Получение метана из углерода и водорода – Рассчитайте теплоту полученную при образовании 3,2 кг метана из углерода и водорода.

Содержание

Получение метана из углерода

Прежде чем показать, как происходит получение метана из углерода, нужно дать понятия классу органических веществ «алканы» и охарактеризовать сам метан.
Предельные углеводороды (алканы) – это ациклические насыщенные углеводороды, состав которых подчиняется общей формуле . В соответствии с этой формулой алканы образуют гомологический ряд, в котором гомологи отличаются друг от друга на гомологическую разность .
Соединения этого класса являются родоначальными структурами для многих классов органических соединений.
Метан (тривиальные названия – болотный или рудничный газ) – органическое соединение класса алканов. Первый член гомологического ряда алканов. Метан – это газ без цвета и запаха, который хорошо растворяется в этаноле, эфирах, углеводородах и плохо – в воде.
Выделяют промышленные и лабораторные способы получение метана. В промышленности его получают из природного газа или крекинг-газа, а лаборатории – путем прокаливания ацетата натрия () со щелочью или при гидролизе карбида алюминия ().
Известен способ получения метана из простых веществ – углерода и водорода при их нагревании в присутствии катализатора. Уравнение реакции выглядит следующим образом:
.
Эта реакция описывает процесс получения метана из каменного угля, т.е. ещё один промышленный способ.

Катализатор и способ получения углерода и водорода из метана

 

Изобретение относится к производству углерода, предпочтительно нитевидного, и водорода из углеводородов. Сущность изобретения: катализатор содержит, мас.%: оксид никеля — 69 — 74; оксид меди — 9,5 — 12; гидроксид алюминия — 9,5 — 12 и оксид железа — 2 — 12. Указанный катализатор позволяет при 651 — 800oC перерабатывать метан или метановодородные смеси с 70 — 80% степенью использования. 2 с. и 1 з.п. ф-лы, 1 табл.

Изобретение относится к производству углерода, предпочтительно, нитевидного и водорода из углеводородов. Нитевидный углерод образуется в виде клубка нитей, имеющих диаметр в несколько сот ангстрем и длиной до нескольких микрон. Благодаря наличию высокодисперсных частиц никеля и железа нитевидный углерод имеет ферромагнитные свойства и может быть использован для получения ферромагнитных чернил, графитовых пигментов для копирования, синтетических и природных каучуков и пластиков. Наряду с этим, углеродный материал может быть использован как при выплавке сталей, так и в качестве восстановителя в порошковой металлургии.

Известно несколько катализаторов и способов получения углерода и водорода: 1. Разложением метана в присутствии массивного металлического катализатора (Fe, Co, Ni) при 650 — 720oC [1]. 2. Разложением углеводородных газов на поверхности железосодержащего катализатора при 850 — 900oC под давлением 1 — 35 атм [2]. 3. Разложением метана или других углеводородов на поверхности брикетированной сажи с никелем или сажи с железом при температурах ниже точки разложения этих соединений [3]. 4. Разложением метана на поверхности Ni/Al2O3 или Ni/MgO катализаторов при 500 — 550oC [4]. 5. Разложением метана на поверхности Ni-Cu/Al2O3 или Ni-Cu/MgO катализаторов при температурах 560 — 650oC [5]. По достигаемому положительному эффекту наиболее совершенным является катализатор и способ получения углерода и водорода, который и выбран за прототип [5]. По прототипу катализатор имеет состав, мас.%: 70 — 90 оксида никеля с 2 — 16 оксида меди и 8 — 14 гидроксида алюминия или магния. Способ приготовления катализатора включает механохимическую активацию двойной смеси оксидов никеля и меди, а затем тройной смеси никеля и меди с гидроксидом алюминия или магния в планетарной центробежной мельнице с последующим восстановлением смеси водородом при нагревании до температуры реакции разложения метана. Способ получения углерода и водорода состоит в пропускании метана над вышеуказанными катализаторами при 560 — 650oC и атмосферном давлении. Основными недостатками рассматриваемого катализатора и способа получения углерода и водорода являются: 1. Относительно невысокие общие выходы углерода и водорода на грамм восстановленного катализатора. 2. Стабильность работы катализатора и, соответственно, выходы углерода и водорода резко снижаются при увеличении рабочей температуры выше 650oC, а при 560 — 650oC метан разлагается на углерод и водород не полностью, разложение ограничено константой равновесия. Степень превращения 20 — 60%, т.е. значительная часть метана не используется. На выходе из реактора получается метано-водородная смесь, что затрудняет ее дальнейшее использование. 3. Невозможно перерабатывать метано-водородные смеси с содержанием в них водорода больше 60 — 70%. Изобретение решает задачу повышения выхода углерода и водорода и увеличения степени использования метана. Задача решается использованием катализатора состава, мас.%: 69 — 74 оксида никеля, 9,5 — 12 оксида меди, 9,5 — 12 гидроксида алюминия и 2 — 12 оксида железа и следующим способом получения углерода и водорода из метана: 1) восстановление катализатора водородом во время нагрева до температуры реакции 651 — 800oC; 2) замена водорода на метан и проведение реакции разложения до полного прекращения; 3) охлаждение реактора в токе метана или инертного газа до комнатной температуры. Отличительными признаками предлагаемого катализатора является его состав, включающий, мас.%: 69 — 74 оксида никеля, 9,5 — 12 оксида меди, 9,5 — 12 гидроксида алюминия и 2 — 12 оксида железа. Выбор состава катализатора продиктован соображениями достижения максимального выхода углерода и водорода из метана при повышении степени использования метана. Оказалось, что этого можно достигнуть, если к составу катализатора из прототипа добавить оксид железа. Отличительными признаками предлагаемого способа получения углерода и водорода из метана являются: состав катализатора и температура проведения процесса. Выбор температурного интервала проведения реакции определяется тем, что при температурах ниже 651oC резко снижается скорость реакции, уменьшается степень разложения метана из-за термодинамических ограничений, падает выход продукта, а использование температур выше 800oC не увеличивает выход углерода и водорода и оказывается невыгодным с энергетической точки зрения. Неизвестна заявляемая совокупность признаков, приводящая к увеличению выхода углерода и водорода при одновременном повышении степени использования метана, поэтому предлагаемый катализатор и способ получения углерода и водорода можно классифицировать как соответствующий критерию «изобретательский уровень». Сущность изобретения иллюстрируется следующими примерами и подтверждается данными, приведенными в таблице. Примеры 1 — 3 приведены для сравнения. Пример 1. Катализатор, состоящий из 90 мас.% NiO и 10 мас.% Al(OH)3 и полученный 30 мин механохимической активацией в планетарной центробежной мельнице, в количестве 0,0046 г загружают в проточный реактор с весами Мак-Бена, нагревают в течение 30 — 35 мин в потоке водорода 20 л/ч до температуры 700oC. Затем водород заменяют на метан и проводят реакцию разложения при 700oC в течение 1,5 ч и расходе метана 3 л/ч. Привес катализатора за счет углерода составил 350 мас.% по отношению к весу восстановленного катализатора. Пример 2. Катализатор, состоящий из 75 мас.% NiO, 12,5 мас.% CuO и 12,5 мас. % Al(OH)3 и полученный 30 мин механохимической активацией в планетарной центробежной мельнице, в количестве 0,0039 г загружают в проточный реактор с весами Мак-Бена, нагревают в течение 30 — 35 мин в потоке водорода 20 л/ч до температуры 700oC. Затем водород заменяют на метан и проводят реакцию разложения при 700oC в течение 1,5 ч и расходе метана 3 л/ч. Привес катализатора за счет углерода составил 2350 мас.% по отношению к весу восстановленного катализатора. Пример 3. Катализатор, состоящий из 77 мас.% NiO, 14 мас.% Al(OH)3 и 9 мас. % Fe2O3, полученный 30 мин механохимической активацией в планетарной центробежной мельнице, в количестве 0,0031 г загружают в проточный реактор с весами Мак-Бена, нагревают в течение 30 — 35 мин в потоке водорода 20 л/ч до температуры 700oC. Затем водород заменяют на метан и проводят реакцию разложения при 700oC в течение 3 ч и расходе метана 3 л/ч. Привес катализатора за счет углерода составил 1018 мас.% по отношению к весу восстановленного катализатора. Примеры 4 — 13 иллюстрируют сущность изобретения. Пример 4. Катализатор, состоящий из 74 мас.% NiO, 12 мас.% CuO, 12 мас.% Al(OH)3 и 2 мас. % Fe2O3, полученный 30 мин механохимической активацией в планетарной центробежной мельнице, в количестве 0,0029 г загружают в проточный реактор с весами Мак-Бена, нагревают в течение 30 — 35 мин в потоке водорода 20 л/ч до температуры 700oC. Затем водород заменяют на метан и проводят реакцию разложения при 700oC в течение 5 ч и расходе метана 3 л/ч. Привес катализатора за счет углерода составил 10548 мас.% по отношению к весу восстановленного катализатора. Пример 5. Аналогичен примеру 4, отличается только составом катализатора 73 мас. % NiO, 11,5 мас.% CuO, 11,5 мас.% Al(OH)3 и 4 мас.% Fe2O3. Привес катализатора за счет углерода составил 16010 мас.% по отношению к весу восстановленного катализатора. Пример 6. Аналогичен примеру 4, отличается только составом катализатора 72 мас. % NiO, 11 мас.% CuO, 11 мас.% Al(OH)3 и 6 мас.% Fe2O3. Привес катализатора за счет углерода составил 14370 мас.% по отношению к весу восстановленного катализатора. Пример 7. Аналогичен примеру 4, отличается только составом катализатора 71 мас. % NiO, 10,5 мас.% CuO, 10,5 мас.% Al(OH)3 и 8 мас.% Fe2O3. Привес катализатора за счет углерода составил 11868 мас.% по отношению к весу восстановленного катализатора. Пример 8. Аналогичен примеру 4, отличается только составом катализатора 70 мас.% NiO, 10 мас.% CuO, 10 мас.% Al(OH)3 и 10 мас.% Fe2O3. Привес катализатора за счет углерода составил 9218 мас.% по отношению к весу восстановленного катализатора. Пример 9. Аналогичен примеру 4, отличается только составом катализатора 69 мас. % NiO, 9,5 мас.% CuO, 9,5 мас.% Al(OH)3 и 12 мас.% Fe2O3. Привес катализатора за счет углерода составил 6346 мас.% по отношению к весу восстановленного катализатора. Пример 10. Катализатор, состоящий из 72 мас.% NiO, 11 мас.% CuO, 11 мас. % Al(OH)3 и 6 мас.% Fe2O3, полученный 30 мин механохимической активацией в планетарной центробежной мельнице, в количестве 0,0033 г загружают в проточный реактор с весами Бак-Бена, нагревают в течение 30 — 35 мин в потоке водорода 20 л/ч до температуры 651oC. Затем водород заменяют на метан и проводят реакцию разложения при 651oC в течение 4 ч и расходе метана 3 л/ч. Привес катализатора за счет углерода составил 5433 мас. % по отношению к весу восстановленного катализатора. Пример 11. Катализатор, состоящий из 73 мас.% NiO, 11,5 мас.% CuO, 11,5 мас.% Al(OH)3 и 4 мас.% Fe2O3, полученный 30 мин механохимической активацией в планетарной центробежной мельнице, в количестве 0,0023 г загружают в проточный реактор с весами Мак-Бена, нагревают в течение 30 — 35 мин в потоке водорода 20 л/ч до температуры 725oC. Затем водород заменяют на метан и проводят реакцию разложения при 725oC в течение 3 ч и расходе метана 3 л/ч. Привес катализатора за счет углерода составил 15916 мас.% по отношению к весу восстановленного катализатора. Пример 12. Катализатор, состоящий из 73 мас. NiO, 11,5 мас.% CuO, 11,5 мас.% Al(OH)3 и 4 мас.% Fe2O3, полученный 30 мин механохимической активацией в планетарной центробежной мельнице, в количестве 0,0023 г загружают в проточный реактор с весами Мак-Бена, нагревают в течение 30 — 35 мин в потоке водорода 20 л/ч до температуры 750oC. Затем водород заменяют на метан и проводят реакцию разложения при 750oC в течение 3 ч и расходе метана 3 л/ч. Привес катализатора за счет углерода составил 15276 мас.% по отношению к весу восстановленного катализатора. Пример 13. Катализатор, состоящий из 73 мас.% NiO, 11,5 мас.% CuO, 11,5 мас.% Al(OH)3 и 4 мас.% Fe2O3, полученный 30 мин механохимической активацией в планетарной центробежной мельнице, в количестве 0,0034 г загружают в проточный реактор с весами Мак-Бена, нагревают в течение 30 — 35 мин в потоке водорода 20 л/ч до температуры 800oC. Затем водород заменяют на метан и проводят реакцию разложения при 800oC в течение 3 ч и расходе метана 3 л/ч. Привес катализатора за счет углерода составил 423 мас.% по отношению к весу восстановленного катализатора. Как видно из описания примеров и таблицы предлагаемое изобретение позволяет получать нитевидный углерод и водород из метана и может найти промышленное применение в утилизации газовых углеводородных выбросов.

Формула изобретения

1. Катализатор получения углерода и водорода из метана, включающий в свой состав оксиды никеля, меди, гидроксид алюминия, отличающийся тем, что в состав катализатора дополнительно вводят оксид железа при следующем соотношении компонентов, мас.%: NiO — 69,0 — 74,0 CuO — 9,5 — 12,0 Al(OH)3 — 9,5 — 12,0
Fe2O3 — 2,0 — 12,0
2. Способ получения углерода и водорода, включающий разложение метана на никельсодержащем катализаторе при повышенной температуре, отличающийся тем, что в качестве катализатора используют смесь оксидов никеля, меди, железа и гидроксида алюминия, восстановленную водородом при нагревании до 651 — 800oC, при следующем соотношении компонентов, мас.%:
NiO — 69,0 — 74,0
CuO — 9,5 — 12,0
Al(OH)3 — 9,5 — 12,0
Fe2O3 — 2,0 — 12,0
3. Способ по п.2, отличающийся тем, что разложение метана ведут при 651 — 800oC.

РИСУНКИ

Рисунок 1

Расплавы металлов разложили метан на углерод и водород без побочных продуктов

Схема каталитической колонны, в которой метан, двигаясь через расплав катализатора, превращается в газообразный водород и уголь

Brian Long / University of California, Santa Barbara

Американские химики-технологи разработали каталитическую колонну, в которой расплав металлов превращает метан в водород и углерод без образования побочных продуктов. За счет продувания пузырьков метана через расплав температурой около 1000 градусов эффективность конверсии метана в таких колоннах достигает 95 процентов. По словам авторов работы, опубликованной в Science, наиболее эффективным катализатором оказался сплав, который содержит 27 процентов никеля и 73 процента висмута.

Основной проблемой получения чистого водорода с помощью паровой конверсии метана является образование в ходе реакции углекислого газа. Когда этот процесс только разрабатывался, образование углекислого газа в качестве одного из продуктов реакции не считалось проблемой, однако сейчас из-за постоянного роста концентрации CO2 в атмосфере в промышленных процессах по возможности стараются избегать его образования даже в качестве побочного продукта. В случае конверсии метана это можно сделать, например, используя реакцию пиролиза метана с образованием простых веществ: углерода и водорода. Осложняется переход к новой технологии тем, что образующийся углерод осаждается на поверхность твердых катализаторов реакции, что приводит к их пассивации и остановке процесса.

Для решения этой проблемы группа химиков-технологов из Калифорнийского университета в Санта-Барбаре под руководством Эрика Макфарланда (Eric W. McFarland) предложила схему каталитической колонны высотой чуть больше одного метра, в которую катализатор помещается в виде расплава при температуре около 1000 градусов. Через этот расплав продуваются пузырьки метана, которые постепенно превращаются в водород и углерод. Образующийся уголь всплывает на поверхность расплава, где может быть собран и удален из реакционной зоны.

В качестве катализаторов такой реакции ученые использовали расплавы металлов и их сплавов, в которых активным компонентом являются переходные и благородные металлы. В своей работе химики сравнили активность расплавов различных катализаторов пиролиза метана, и наиболее эффективным катализатором в такой каталитической системе оказался сплав, содержащий 27 процентов никеля и 73 процента висмута. Активным компонентом в такой системе является никель, а висмут выполняет роль своеобразного «растворителя». С помощью такого расплава удалось получать 17 наномоль водорода в секунду с каждого квадратного сантиметра поверхности катализатора. Это примерно в сто раз больше, чем для расплава чистого висмута, в 50 раз эффективнее расплава свинца, и в 2 — 5 раз быстрее, чем при использовании других сплавов, содержащих платину и никель.

Для объяснения активности катализатора авторы работы провели компьютерное моделирование расплава металла, через который двигаются молекулы метана. Оказалось, что атомы активного компонента катализатора (например, никеля или платины) находятся в материале в виде отрицательно заряженных ионов, эффективный заряд которых и определяет каталитическую активность материала. А он в свою очередь сильно зависит от свойств металла-растворителя, в частности, его температуры плавления.

С помощью такой каталитической системы удалось провести конверсию метана с эффективностью около 95 процентов, которая не снижается и при повышении давления газа до примерно двух атмосфер. Поэтому уже в ближайшее время такие системы можно будет использовать для дешевого и экологически безвредного получения чистого водорода из метана.

В случае, если углерод является побочным продуктом реакции, а не основным, то его осаждение на поверхность катализатора можно предотвратить с помощью небольшого изменения химического состава катализатора. Например, если добавить в никелевый катализатор олово, то оно встраивается в те позиции, куда мог бы осаждаться углерод и таким образом сильно замедляет возможную пассивацию.

Александр Дубов

Способы получения алканов | CHEMEGE.RU

 

Строение алканов

Гомологический ряд

Получение алканов

Химические свойства алканов

1. Взаимодействие галогеналканов с металлическим натрием (реакция Вюрца).

Это один из лабораторных способов получения алканов. При этом происходит удвоение углеродного скелета.

Например, хлорметан реагирует с натрием с образованием этана:

Хлорэтан взаимодействует с натрием с образованием бутана:

Реакция больше подходит для получения симметричных алканов.

При проведении синтеза со смесью разных галогеналканов образуется смесь разных алканов.

Например, при взаимодействии хлорметана и хлорэтана с натрием помимо пропана образуются этан и бутан.

2. Водный или кислотный гидролиз карбида алюминия:

Al4C3 + 12H2O = 4Al(OH)3 + 3CH4

Al4C3 + 12HCl = 4AlCl3 + 3CH4

Этот способ получения используется в лаборатории.

3. Электролиз солей карбоновых кислот (электролиз по Кольбе).

Это электролиз водных растворов солей карбоновых кислот.

В общем виде:

2R–COONa + 2H2O H2 + 2NaOH + 2CO2 + R–R

В водном растворе ацетат натрия практически полностью диссоциирует:

CH3COONa  CH3COO + Na+

При этом на катод притягиваются катионы натрия Na+ и молекулы воды H2O.

Разряжаться на катоде будут молекулы воды:

Kатод (-):     2H2O + 2e = H2 + 2OH

 На аноде окисляются ацетат-ионы, а именно, атом углерода карбоксильной группы.

При этом от карбоксильной группы отрывается углекислый газ и остаются метильные радикалы, которые образуют газообразный этан:

Aнод (+):    2CH3COO– – 2e = 2CO2 + CH3–CH3

Суммарное уравнение электролиза водного раствора ацетата натрия:

2CH3COONa + 2H2O = H2 + 2NaOH + 2CO2 + CH3–CH3

4. Декарбоксилирование солей карбоновых кислот (реакция Дюма).

Реакция Дюма — это взаимодействие солей карбоновых кислот с щелочами при сплавлении.

R–COONa + NaOH  R–H + Na2CO3

Декарбоксилирование — это отщепление (элиминирование) молекулы углекислого газа из карбоксильной группы (-COOH) или органической кислоты или карбоксилатной группы (-COOMe)  соли органической кислоты.

При взаимодействии ацетата натрия с гидроксидом натрия при сплавлении образуется метан и карбонат натрия:

5. Гидрирование алкеноа, алкинов, циклоалканов, алкадиенов.

При гидрировании этилена образуется этан:

При полном гидрировании ацетилена также образуется этан:

При гидрировании циклопропана образуется пропан:

6. Синтез Фишера-Тропша

 Из синтез-газа (смесь угарного газа и водорода) при определенных условиях (катализатор, температура и давление) можно получить различные углеводороды:

nCO + (3n+1)H2 = CnH2n+2 + nH2O

Это промышленный процесс получения алканов.

7. В промышленности алканы получают из нефти, каменного угля, природного и попутного газа. При переработке нефти используют ректификацию, крекинг и другие способы.

Поделиться ссылкой:

Ученые визуализировали получение синтетического метана

Химики из Федеральной политехнической школы Лозанны разработали новый реактор и метод анализа, который позволил им впервые наблюдать за синтезом метана из углекислого газа и водорода в реальном времени. Статья об открытии была опубликована в журнале ACS Catalysis.

Инфракрасная термография используется для неинвазивного определения температуры объектов с довольно высокой точностью. С помощью одного изображения, сделанного с помощью ИК-камеры, можно получить такое же количество информации, как от сотен термопар одновременно. Кроме того, современные ИК-камеры позволяют делать снимки с частотой до 50 Гц, что позволяет наблюдать за явлениями в динамике.

Теперь ученые из Федеральной политехнической школы Лозанны создали реактор, наблюдения в котором с использованием инфракрасной термографии позволяют визуализировать динамику поверхностных реакций и соотносить ее с другими методами быстрого анализа.

Ученые применили свой метод к реакциям между диоксидом углерода и водородом, происходящим на поверхности катализаторов. Одна из них — реакция Сабатье, которая может быть использована для получения синтетического метана из возобновляемых источников энергии путем соединения CO2 из атмосферы и H2, полученного расщеплением воды.

Сама реакция включает взаимодействие угарного газа (CO) с водородом. Для использования в качестве реагента углекислого газа необходимо сначала восстановить его тем же H2. Процесс самой реакции для активации относительно инертного CO проводят в присутствии твердого катализатора. Обычного в качестве него выступает рутений с оксидом алюминия.

Но предела совершенству нет, и исследователи стремятся разработать более эффективные соединения для катализа этих реакций. В новой работе ученые впервые показали, как работают катализаторы этих реакций и как они реагируют на изменения состава исходной реакционной смеси. Результаты работы могут привести к оптимизации конструкций реактора и катализаторов, что позволит повысить производительность процесса получения метана и других промышленно важных веществ.

Получение и химические свойства алканов

Получение алканов

Рассмотрим получение и химические свойства алканов. В промышленности основным исходным сырьем для получения алканов служат такие природные источники как нефть и природный газ. Нефть – сложный природный объект, основную массу которого составляют углеводороды (УВ) трех гомологических рядов – алканы, циклоалканы и арены, однако наиболее широко представлены углеводороды смешанного гибридного строения. В составе различных фракций нефти содержатся алканы с числом углеродных атомов от 5 до 30. На 95% природный газ состоит из метана, остальные 5% —  примесью этана и пропана.

Алканы выделяют из сырья путем фракционной перегонки, основанной на разности температур кипения. Однако выделение чистых индивидуальных алканов является сложным процессом, поэтому чаще всего получают их смеси. Другим способом их получения является крекинг — термическое разложение углеводородов, в результате которого в углеводородной цепи соединений с более высокой молекулярной массой происходит разрыв углерод-углеродной связи с образованием соединений с более низкой молекулярной массой.

Различают термический крекинг и каталитический крекинг.

Термический крекинг был открыт русским инженером В.Г. Шуховым в 1891 г. Термический крекинг проводят при температуре 450–700oС. При этом происходит разрыва С–С связей высококипящих алканов с образованием более низкокипящих алканов и алкенов:

C12H26 → C6H14 + C6H12

При температуре более 1000°С происходит разрыв как С–С связей, так и более прочных С–Н связей.

Каталитический крекинг осуществляется при температуре 500°С, атмосферном давлении в присутствии катализаторов (чаще всего оксидов алюминия и кремния). В этом случае разрыв связей молекул сопровождается реакциями изомеризации и дегидрирования.

Синтетические методы получения алканов

1.Гидрирование ненасыщенных углеводородов.

Реакцию осуществляют в присутствии катализаторов (Ni, Pd) при нагревании:

СН3-СН=СН-СН3 + Н2 → СН3-СН2-СН2-СН3

   бутан                               бутен-2

СНз-C≡С-СН3  + 2Н2 → СН3-СН2-СН2-СН

                                                                                                                    бутин-2                            бутан

2.Дегалогенирование моногалогенпроизводных алканов.

В присутствии металлического натрия нагревание моногалогензамещенных алканов приводит к образованию алканов с удвоенным числом атомов углерода (реакция Вюрца):

СН3-СН-СН-СН2-Cl + 2Na + Cl-СН2-СН-СН-СН3  → СН3-СН-СН-СН2-СН2-СН-СН-СН3 + 2NaCl.

3.Сплавление безводных солей карбоновых кислот с щелочами. При получаются алканы, содержащие на один атом углерода меньше по сравнению с углеродной цепью исходных карбоновых кислот (реакция Дюма):

CH3-CH2-COONa + NaOH→СН3-СН3↑ + Na2CO3

4.Получение смеси алканов из синтез-газа (СО + Н2):

nCO + (2n+1)H2 = CnH2n+2 + nH2O

5.Электролиз раствора солей карбоновых кислот (синтез Кольбе).

При электролизе солей карбоновых кислот на аноде выделятся соответствующий алкан и углекислый газ, на катоде — водород и щелочь

CH3-CH2-COONa + H2O → СН3-СН3↑ + 2СО2 + Н2 + 2NaОН

Получение метана

1. Действие на раскаленную медь смеси сероводорода и сероуглерода:

CS2 + 2H2S + 8Cu = CH4+ Cu2S

2. Нагревание до 1200 градусов смеси водорода и углерода (а в присутствии никелевого катализатора до 475 градусов):

С + 2Н2 → СН4

Та же самая реакция протекает в горящей в атмосфере водорода электрической дуге.

3. Взаимодействие карбида алюминия с водой:

Аl4С3 + 12Н2О = ЗСН4↑ + 4Аl(ОН)3.

4. Нагревание смеси щелочи и ацетата натрия:

СН3СООNa + NaOH = Na2CO3 + CH4.

5. Взаимодействие водорода и оксида углерода (II):

CO + 3H2 = CH4 + h3O

Химические свойства алканов

Алканы ввиду насыщенности связей при нормальных условиях являются инертными веществами (их еще называют «химические мертвецы»). Они не способны вступать в реакции восстановления, при комнатной температуре не окисляются даже под действием таких сильных окислителей как К2Cr2O7, KMnO4 и т.п. Однако в определенных  условиях они могут вступать в реакции окисления (горения), дегидрирования, дегидроциклизации, изомеризации, разложения (крекинг), замещения.

1.Реакция дегидрирования (протекает при повышенной температуре в присутствии катализаторов Pt, Pd, Ni, Fe, Cr2O3, Fe2O3, ZnO):

СН3-СН2-СН3 → СН3-СН=СН2 + H2 (катализатор — Ni, 500°С)

                                                              пропан                     пропен

СН3-СН2-СН2-СН3 → СН3-СН=СН-СН3 + H2 (катализатор — Ni, 500°С)

                                                       бутан                             бутен-2

СН3-СН2-СН2-СН3 → CH2=CH-CH=CH2 + H2 (катализатор — Cr2O3/Al2O3, ~550°С)

                                               бутан                               бутадиен-1,3

2СН4 → CH≡CH+ H2 (катализатор — С, 1500°С)

                                                                           метан      ацетилен

2.Реакция дегидроциклизации (протекает при повышенной температуре в присутствии катализаторов):

3.Реакция изомеризации (протекает при повышенной температуре в присутствии катализатора):

4.Крекинг (нагрев до высоких температур без доступа воздуха):

C6H14 → C3H8 + C3H6

5.Окисление:

Неполное окисление алканов используют для получения карбоновых кислот, кетонов, альдегидов, спиртов:

СН3-СН2-СН2-СН3 + 3O2 → 2СН3-СOOH + 2H2O

                                                                                 бутан                               уксусная кислота

Действие кислорода воздуха в присутствии солей марганца на алканы с числом атомов углерода в цепи более 25 приводит к образованию смеси карбоновых кислот, среднее число атомов углерода в цепи которых составляет 12-18.

Полное окисление алканов (горение) –это экзотермическая реакция, которая сопровождается разрывом всех С-С и С-Н связей:

C6H14 + 9,5O2 6CО2 + 7H2O + Q

Низшие алканы (метан, этан, пропан, бутан) – легко воспламеняются, увеличение углеродной цепи алканов ведет к затруднению их горения, что объясняется недостатком кислорода воздуха, необходимого для полного окисления всего углерода. При этом происходит горение с образованием копоти, угарного газа.

6.Реакция образования «синтез-газа»:

СН4 + H2O → CO + 3H(катализатор — Ni, 800°С)

7. Реакция замещения (SR)

Замещение атома водорода происходит по радикальному механизму.  Вначале преимущественно замещается третичный атом углерода, затем вторичный и первичный.

  • Реакция галогенирования алканов возможна только при действии света или высокой температуры. При этом образуются галогеналканы:

Реакция продолжается до тех пор, пока не израсходуется один из реагентов. При большом количестве галогена в результате реакции образуется смесь продуктов замещения 2-х, 3-х и т.д. атомов водорода

  • Реакция нитрования алканов (реакция Коновалова) протекает при действии разбавленной азотной кислоты:
  • Реакция сульфохлорирования

CH3(CH2)10CH3 + SO2 + Cl2CH3(CH2)10CH2-SO2Cl + HCl
CH3(CH2)10CH2-SO2Cl + 2NaOHCH3(CH2)10-CH2SO3Na + NaCl

Применение алканов

Алканы — Википедия

Эта статья — о химических соединениях. О канадской алюминиевой компании см. Rio Tinto Alcan.

Химическая структура (вверху) и 3D-модель (внизу) метана — простейшего алкана

Алка́ны (также насыщенные углеводороды, парафины) — ациклические углеводороды линейного или разветвлённого строения, содержащие только простые связи и образующие гомологический ряд с общей формулой CnH2n+2.

Все алканы относятся к более крупному классу алифатических углеводородов. Алканы являются насыщенными углеводородами, то есть содержат максимально возможное число атомов водорода для заданного числа атомов углерода. Каждый атом углерода в молекулах алканов находится в состоянии sp3-гибридизации — все 4 гибридные орбитали атома С идентичны по форме и энергии, 4 связи направлены в вершины тетраэдра под углами 109°28′. Связи C—C представляют собой σ-связи, отличающиеся низкой полярностью и поляризуемостью. Длина связи C—C составляет 0,154 нм, длина связи C—H — 0,1087 нм.

Простейшим представителем класса является метан (CH4). Углеводород с самой длинной цепью — нонаконтатриктан C390H782 синтезировали в 1985 году английские химики И. Бидд и М. К. Уайтинг[1].

Рациональная[править | править код]

Выбирается один из атомов углеродной цепи, он считается замещённым метаном, и относительно него строится название «алкил1алкил2алкил3алкил4метан», например:

Alkan02.png

а: н-бутил-втор-бутилизобутилметан

б: триизопропилметан

в: триэтилпропилметан

Систематическая ИЮПАК[править | править код]

По номенклатуре ИЮПАК названия алканов образуются при помощи суффикса -ан путём добавления к соответствующему корню от названия углеводорода. Выбирается наиболее длинная неразветвлённая углеводородная цепь, при этом нумерация этой цепи начинается со стороны ближайшего к концу цепи заместителя. В названии соединения цифрой указывают номер углеродного атома, при котором находится замещающая группа или гетероатом, затем название группы или гетероатома и название главной цепи. Если группы повторяются, то перечисляют цифры, указывающие их положение, а число одинаковых групп указывают приставками ди-, три-, тетра-. Если группы неодинаковые, то их названия перечисляются в алфавитном порядке.[2]

Например:

Alkan03.png
2,6,6-триметил-3-этилгептан (слева направо) / 2,2,6-триметил-5-этилгептан (справа налево)

При сравнении положений заместителей в обеих комбинациях, предпочтение отдается той, в которой первая отличающаяся цифра является наименьшей. Таким образом, правильное название — 2,2,6-триметил-5-этилгептан.

Алканы образуют гомологический ряд.

Гомологический ряд алканов (первые 10 членов)
Метан CH4 CH4
Этан CH3—CH3 C2H6
Пропан CH3—CH2—CH3 C3H8
Бутан CH3—CH2—CH2—CH3 C4H10
Пентан CH3—CH2—CH2—CH2—CH3 C5H12
Гексан CH3—CH2—CH2—CH2—CH2—CH3 C6H14
Гептан CH3—CH2—CH2—CH2—CH2—CH2—CH3 C7H16
Октан CH3—CH2—CH2—CH2—CH2—CH2—CH2—CH3 C8H18
Нонан CH3—CH2—CH2—CH2—CH2—CH2—CH2—CH2—CH3 C9H20
Декан CH3—CH2—CH2—CH2—CH2—CH2—CH2—CH2—CH2—CH3 C10H22

Алканы, число атомов углерода в которых больше трёх, имеют изомеры. Изомерия предельных углеводородов обусловлена простейшим видом структурной изомерии — изомерией углеродного скелета, а начиная с C7H16 — также оптической изомерией[3]. Число структурных изомеров алканов CnH2n+2 в зависимости от числа атомов углерода n без учёта стереоизомерии[4][5] и с учётом стереоизомерии[6]:

n Число изомеров С учётом стереоизомерии
4 2 2
5 3 3
6 5 5
7 9 11
8 18 24
9 35 55
10 75 136
11 159 345
12 355 900
13 802 2412
14 1858 6563
15 4347 18 127
20 366 319 3 396 844
25 36 797 588 749 329 719
30 4 111 846 763 182 896 187 256

Число структурных изомеров низших углеводородов до C14H30 было установлено прямым подсчётом; в 1931 году был разработан рекурсивный метод подсчёта числа изомеров[7]. Какой-либо простой связи между числом атомов углерода n и числом изомеров обнаружено не было[7]. При n→1{\displaystyle n\rightarrow {\mathcal {1}}} число различных структурных изомеров алканов можно оценить посредством теоремы Редфилда — Пойи[8].

  • Температуры плавления и кипения увеличиваются с молекулярной массой и длиной главной углеродной цепи
  • При стандартных условиях, установленных ИЮПАК (давление 105 Па, температура 0 °C), неразветвлённые алканы с CH4 до C4H10 являются газами, с C5H12 до C13H28 — жидкостями, а начиная с C14H30 и далее — твёрдыми веществами.
  • Температуры плавления и кипения понижаются от менее разветвлённых к более разветвлённым. Так, например, при 20 °C н-пентан — жидкость, а неопентан — газ.
  • Газообразные алканы горят бесцветным или бледно-голубым пламенем с выделением большого количества тепла.
Физические свойства нормальных алканов
n Название Тпл, °C Ткип, °C Плотность, г/см³ Показатель преломления
1 Метан −182,48 −161,5 0,416 при Tкип
2 Этан −183,3 −88,63 0,546 при Tкип
3 Пропан −187,7 −42,1 0,585 при Tкип
4 Бутан −138,35 −0,5 0,6 при Tкип 1,3326
Изобутан −159,60 −11,73 0,5510 при Tкип
5 Пентан −129,7 36,07 0,6262 1,3575
6 Гексан −95,3 68,7 0,6594 1,3749
7 Гептан −90,6 98,4 0,638 1,3876
8 Октан −55,8 125,7 0,7025 1,3974
9 Нонан −54 150,8 0,718 1,4054
10 Декан −29,7 174,1 0,730 1,4119
11 Ундекан −25,6 195,9 0,7402 1,4151
12 Додекан −9,6 216,3 0,7487 1.4216
13 Тридекан −5,4 235,5 0,7564 1,4256
14 Тетрадекан 5,9 253,6 0,7628 1,4289
15 Пентадекан 9,9 270,6 0,7685 1,4310
16 Гексадекан 18,2 286,8 0,7734 1,4345
17 Гептадекан 22,0 301,9 0,778* 1,4369*
18 Октадекан 28,2 316,1 0,7819* 1,4390*
19 Нонадекан 32,1 329,76 0,7855* 1,4409*
20 Эйкозан 36,8 342,7 0,7887* 1,4426*
21 Генэйкозан 40,5 355,1 0,7917* 1,4441*
22 Докозан 44,4 367,0 0,7944* 1,4455*
23 Трикозан 47,6 378,3 0,7969* 1,4468*
24 Тетракозан 50,9 389,2 0,7991* 1,4480*
25 Пентакозан 53,7 399,7 0,8012* 1,4491*
26 Гексакозан 57 262 (15 мм рт. ст.) 0,778
27 Гептакозан 60 270 (15 мм рт. ст.) 0,780
28 Октакозан 61,1 280 (15 мм рт. ст.) 0,807
29 Нонакозан 64 286 (15 мм рт. ст.) 0,808
30 Триаконтан 65,8 446,4 0,897* 1,4536*
31 Гентриаконтан 67,9 455 0,8111* 1,4543*
32 Дотриаконтан 69,7 463 0,8124* 1,4550*
33 Тритриаконтан 71 474 0,811
34 Тетратриаконтан 73,1 478 0,8148* 1,4563*
35 Пентатриаконтан 74,7 486 0,8159* 1,4568*
36 Гексатриаконтан 75 265 при 130 Па 0,814
37 Гептатриаконтан 77,4 504,14 0,815
38 Октатриаконтан 79 510,93 0,816
39 Нонатриаконтан 78 517,51 0,817
40 Тетраконтан 81,4 523,88 0,817
41 Гентетраконтан 80,7 530,75 0,818
42 Дотетраконтан 82,9 536,07 0,819
43 Тритетраконтан 85,3 541,91 0,820
44 Тетратетраконтан 86,4 547,57 0,820
45 Пентатетраконтан 553,1 0,821
46 Гексатетраконтан 558,42 0,822
47 Гептатетраконтан 563,6 0,822
48 Октатетраконтан 568,68 0,823
49 Нонатетраконтан 573,6 0,823
50 Пентаконтан 93 421 0,824
51 Генпентаконтан 583 0,824
52 Допентаконтан 94 587,6 0,825
53 Трипентаконтан 592 0,825
54 Тетрапентаконтан 95 596,38 0,826
60 Гексаконтан 98,9
70 Гептаконтан 105,3
100 Гектан 115,2
150 Пентаконтагектан 123
390 Нонаконтатриктан 132

Примечание к таблице: * отмечены значения, полученные для переохлаждённой жидкости.

ИК-спектроскопия[править | править код]

В ИК-спектрах алканов четко проявляются частоты валентных колебаний связи С—Н в области 2850—3000 см−1. Частоты валентных колебаний связи С—С переменны и часто малоинтенсивны. Характеристические деформационные колебания в связи С—Н в метильной и метиленовой группах обычно лежат в интервале 1400—1470 см−1, однако метильная группа даёт в спектрах слабую полосу при 1380 см−1.

УФ-спектроскопия[править | править код]

Чистые алканы не поглощают излучение в ультрафиолетовой области выше 2000 Å и по этой причине часто оказываются отличными растворителями для снятия УФ-спектров других соединений.

Алканы имеют низкую химическую активность. Это объясняется тем, что одинарные связи C—H и C—C относительно прочны, и их сложно разрушить. Поскольку связи С—C неполярны, а связи С—Н малополярны, оба вида связей малополяризуемы и относятся к σ-виду, их разрыв наиболее вероятен по гомолитическому механизму, то есть с образованием радикалов.

Реакции радикального замещения[править | править код]

Галогенирование[править | править код]

Галогенирование алканов протекает по радикальному механизму. Для инициирования реакции необходимо смесь алкана и галогена облучить УФ-излучением или нагреть.

Хлорирование метана не останавливается на стадии получения метилхлорида (если взяты эквимолярные количества хлора и метана), а приводит к образованию всех возможных продуктов замещения, от хлорметана до тетрахлорметана. Хлорирование других алканов приводит к смеси продуктов замещения водорода у разных атомов углерода. Соотношение продуктов хлорирования зависит от температуры. Скорость хлорирования первичных, вторичных и третичных атомов зависит от температуры, при низкой температуре скорость убывает в ряду: третичный, вторичный, первичный. При повышении температуры разница между скоростями уменьшается до тех пор, пока не становится одинаковой. Кроме кинетического фактора на распределение продуктов хлорирования оказывает влияние статистический фактор: вероятность атаки хлором третичного атома углерода в 3 раза меньше, чем первичного, и в 2 раза меньше, чем вторичного. Таким образом, хлорирование алканов является нестереоселективной реакцией, исключая случаи, когда возможен только один продукт монохлорирования.

Стоит отметить, что галогенирование происходит тем легче, чем длиннее углеродная цепь н-алкана. В этом же направлении уменьшается энергия ионизации молекулы вещества, то есть, алкан легче становится донором электрона.

Галогенирование — это одна из реакций замещения. В первую очередь галогенируется наименее гидрированый атом углерода (третичный атом, затем вторичный, первичные атомы галогенируются в последнюю очередь). Галогенирование алканов проходит поэтапно с последовательным образованием хлорметана, дихлорметана, хлороформа и тетрахлорметана: за один этап замещается не более одного атома водорода:

Ch5+Cl2→Ch4Cl+HCl{\displaystyle {\mathsf {CH_{4}+Cl_{2}\rightarrow CH_{3}Cl+HCl}}}
Ch4Cl+Cl2→Ch3Cl2+HCl{\displaystyle {\mathsf {CH_{3}Cl+Cl_{2}\rightarrow CH_{2}Cl_{2}+HCl}}}
Ch3Cl2+Cl2→CHCl3+HCl{\displaystyle {\mathsf {CH_{2}Cl_{2}+Cl_{2}\rightarrow CHCl_{3}+HCl}}}
CHCl3+Cl2→CCl4+HCl{\displaystyle {\mathsf {CHCl_{3}+Cl_{2}\rightarrow CCl_{4}+HCl}}}

Под действием света молекула хлора распадается на радикалы, затем они атакуют молекулы алкана, отрывая у них атом водорода, в результате этого образуются метильные радикалы ·СН3, которые сталкиваются с молекулами хлора, разрушая их и образуя новые радикалы.

Цепной механизм галогенирования:

1) Инициирование

Cl:Cl→hνCl·+·Cl{\displaystyle {\ce {\mathsf {Cl{\text{:}}Cl->[{h\nu }]Cl{\text{·}}+{\text{·}}Cl}}}}

2) Рост цепи

Ch4-Ch3-Ch4+Cl·→Ch4-CH˙-Ch4+HCl{\displaystyle {\mathsf {CH_{3}{\text{-}}CH_{2}{\text{-}}CH_{3}+Cl{\text{·}}\rightarrow CH_{3}{\text{-}}{\dot {CH}}{\text{-}}CH_{3}+HCl}}}
Ch4-CH˙-Ch4+Cl:Cl→Ch4-CHCl-Ch4+Cl·{\displaystyle {\mathsf {CH_{3}{\text{-}}{\dot {CH}}{\text{-}}CH_{3}+Cl{\text{:}}Cl\rightarrow CH_{3}{\text{-}}CHCl{\text{-}}CH_{3}+Cl{\text{·}}}}}

3) Обрыв цепи

Ch4-CH˙-Ch4+Cl·→Ch4-CHCl-Ch4{\displaystyle {\mathsf {CH_{3}{\text{-}}{\dot {CH}}{\text{-}}CH_{3}+Cl{\text{·}}\rightarrow CH_{3}{\text{-}}CHCl{\text{-}}CH_{3}}}}

Бромирование алканов отличается от хлорирования более высокой стереоселективностью из-за большей разницы в скоростях бромирования третичных, вторичных и первичных атомов углерода при низких температурах.

Иодирование алканов иодом не происходит, получение иодидов прямым иодированием осуществить нельзя.

С фтором и хлором реакция может протекать со взрывом, в таких случаях галоген разбавляют азотом или подходящим растворителем.

Сульфирование[править | править код]

При одновременном действии на алканы оксидом серы (IV) и кислородом, при ультрафиолетовом облучении или при участии веществ, являющихся донорами свободных радикалов (диазометан, органические перекиси), протекает реакция сульфирования с образованием алкилсульфокислот:

Ch4-Ch3-Ch3-Ch4→O2;SO2;hνCh4-Ch3-Ch3-Ch3-SO2OH{\displaystyle {\mathsf {CH_{3}{\text{-}}CH_{2}{\text{-}}CH_{2}{\text{-}}CH_{3}{\xrightarrow {O_{2};SO_{2};h\nu }}CH_{3}{\text{-}}CH_{2}{\text{-}}CH_{2}{\text{-}}CH_{2}{\text{-}}SO_{2}OH}}}
Сульфохлорирование (реакция Рида)[править | править код]

Reed Reaction Scheme.png
При облучении ультрафиолетовым излучением алканы реагируют со смесью SO2 и Cl2, После того, как с уходом хлороводорода образуется алкильный радикал, присоединяется диоксид серы. Образовавшийся сложный радикал стабилизируется захватом атома хлора с разрушением очередной молекулы последнего.

Развитие цепного процесса:

RH+Cl⋅→R⋅+HCl{\displaystyle {\mathsf {RH+Cl\cdot \rightarrow R\cdot +HCl}}}
R⋅+SO2→RSO2⋅{\displaystyle {\mathsf {R\cdot +SO_{2}\rightarrow RSO_{2}\cdot }}}
RSO2⋅+Cl2→RSO2Cl+Cl⋅{\displaystyle {\mathsf {RSO_{2}\cdot +Cl_{2}\rightarrow RSO_{2}Cl+Cl\cdot }}}

Легче всего сульфохлорируются углеводы линейного строения, в отличие от реакций хлорирования и нитрования.[9]

Образовавшиеся сульфонилхлориды широко применяются в производстве ПАВ.

Нитрование[править | править код]

Алканы реагируют с 10 % раствором азотной кислоты или оксидом азота NO2 в газовой фазе при температуре 140 °C и небольшом давлении с образованием нитропроизводных:

RH+HNO3→RNO2+h3O{\displaystyle {\mathsf {RH+HNO_{3}\rightarrow RNO_{2}+H_{2}O}}}

Имеющиеся данные указывают на свободнорадикальный механизм. В результате реакции образуются смеси продуктов.

Реакции окисления[править | править код]
Автоокисление

Окисление алканов в жидкой фазе протекает по свободно-радикальному механизму и приводит к образованию гидропероксидов, продуктов их разложения и взаимодействия с исходным алканом. Схема основной реакции автоокисления:

RH+O2→R⋅+HOO⋅{\displaystyle {\mathsf {RH+O_{2}\rightarrow R\cdot +HOO\cdot }}}
R⋅+O2→ROO⋅{\displaystyle {\mathsf {R\cdot +O_{2}\rightarrow ROO\cdot }}}
ROO⋅+RH→ROOH+R⋅{\displaystyle {\mathsf {ROO\cdot +RH\rightarrow ROOH+R\cdot }}}
Горение

Основным химическим свойством предельных углеводородов, определяющих их использование в качестве топлива, является реакция горения. Пример:

Ch5+2O2→CO2+2h3O+ΔQ{\displaystyle {\mathsf {CH_{4}+2O_{2}\rightarrow CO_{2}+2H_{2}O+\Delta Q}}}

Значение Q достигает 46 000 — 50 000 кДж/кг.

В случае нехватки кислорода вместо углекислого газа получается оксид углерода(II) или уголь (в зависимости от концентрации кислорода).

Каталитическое окисление

В реакциях каталитического окисления алканов могут образовываться спирты, альдегиды, карбоновые кислоты.

При мягком окислении СН4 в присутствии катализатора кислородом при 200 °C могут образоваться:

Окисление также может осуществляться воздухом. Процесс проводится в жидкой или газообразной фазе. В промышленности так получают высшие жирные спирты и соответствующие кислоты.

Реакция окисления алканов диметилдиоксираном:

Oxidation of alkane using dimethyldioxirane.svg

Механизм реакций получения кислот путём каталитического окисления и расщепления алканов показан ниже на примере получения из бутана уксусной кислоты:

Butane to acetic acid.svg
Термические превращения алканов[править | править код]
Разложение

Реакции разложения происходят лишь под влиянием больших температур. Повышение температуры приводит к разрыву углеродной связи и образованию свободных радикалов.

Примеры:

Ch5→ot>1000oCC+2h3{\displaystyle {\mathsf {CH_{4}{\xrightarrow[{}]{^{o}t>1000^{o}C}}C+2H_{2}}}}
C2H6→2C+3h3{\displaystyle {\mathsf {C_{2}H_{6}\rightarrow 2C+3H_{2}}}}
Крекинг

При нагревании выше 500 °C алканы подвергаются пиролитическому разложению с образованием сложной смеси продуктов, состав и соотношение которых зависят от температуры и времени реакции. При пиролизе происходит расщепление углерод-углеродных связей с образованием алкильных радикалов.

В 1930—1950 гг. пиролиз высших алканов использовался в промышленности для получения сложной смеси алканов и алкенов, содержащих от пяти до десяти атомов углерода. Он получил название «термический крекинг». С помощью термического крекинга удавалось увеличить количество бензиновой фракции за счёт расщепления алканов, содержащихся в керосиновой фракции (10—15 атомов углерода в углеродном скелете) и фракции солярового масла (12—20 атомов углерода). Однако октановое число бензина, полученного при термическом крекинге, не превышает 65, что не удовлетворяет требованиям условий эксплуатации современных двигателей внутреннего сгорания.

В настоящее время термический крекинг полностью вытеснен в промышленности каталитическим крекингом, который проводят в газовой фазе при более низких температурах — 400—450 °C и низком давлении — 10—15 атм на алюмосиликатном катализаторе, который непрерывно регенерируется сжиганием образующегося на нём кокса в токе воздуха. При каталитическом крекинге в полученном бензине резко возрастает содержание алканов с разветвлённой структурой.

Для метана:

2Ch5→ot>1500oCC2h3+3h3{\displaystyle {\mathsf {2CH_{4}{\xrightarrow[{}]{^{o}t>1500^{o}C}}C_{2}H_{2}+3H_{2}}}}

Во время крекинга одна из связей (С-С) разрывается, образуя два радикала. Далее одновременно происходят три процесса, вследствие которых реакция дает множество различных продуктов.

Ch4-Ch3:Ch4→1500∘CCh4-Ch3·+·Ch4{\displaystyle {\mathsf {CH_{3}{\text{-}}CH_{2}{\text{:}}CH_{3}{\xrightarrow {1500^{\circ }C}}CH_{3}{\text{-}}CH_{2}{\text{·}}+{\text{·}}CH_{3}}}}

1) Рекомбинация

Ch4-Ch3·+·Ch3-Ch4→Ch4-Ch3-Ch3-Ch4{\displaystyle {\mathsf {CH_{3}{\text{-}}CH_{2}{\text{·}}+{\text{·}}CH_{2}{\text{-}}CH_{3}\rightarrow CH_{3}{\text{-}}CH_{2}{\text{-}}CH_{2}{\text{-}}CH_{3}}}}
Ch4·+·Ch3-Ch4→Ch4-Ch3-Ch4{\displaystyle {\mathsf {CH_{3}{\text{·}}+{\text{·}}CH_{2}{\text{-}}CH_{3}\rightarrow CH_{3}{\text{-}}CH_{2}{\text{-}}CH_{3}}}}
Ch4·+·Ch4→Ch4-Ch4{\displaystyle {\mathsf {CH_{3}{\text{·}}+{\text{·}}CH_{3}\rightarrow CH_{3}{\text{-}}CH_{3}}}}

2) Диспропорционирование

Ch4·+·Ch3-Ch4→Ch5+Ch3=Ch3{\displaystyle {\mathsf {CH_{3}{\text{·}}+{\text{·}}CH_{2}{\text{-}}CH_{3}\rightarrow CH_{4}+CH_{2}{\text{=}}CH_{2}}}}
Ch4-Ch3·+·Ch3-Ch4→Ch4-Ch4+Ch3=

Оставьте комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *