку, меняет направление дважды за цикл. Значит, что вокруг обмотки образуется магнитное поле, но ежесекундно исчезает. Вторичная обмотка – проводник электромагнитного взаимодействия. Там же индуцируется напряжение.

Конечно, простому человеку сложно понять конструкцию, назначение прибора. Для познания можно просто разобрать, прозвонить, подключить или демонтировать в домашних условиях.

remont220.ru

6. Трансформаторы

26Дата
печати 29.03.2009 17:23:002626

6.1. Назначение, устройство и принцип действия трансформаторов.

Трансформатором
называется статическое электромагнитное
устройство, преобразующие электрическую.
энергию переменного тока с параметрами
U1,
I1
в электрическую
энергию переменного тока с параметрами
U2,
I2
той же частоты. [1, 5].

Основное
назначение трансформаторов

– согласование уровней номинальных
(рабочих) напряжений или токов источников
и приёмников электрической. энергии.
Кроме согласования трансформаторы
применяются для выполнения разделительных,
измерительных, дифференцирующих и
некоторых других функций, а также
специальных функций (например, сварочные
трансформаторы ) [5].

Устройство
трансформатора показано на рисунке
6.1.

6.1. К пояснению устройства и принципа действия трансформатора.

Трансформатор
состоит из замкнутого ферромагнитного
магнитопровода (сердечника), на котором
расположены две обмотки, выполненные
из медного или алюминиевого провода.
Для уменьшения потерь в стали, сердечник
собирается из изолированных друг от
друга листов электротехнической стали.

Обмотка, с
числом витков
W1,
подключаемая к источнику питания,
называется
первичной.

К другой обмотке
с числом витков
W2,
называемой вторичной
,
подключается приёмник Zн.

Все величины,
относящиеся к первичной обмотке
(напряжение, ток, мощность, число витков
и т. д.) называются первичными,
а величины, относящиеся ко вторичной
обмотке, — вторичными.

Трансформатор,
у которого W2
< W1,
называется понижающим.
Если

W2
> W1,
то трансформатор называется повышающим.

Величина к = W1/
W2
называется коэффициентом
трансформации трансформатора
.

Трансформатор,
имеющий первичную и одну вторичную
обмотку, называется двухобмотачным.
Если у трансформатора две или более
вторичных обмоток, то он называется
трёх- или
многообмотачным.

В однофазных
цепях синусоид тока применяют однофазные
трансформаторы
,
в трёхфазных цепях – трёхфазные
трансформаторы

[Борисов, с. 288-289].

На рисунке 6.2.
показаны условные графические обозначения
трансформаторов в электрических схемах.

Рис. 6.2. Условные графические обозначения
схем однофазного (а, б)

и трёхфазного (в, г) трансформаторов.

У однофазных
трансформаторов начало и конец первичной
обмотки обозначаются большими буквами:
начало А, конец Х; вторичной обмотки –
малыми буквами: начало а, конец х.
Предполагается, что направление обмотки
от начала к концу относительно
магнитопровода обеих обмоток одинаковое:
или по часовой, или против часовой
стрелки [Зорин, с. 304].

По мощности
трансформаторы подразделяются на
трансформаторы:

малой мощности –
до 50 – 1000 ВА;

средней мощности
– до 20 – 500 кВА;

большой мощности
– до 500 000 – 1 000 000 кВА.

(см. [Зорин, с.
332-333]).

Трансформаторы
средней и большой мощности, используемые
в системах передачи и распределения
электроэнергии, а также при её использовании
в промышленных установках называются
силовыми.

Трансформаторы,
устанавливаемые на электрических
станциях и подстанциях, называются
силовыми
трансформаторами общего назначения
.
В промышленности широко распространены
также силовые
трансформаторы специального назначения
:
выпрямительных, сварочных и др.
электроустановок.

Трансформаторы
малой мощности применяются в
радиотехнических системах и системах
автоматического управления производственными
процессами. Сюда относятся импульсные,
разделительные, согласующие,
дифференцирующие и др. типы маломощных
трансформаторов.

Несмотря на
большое разнообразие типов трансформаторов,
принцип действия всех трансформаторов
одинаков и основан на явлении
электромагнитной индукции.

studfile.net

1.Назначение, области применения, принцип действия трансформатора

Трансформатором называют
статическое электромагнитное устройство,
имеющее две или большее число индуктивно
связанных обмоток и предназначенное
для преобразования посредством
электромагнитной индукции одной или
нескольких систем переменного тока в
одну или несколько других систем
переменного тока.

Трансформаторы
широко используют для следующих целей.

  1. Для
    передачи и распределения электрической
    энергии. Обычно на электростанциях
    генераторы переменного тока вырабатывают
    электрическую энергию при напряжении
    6—24 кВ. 

  2. Для питания
    различных цепей радио- и телевизионной
    аппаратуры; устройств связи, автоматики
    в телемеханики, электробытовых приборов;
    для разделения электрических цепей
    различных элементов этих устройств;
    для согласования напряжений

  3. Для
    включения электроизмерительных приборов
    и некоторых аппаратов, например реле,
    в электрические цепи высокого напряжения
    или в цепи, по которым проходят большие
    токи, с целью расширения пределов
    измерения и обеспечения электробезопасности.
    Трансформаторы, применяемые для этой
    цели, называют измерительными. Они
    имеют сравнительно небольшую мощность,
    определяемую мощностью, потребляемой
    электроизмерительными приборами, реле
    и др.

Принцип действия трансформатора

Электромагнитная
схема однофазного двухобмоточного
трансформатора состоит из двух обмоток
(рис. 2.1), разме­щенных на замкнутом
магнитопроводе, который выполнен из
ферромагнитного материала. Применение
ферромагнитного магнитопровода позволяет
усилить электромагнитную связь между
обмотками, т. е. уменьшить магнитное
сопротивление контура, по которому
проходит магнитный поток машины.
Первичную обмотку 1 подключают к источнику
переменного тока — электрической сети
с напряжением u1. Ко
вторичной обмотке 2 присоединяют
сопротивление нагрузки ZH.

Обмотку
более высокого напряжения называют обмоткой
высшего напряжения
 (ВН),
а низкого напряжения — обмоткой
низшего напряжения
 (НН).
Начала и концы обмотки ВН обозначают
буквами А и X; обмотки
НН — буквами а и х.

При
подключении к сети в первичной обмотке
возникает переменный ток i1 , который
создает переменный магнитный поток Ф,
замыкающийся по магнитопроводу. Поток
Ф индуцирует в обеих обмотках переменные
ЭДС — е1 и е2, пропорциональные,
согласно закону Максвелла, числам витков
w1 и w2 соответствующей
обмотки и скорости изменения потока dФ/dt.

Рис.
2.1. Электромагнитная система  
однофазного   трансфор­матора
1,2
 первичная
и вторичная обмот­ки; 3
 магнитопровод

Таким образом,
мгновенные значения ЭДС, индуцированные
в каждой обмотке,

е1 =
— w1 dФ/dt;     
е2= -w
2dФ/dt.

Следовательно,
отношение мгновенных и действующих ЭДС
в обмотках определяется выражением

E1/E2e1/e2w1/w2.

                                            
(2.1)

Если
пренебречь падениями напряжения в
обмотках тран­сформатора, которые
обычно не превышают 3 — 5% от номи­нальных
значений напряжений U1 и U2, и
считать E1≈U l и Е2U2,
то получим

U1/U2w1/w2.

                                            
(2.2)

Следовательно,
подбирая соответствующим образом числа
витков обмоток, при заданном напряжении
U
1 можно
получить желаемое напряжение U
2. Если
необходимо повысить вторичное напряжение,
то число витков w2 берут
больше числа w1;
такой трансформатор называют повышающим. Если
требуется уменьшить напряжение U2, то
число витков w2 берут
мень­шим w1;
такой трансформатор называют понижающим,

Отношение
ЭДС ЕВН обмотки
высшего напряжения к ЭДС ЕНН обмотки
низшего напряжения (или отношение их
чисел витков) называют коэффициентом
трансформации

kЕВН/ЕНН = wВН/wНН

                                            
(2.3)

Коэффициент k всегда
больше единицы.

В
системах передачи и распределения
энергии в ряде слу­чаев применяют
трехобмоточные трансформаторы, а в
устрой­ствах радиоэлектроники и
автоматики — многообмоточные
трансформаторы. В таких трансформаторах
на магнитопроводе размещают три или
большее число изолированных друг от
друга обмоток, что дает возможность при
питании одной из обмоток получать два
или большее число различных напряжений (U2,
U
3,
U
4 и
т.д.) для электроснабжения двух или
большего числа групп потребителей. В
трехобмоточных силовых трансформаторах
различают обмотки высшего, низшего и
среднего (СН) напряжений.

В трансформаторе
преобразуются только напряжения и токи.
Мощность же остается приблизительно
постоянной (она несколько уменьшается
из-за внутренних потерь энергии в
трансформаторе). Следовательно,

I1/I2≈ U2/U1≈ w2/w1.

                                            
(2.4)

При
увеличении вторичного напряжения
трансформатора в k раз
по сравнению с первичным, ток i2 во
вторичной обмотке соответственно
уменьшается в k раз.

Трансформатор
может работать только в цепях переменного
тока.
 Если
первичную обмотку трансформатора
под­ключить к источнику постоянного
тока, то в его магнито-проводе образуется
магнитный поток, постоянный во времени
по величине и направлению. Поэтому в
первичной и вторичной обмотках в
установившемся режиме не индуцируются
ЭДС, а следовательно, не передается
электрическая энергия из первичной
цепи во вторичную. Такой режим опасен
для трансформатора, так как из-за
отсутствия ЭДС E1 первич­ной
обмотке ток I1 =U1R1 весьма
большой.

Важным
свойством трансформатора, используемым
в устройствах автоматики и радиоэлектроники,
является способность его преобразовывать
нагрузочное сопротивление. Если к
источнику переменного тока подключить
сопротивление R через
трансформатор с коэффициентом
трансформации к, то
для цепи источника

R’ P1/I12≈ P2/I12
I
22R/I12≈ k2R

                                       
(2.5)

где Р1
мощность, потребляемая трансформатором
от источ­ника переменного тока,
Вт;
Р2 =
I22R≈ P1 —
мощность, по­требляемая сопротивлением R от
трансформатора.

Таким
образом, трансформатор
изменяет значение сопро­тивления R в
k
2 раз. Это
свойство широко используют при разработке
различных электрических схем для
согласования сопротивлений нагрузки
с внутренним сопротивлением источ­ников
электрической энергии.

studfile.net

Оставьте комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *