Орбиты искусственных спутников земли: Системы спутниковой связи на геостационарной орбите

Содержание

Системы спутниковой связи на геостационарной орбите

Калью Кукк, главный эксперт, МНИТИ, профессор, д. т. н.

Общие положения

Слово «орбита» в переводе с латинского означает «дорога», «колея». Этим термином великий немецкий ученый Иоганн Кеплер в начале XVII в. назвал траекторию движения небесных тел в космическом пространстве. Им были открыты и сформулированы основные законы их движения. После запуска в октябре 1957 г. первого в мире советского спутника Земли «Спутник-1» такие понятия, как «искусственное небесное тело» или «искусственный спутник Земли» стали реальностью. Их движение подчиняется тем же эмпирическим законам Кеплера.

Первый закон Кеплера гласит, что траектория движения планет является эллипсом, в одном из фокусов которого находится Солнце. Частный случай движения планеты − движение по круговой орбите (при этом эксцентриситет эллипса, т. е. отношение расстояния между фокусами к большой оси, будет равен нулю или мало отличаться от нуля). В соответствии с первым законом Кеплера один из фокусов эллипса, по которому движется искусственное небесное тело в поле тяготения Земли, должен находиться в центре Земли. Отсюда следует, что искусственный спутник Земли не может двигаться вдоль ее параллели, за исключением экваториальной плоскости. Второй фокус будет расположен на таком же расстоянии от апогея орбиты спутника, на каком центр Земли находится от ее перигея (рис. 1).

Рис. 1. Геометрическая иллюстрация к первому закону Кеплера, где: a – большая полуось эллипса; b – малая полуось эллипса; O (центр Земли) и O` – фокусы; c – расстояние между фокусами

Согласно второму закону Кеплера радиус-вектор планеты в равные промежутки времени описывает равные площади (рис. 2). Из второго закона Кеплера вытекает, что планета движется вокруг Солнца неравномерно, имея около перигея более высокую линейную скорость, чем около апогея.

Рис. 2. Геометрическая иллюстрация ко второму закону Кеплера, где: O – центр Земли; Rc – радиус-вектор спутника

Третий закон гласит: квадраты времени обращения планеты вокруг Солнца пропорциональны кубу большой полуоси эллипса a (см. рис. 1):

где: Tc – период обращения планеты на орбите; a – величина большой полуоси эллипса;

k – постоянная.

То есть чем меньше высота орбиты, тем меньше период обращения.

В общем случае любая спутниковая орбита описывается рядом параметров, из которых основными являются:

  • геометрическая форма орбиты;
  • высота орбиты спутника, определяемая как наименьшее расстояние до земной поверхности в километрах;
  • наклонение орбиты – угол между плоскостью экватора и плоскостью орбиты.

По геометрической форме орбиты делятся на круговые и эллиптические и отличаются по наклонению к плоскости экватора. При совпадении с плоскостью экватора они называются экваториальными. Орбиты, перпендикулярные к плоскости экватора, называются полярными. По высоте орбиты над земной поверхностью (Н) они условно делятся на низкие (Н ≤ 2000 км), средние (Н = 2000…20000 км) и высокие (Н ≥ 20000 км). Особое место среди разнообразных орбит занимают высокоэллиптические орбиты с большим отношением между высотами апогея и перигея.

Точку пересечения с поверхностью Земли радиуса-вектора, соединяющего спутник с центром Земли, называют подспутниковой точкой. В этой точке наблюдатель видит спутник в зените. При отклонении от подспутниковой точки увеличивается расстояние от наблюдателя до спутника, а отклонение от зенита можно описать двумя угловыми величинами: азимутом и углом места [1].

Геостационарная орбита

Круговая орбита высотой 35 880 км, лежащая в экваториальной плоскости Земли, называется геостационарной орбитой (ГСО). Спутник при движении по этой орбите в восточном направлении совершает вокруг Земли оборот за одни звездные сутки (23 часа 56 минут 4 секунды) и, следовательно, будет постоянно находиться над определенной точкой на экваторе Земли (подспутниковая точка). В этом и заключается уникальность геостационарной орбиты.

Зона видимости с геостационарного спутника достаточно большая и занимает около одной трети земной поверхности (рис. 3). Однако приполярные зоны остаются вне зоны видимости. Видимость спутника с Земли определяется не только широтой, но и долготой.

Рис. 3. Зона видимости геостационарного спутника

Искусственные спутники Земли, которые находятся на геостационарной орбите два раза в год в периоды времени, близкие к осеннему и весеннему равноденствию, попадают в тень Земли. Время каждого затенения не превышает 1 часа 10 минут.

Спутниковая связь с использованием космических аппаратов (КА) на геостационарной орбите является достаточно универсальным средством передачи и позволяет реализовать широкий перечень услуг в области междугородной и международной телефонной и факсимильной связи, передачи данных, распределения программ звукового и телевизионного вещания, передачи газетных полос, непосредственного звукового и телевизионного вещания, выхода в сеть Интернет, предоставления доступа в службы мультимедиа. Спутниковые геостационарные системы используются также для организации VSAT-сетей различной конфигурации, для резервирования наземных каналов связи, сбора мониторинговой информации и т. д.

Международно-правовой статус геостационарной орбиты провозглашает и закрепляет участок околоземного космического пространства, составляющего геостационарную орбиту, в качестве «достояния всего человечества» и призван обеспечить ее эффективное и безопасное использование, а также доступ к ней всех государств на справедливой и рациональной основе. Значительный вклад в решение проблем выработки эффективного международно-правового статуса ГСО вносят Организация Объединенных Наций (ООН), ее органы (Конференции ООН по исследованию и использованию космического пространства в мирных целях, Комитет ООН по космосу и его Научно-технический и Юридический подкомитеты) и специализированные учреждения Международного союза электросвязи (МСЭ). Детальные технические правила и процедуры использования радиочастотного спектра и геостационарной орбиты содержатся в Регламенте радиосвязи МСЭ [2, 3].

В настоящее время на ГСО зафиксировано более 500 объектов искусственного происхождения (спутники, ступени ракет, отдельные фрагменты). Из них около половины являются действующими спутниками связи и вещания, принадлежащими как международным организациям, так и отдельным государствам или частным компаниям.

Первый введенный в эксплуатацию советский геостационарный спутник «Радуга» («Стационар-1») в интересах Министерства обороны РФ был запущен в подспутниковую точку 85о в. д. в декабре 1975 г. с помощью РН «Протон-К».

Российская группировка гражданских спутников связи в настоящее время состоит из 15 действующих космических аппаратов, принадлежащих ФГУП «Космическая связь» и ОАО «Газпром – космические системы».

Законы Кеплера действительны при движении планет или спутников в поле тяготения, в котором отсутствуют возмущающие факторы. Орбиты искусственных спутников Земли в силу малости их масс могут изменяться под действием внешних возмущающих сил. Отклонение движения геостационарных спутников Земли от заданной орбиты вызывается несферичностью Земли, притяжением Луны и Солнца, давлением солнечного ветра и т. д. В результате этого геостационарный спутник постепенно смещается вдоль орбиты в сторону четырех точек стабильного состояния (75,3° в. д., 104,8° з. д., 166,3° в. д. и 14,7° з. д.), а также увеличивается наклонение его орбиты к экватору со скоростью 0,85° в год.

В соответствии с действующими требованиями спутники при длительной эксплуатации (до 15−16 лет) должны удерживаться на геостационарной орбите с точностью ±0,1º. Отсюда следует необходимость периодической коррекции положения спутников на орбите. Коррекция осуществляется по направлению север−юг для сохранения заданного наклонения и по направлению восток−запад для удержания спутника в его назначенном положении в пределах геостационарного пояса.

Для поддержания заданного положения спутника на геостационарной орбите на платформе КА устанавливаются специальные корректирующие двигатели, а также запас топлива для них («рабочее тело»). Масса рабочего тела может составлять сотни килограмм. Запас топлива во многих случаях определяет срок активного существования КА. Корректирующие двигатели могут быть химическими, электроракетными или плазменными. Включение двигателей осуществляется периодически один раз в несколько суток. Эти же двигатели могут быть использованы для перемещения при необходимости спутника в другую точку стояния на ГСО.

На геостационарных спутниках предусматривается запас топлива для перевода выработавшего ресурс либо подлежащего замене КА на орбиту захоронения. Орбита захоронения находится выше геостационарной орбиты на 200−300 км.

К недостаткам систем связи с использованием геостационарных спутников следует отнести:

  • большое время распространения сигнала по линии «Земля − спутник – Земля» − 0,24 с;
  • невозможность связи с арктическими районами Земли;
  • повышенные требования к энергетике линий связи «Земля − спутник» и «спутник − Земля» из-за большой протяженности трассы;
  • ограниченные потенциальные возможности по количеству размещаемых на орбите спутников.

Низкие орбиты

В связи с перегруженностью геостационарной орбиты в последние два десятилетия большое внимание уделяется многоспутниковым системам связи с расположением КА на низких орбитах. Космический сегмент в этом случае строится из совокупности спутников, образующих орбитальную группировку. Спутники могут находиться на круговых или эллиптических орбитах, равномерно расположенных над земной поверхностью так, чтобы интересующие географические точки на Земле имели радиовидимость по крайней мере с одним КА. Для таких спутниковых систем с круговыми орбитами высота орбиты обычно выбирается в пределах от 600 до 1500 км. Это обусловлено тем, что при меньших высотах ощущается действие атмосферы, что приводит к торможению движения спутника и постепенному снижению высоты его орбиты.

На высотах более 1500 км располагается внутренний радиационный пояс Земли (пояс Ван Аллена), который делится на внутреннюю и внешнюю зоны (рис. 4). В этих зонах магнитное поле Земли удерживает заряженные частицы (протоны, электроны, α-частицы) с высокой кинетической энергией от десятков кэВ до сотен МэВ. Во внутренней зоне на высоте примерно 3000 км находится максимум плотности потока протонов высокой энергии (20…800 МэВ).

Рис. 4. Расположение радиационных поясов Земли

Промежуток между внутренней и внешней зонами находится в пределах от 5000 до 15 000 км. Нахождение аппаратуры, особенно полупроводниковой, в радиационных поясах Ван Аллена приводит к возникновению дефектов в кристаллах и в конечном счете к отказам в работе аппаратуры. Поэтому при выборе высоты для низкоорбитальных спутников должны быть исключены высоты длительного нахождения спутников в радиационных поясах Земли.

Преимуществом низкоорбитальных систем является возможность использования компактных и относительно дешевых абонентских терминалов благодаря меньшему расстоянию между ретранслятором ИСЗ и земными станциями по сравнению с геостационарными спутниковыми системами, а также создания глобальной системы и связи с абонентами, находящимися в любой точке земной поверхности. Кроме того, для запуска ИСЗ требуются относительно небольшие ракеты-носители (РН), менее критичен выбор место старта РН.

Низкоорбитальные системы с передачей сигналов с задержкой (телеграф, электронная почта) применяются уже много лет, в основном для специальных целей. Для телефонной связи и передачи данных в реальном режиме времени такие системы непригодны. Зона видимости низколетящего спутника в виде пятна непрерывно перемещается по земной поверхности и доступна абоненту в зависимости от размера этого пятна в течение 10−15 минут. Для обеспечения непрерывности связи требуются и непрерывная смена зон видимости от следующих друг за другом спутников, и соответствующее переключение линии связи между двумя абонентами. Поэтому спутников должно быть достаточно много. На низких орбитах их число обычно должно составлять 48 и более [4].

Для работы ЗС, расположенных в произвольной точке Земли, необходимо использование наклонных, а не экваториальных орбит. Наилучший вариант для глобального обслуживания − полярные орбиты (угол наклонения 90о). Использование нескольких полярных орбитальных плоскостей сопряжено с опасностью столкновения спутников. Поэтому чаще задействуются околополярные орбиты с наклонением 80…86о. Выбор угла наклонения обусловлен и географическим нахождением стартового комплекса ракеты-носителя, с помощью которого осуществляется запуск КА. Любой запуск РН связан с падением на Землю отработавших ступеней. Допустимая территория падения этих ступеней строго оговаривается для любого космодрома, что и определяет возможные углы наклонения. Срок активного существования низкоорбитальных спутников обычно меньше, чем у геостационарных или средневысотных, вследствие того, что у этих спутников время нахождения в тени Земли значительно больше, а это приводит к сложностям обеспечения электропитанием на борту (большое количество циклов зарядки-разрядки аккумуляторов). Время затенения составляет примерно половину времени витка. При освещении и затенении КА происходит соответственно разогрев и охлаждение элементов КА до температур +100 и −150 оС. Для сокращения энергопотребления предусматривается возможность перехода на пониженное потребление мощности полезной нагрузкой при прохождении спутником участков поверхности Земли с нулевым или малым трафиком.

В России в марте 2015 г. завершено развертывание глобальной низкоорбитальной спутниковой системы связи «Гонец», состоящей из 12 КА и предназначенной для организации передачи информации по принципу «электронная почта». Орбитальная группировка состоит из четырех плоскостей по три аппарата в каждой плоскости. Круговая орбита имеет высоту 1500 км и наклонение 82,5о.

В настоящее время в мире развернуты две низкоорбитальные системы телефонной связи – «Иридиум» и «Глобалстар» [5]. Обе системы имеют свои сегменты в Российской Федерации.

Орбитальная группировка система «Иридиум» насчитывает 66 спутников, обращающихся вокруг Земли по 11 орбитам на высоте примерно 780 км. Это единственная система гражданской спутниковой телефонной связи, покрывающая 100% поверхности Земли, включая полярные области. Отличительной особенностью системы является наличие межспутниковой связи.

Космический сегмент системы «Глобалстар», обеспечивающий телефонную связь, состоит из 48 спутников на высоте 1414 км с наклонением 52°. На каждой из восьми орбитальных плоскостей располагаются 6 ИСЗ. Из-за малого угла наклонения зона обслуживания системы находится в пределах 0−75° с. и ю. ш. В России расположены три станции сопряжения системы «Глобалстар» с сетью общего пользования страны.

Высокоэллиптические орбиты

Большое практическое значение, особенно в нашей стране, в свое время приобрело использование высокоэллиптической орбиты в системах спутниковой связи со спутниками «Молния». Эта орбита (также под названием «Молния») характеризуется большим отношением высоты апогея (40 250 км) к высоте перигея (500 км). При нахождении апогея в Северном полушарии создается обширная зона видимости территории России, включая приполярные районы, в течение не менее 8 часов. Период обращения на такой орбите составляет 12 часов. С помощью трех-четырех спутников на таких высокоэллиптических орбитах возможна организация круглосуточной связи практически между любыми пунктами российской территории. Как правило, группировка системы с использованием высокоорбитальной орбиты «Молния» состоит из четырех КА, сдвинутых по времени на 6 часов. Каждый спутник в течение суток дважды проходит апогейную точку: первый раз над восточным полушарием (основной виток), второй − над западным полушарием (сопряженный виток) [6].

К недостаткам спутниковой связи на высокоэллиптических орбитах следует отнести необходимость построения наземных станций со следящими антеннами. В этих системах также сказывается эффект Доплера, приводящий к изменению частоты принятых колебаний в зависимости от скорости изменения расстояния между спутником и наземной станцией.

Запуск первого высокоэллиптического спутника «Молния-1» в Советском Союзе был осуществлен 23 апреля 1965 г. в целях обеспечения дальней телефонной и телевизионной связи между Москвой и Дальним Востоком.

В ряде проектов рассматривается высокоэллиптическая орбита типа «Тундра», которая представляет собой высокоэллиптическую орбиту с 24-часовым периодом обращения. Эксцентриситет такой орбиты значительно меньше, чем орбиты типа «Молния», что приближает ее к круговой (см. таблицу). В частности, такая орбита выбрана для единственной в западном мире гражданской системы с использованием высокоэллиптической орбиты «Сириус».

Таблица. Основные характеристики орбит «Молния» и «Тундра»

Орбитальные элементы Тип орбиты
Молния Тундра
Период, с 43 063 86 164
Большая полуось, км 26 554 42 184
Наклонение,° 63,4 63,4
Аргумент перигея, ° 270 270
Высота перигея, км 1000 21 029
Высота апогея, км 39 352 50 543
Эксцентриситет 0,722 0,35
Продолжительность сеанса связи над обслуживаемой территорией в течение суток, ч 8 8
Минимальное количество спутников для круглосуточного обслуживания 3 3
Пересечение поясов с повышенной радиацией 4 раза в сутки Не пересекаются
Видимость территории России из апогея (середина сеанса) Полная Полная
Видимость территории России из апогея (начало и окончание сеанса) Неполная Полная

Благодаря длительному пребыванию КА в апогее высокоэллиптические орбиты типа «Молния» и «Тундра» иногда называют квазигеостационарными. Возможно построение аналогичных орбитальных группировок со значительно меньшим значением апогея с периодом обращения 4, 6 или 8 часов, при этом, естественно, требуется большее количество КА для обеспечения постоянного временнóго покрытия.

Различное построение эллиптических орбитальных группировок позволяет решить главный вопрос спутниковой связи – существенно повысить пропускную способность «космоса» и обеспечить равные условия доступа к спутниковой связи приполярных районов Земли. На сегодняшний день, как показывают теоретические исследования и многолетняя практика космической связи, орбита типа «Молния» обладает наибольшим количеством положительных качеств.

В настоящее время в России на рабочих орбитах находится группировка из четырех КА «Меридиан», которая имеет двойное назначение (рис. 5). К гражданским задачам относятся организация спутниковой связи морских судов и самолетов в районе Северного морского пути с береговыми станциями и создание сети связи для северных районов Сибири и Дальнего Востока.

Рис. 5. Наземная трасса КА «Меридиан» (https://ru.wikipedia.org)

Несмотря на то что нашей стране принадлежит приоритет по практическому использованию высокоэллиптической орбиты, дальнейшее продолжение работ по более широкому освоению этого типа орбиты затормозилось. Предусмотренное Федеральной космической программой на 2006−2015 гг. развертывание системы непосредственного спутникового радиовещания с использованием высокоэллиптических КА типа «Экспресс-РВ» не реализовано. Очередной ориентировочный срок запуска высокоэллиптических спутников сугубо гражданского назначения − 2020−2021 гг.

Проект российской спутниковой системы связи «Полярная звезда» с КА, расположенными на высокоэллиптических орбитах, которая предназначена для подвижной и фиксированной службы связи правительственных и государственных органов, населения и транспорта по всей территории России, включая северные и восточные районы, разрабатываемый ОАО «Газпром – космические системы», также не очень продвигается. Скорее всего, это связано с низкой экономической эффективностью подобных систем.

Переходные орбиты

При описании процессов запуска спутников пользуются такими понятиями, как низкая опорная орбита или низкая околоземная орбита (НОО), переходная орбита (ПО), геопереходная орбита (ГПО).

Низкая околоземная орбита – это орбита космического аппарата около Земли (высота − примерно 200 км). Ее называют опорной, если предполагается увеличение ее высоты или изменение наклонения. Для движения по круговой или эллиптической опорной орбите аппарат должен двигаться с первой космической скоростью.

Переходная орбита − путь движения спутника с одной орбиты на другую. Геопереходной орбитой называется орбита, являющаяся переходной между низкой опорной орбитой  и геостационарной орбитой. Движение спутников по переходным орбитам совершается под действием ракетной двигательной установки.

Заключение

Человечество еще далеко не исчерпало возможности использования ближнего космоса для построения систем связи различного назначения.

Следует ожидать, что перспективные низкоорбитальные системы связи впитают в себя новые виды услуг типа дистанционного зондирования Земли, мониторинга и т. п., что позволит оптимально сбалансировать спутниковые возможности и вывести низкоорбитальные системы на уровень прибыльности, не уступающий геостационарным системам. То же относится к системам с высокоэллиптическими спутниками.

Только использование низкоорбитальных и высокоэллиптических спутниковых орбит даст возможность нашей стране решить телекоммуникационные проблемы Крайнего Севера и Арктики [7].

Литература

  1. Кукк К.И. Спутниковая связь: прошлое, настоящее, будущее. М.: Горячая линия Телеком, 2015.
  2. Кантор Л.Я. Новый эволюционный подход к международному распределению орбитально-частотного ресурса // Электросвязь. 2008. № 12.
  3. Зубарев Ю.Б. Проблемы использования геостационарной орбиты // Вестник связи. 1999. № 12.
  4. Клепиков И.А., Кукк К.И. Низкоорбитальные спутниковые системы связи выходят на международный рынок // Мир связи. Connect. 1997. № 11−12.
  5. Всемирная энциклопедия космонавтики (А–К). М.: Военный парад, 2002.
  6. Системы спутниковой связи с эллиптическими орбитами, разнесением ветвей и адаптивной обработкой / Под ред. Е.Ф. Камнева. М.: Глобсатком, 2009.
  1. Кукк К.И. Низкоорбитальная комбинированная спутниковая система связи и мониторинга, в том числе для Арктического региона // Спутниковая связь и вещание – 2014. Специальный выпуск журнала «Технологии и средства связи». М.: Groteck, 2013.

Авторизация

Авторы: Васильев М.В., Н.В.Михайлов, В.Ф.Михайлов


Создание бортовой аппаратуры спутниковой навигации (БАСН) для использования на борту искусственных спутников Земли (ИСЗ) с целью определения параметров их орбиты является сложной научно-технической задачей, поскольку спутниковые радионавигационные системы (СРНС) для этого не предназначены. В работе приведены результаты анализа особенностей БАСН, влияющих на разработку методов вторичной обработки. Анализ проводился для всех типов орбит ИСЗ — геостационарных, высокоэллиптических, средневысотных и низкоорбитальных. В результате анализа были сформулированы основные задачи, стоящие перед разработчиками вторичной обработки сигналов в БАСН.

В статье показано, что подход, включающий в себя построение модели орбитального движения ИСЗ и модели бортового опорного генератора (ОГ) и уточнение этих моделей по измерениям СРНС, позволяет решить навигационную задачу в условиях ограниченной видимости. Предлагается использовать стохастический подход к моделированию работы ОГ. Показано, что по сравнению с полиномиальной аппроксимацией стохастическая модель обеспечивает не только меньшую погрешность определения параметров орбиты ИСЗ, но и более высокую вычислительную эффективность.


Поскольку стандартные алгоритмы решения уравнения движения ИСЗ, применяемые в наземной аппаратуре, не всегда подходят для использования в БАСН из-за высоких требований, предъявляемых к размеру оперативной памяти, предложено использование компактных аналитических эфемерид Луны и Солнца. Показано, что погрешность, вносимая аналитическими эфемеридами в модель орбитального движения приемлема для БАСН и, в то же время, аналитические эфемериды не требуют значительного объема оперативной памяти.


В статье приведены результаты моделирования задачи определения орбиты геостационарных космических аппаратов (ГКА). Показано, что даже для случая ОГ со стабильностью 10
-9 достигается точность определения координат с помощью БАСН 10…40 м (интервал доверительной вероятности 66%), время до получения их первого определения составило около 12 часов, т.е. половину периода орбиты.


Ключевые слова: GPS, ГЛОНАСС, спутниковая навигация, определение орбит космических объектов, автономная навигация



Гироскопия и навигация. — 2010. — № 4. — С. 41-52.
УДК 629.195

Журнал «Гироскопия и навигация» включен в «Перечень ведущих рецензируемых научных журналов и изданий, в которых должны быть опубликованы основные научные результаты диссертации на соискание ученой степени доктора и кандидата наук»

Определение времени существования искусственного спутника земли и исследование вековых возмущений его орбиты

аннотация

Одним из важных вопросов, связанных с проблемой создания искусственного спутника Земли, является достаточно надежное определение времени его существования на орбите. Вследствие сопротивления атмосферы будет происходить рассеяние энергии спутника и его постепенное снижение. При движении на больших высотах в разреженных слоях атмосферы сопротивление мало, и время движения спутника может оказаться весьма значительным. При движении на сравнительно небольших высотах (порядка 100–150 км) время существования спутника невелико, и при малых поперечных нагрузках спутник может не совершить даже одного полного оборота.

This is a preview of subscription content,

log in

to check access.

Preview

Unable to display preview. Download preview PDF.

Литература

  1. 1.

    С. К. Митра, Верхняя атмосфера. Москва: ИЛ, 1955 г.

    Google Scholar

  2. 2.

    Г. Н. Дубошин, Введение в небесную механику. Москва-Ленинград: ОНТИ, 1938 г.

    Google Scholar

  3. 3.

    М.Ф.Субботин, Курс небесной механики. Москва-Ленинград: ОНТИ, 1937г.

    Google Scholar

  4. 4.

    Н. И. Идельсон, Теория потенциала с приложениями к теории фигуры Земли и геофизике. Москва: ОНТИ, 1936 г.

    Google Scholar

  5. 5.

    Г. П. Таратынова, Успехи физических наук. Гостехиздат 63, вып. 1 (1957 г).

    Google Scholar

Copyright information

© Springer-Verlag Wien 1958

Authors and Affiliations

  1. 1.Академия наук СССРМоскваUSSR

Орбита искусственных спутников Земли — это, что такое, какие, определение, значение, доклад, реферат, конспект, сообщение, вики — WikiWhat

Высота орбиты спутников

Точка орбиты спутника, наиболее приближенная к Земле, называется перигеем, наиболее удалённая — апогеем. Боль­шая полуось орбиты искусственных спутников Земли определяется выражением

a = R + (hп + hа) / 2,

где hп и hа — высоты перигея и апогея; R — радиус Земли.

Перигей орбиты искусственных спутников Земли выбирается не ниже 200 км, так как на более низких орбитах время существования спутника слиш­ком мало (из-за сопротивления воздуха).

Период обращения спутника

Период обращения спутника вычисляется по третьему закону Кеплера, который перепишем в виде

T = 2π√(a3 / GM).

Подставив в это выражение численные значения постоянных величин, получим

T = 0,83√(12376 + (hп + hа)).

Высоты должны быть выражены в километрах, период — в минутах.

Из этой формулы видно, что период обращения искусственных спутников Земли по круговой орбите определяется её высотой. На высоте 35 942 км он становится равным 24 ч.

Классификация орбит

Геостационарная орбита

Если орбита спутника лежит в плоскости экватора, то он висит над одной и той же точкой земной поверхности. Такая орбита называется геостационарной, а спутники на ней — стационарными. Они удобны для организации связи и передачи телепрограмм на больших расстояниях (рис. 42, спут­ник «Экран»).

Высокая эллиптическая орбита

На значительной части территории России стационар­ный спутник виден на слишком малой угловой высоте над го­ризонтом, что затрудняет приём сигналов с него (в районах севернее 80° с. ш. стационарный спутник вообще не виден). Для обслуживания этих районов спутники запускаются на сильно вытянутые орбиты, которые называются высокие эллиптические орбиты. Материал с сайта http://wikiwhat.ru

Так, у искусственного спутника Земли «Молния» высота пе­ригея около 500 км, а апогея около 50 000 км, при этом апо­гей орбиты расположен над северной полярной областью. По второму закону Кеплера большую часть времени такой искусственный спутник Земли будет проводить около апогея, т. е. хорошо наблюдаться имен­но там, где стационарный спутник не виден.

Переход спутника с одной орбиты на другую

см. Переход спутника с одной орбиты на другую

Картинки (фото, рисунки)

  • Рис. 42. Орбиты ИСЗ различного назначения

В рубрику «Спутниковая связь» | К списку рубрик  |  К списку авторов  |  К списку публикаций

Представлен обзор наиболее распространенных вариантов орбитального построения космического сегмента систем спутниковой связи на основе негеостационарных спутников. Отмечены особенности орбитальных построений, которые следует принимать во внимание в процессе разработки системных решений и в проектировании спутниковых систем связи. Представленные сведения помогают оценить перспективность заявляемых сегодня спутниковых систем.

An overview of the most common variants of construction of the orbital space segment of satellite communications systems based on non-geostationary satellites. The features of the orbital constructs that should be taken into account in the development of system solutions and designing satellite communication systems. The presented information to help assess the prospects announced today satellite systems.

Александр
Степанов

Генеральный директор АО “НПЦ “Вигстар» к.т.н

Aleksandre
Stеpanov General Director of JSC “SPC “Vigstar»

Александр
Акимов

Главный специалист,
ЦНИИ экономики, информатики
и систем управления

Aleksandre
Akimov Chief specialist, CSRI of economics informatics and management systems

Андрей
Гриценко

Генеральный директор
АО “Информационный Космический
Центр “Северная Корона», к.т.н.

Andrey
Gritsenko General Director Information Space Center “Severnaya Corona»

Вадим
Чазов

Отдел астрометрии и службы времени, ГАИ им. П.К. Штернберга МГУ им. М.В. Ломоносова, д.ф.-м.н., с.н.с.

Vadim
Chazov SAI MSU, senior research, doctor science

Введение

Сегодня по сообщениям различных информационных агентств можно сделать вывод, что в мире идет активное проектирование ряда спутниковых систем связи, космический сегмент которых выполнен на основе негеостационарных космических аппаратов (КА). Особый интерес вызывают новые международные сверхинформативные системы типа LEO-HTS, космический сегмент которых, по заявлениям инвесторов, состоит из сотен космических аппаратов, как в рекламируемых проектах OneWeb и SpaceX. Несмотря на финансовые неудачи, связанные с созданием многоспутниковых систем связи на низких орбитах в 2000-х гг. [2], ими декларируются миллиардные инвестиции и производительность КА до десятка и более Гбит/с, а систем – в тысячи Гбит/c [1].

Грандиозные задачи по созданию спутниковых систем связи на основе негеостационарных КА ставит и Роскосмос в проектах “Енисей» и “Экспресс-РВ», которые могут стать видными национальными проектами, обслуживающими как арктический регион [67–70], так и всю территорию страны.

Сегодня использование негеостационарных орбит при построении систем связи ограничено несколькими системами. Однако число КА различного назначения (в основном не связных), выведенных на негеостационарные орбиты, исчисляется тысячами (см. рис. 1).

Появление новой генерации коммерческих проектов на основе негеостационарных КА связи обусловлено очевидными недостатками геостационарной орбиты (ГСО):

  1. Рабочая зона геостационарных КА ограничена широтами примерно 70–75 град. Очевидно, что это болезненно для стран северного полушария, в частности для России, на всей территории которой углы места КА на ГСО невелики.
  2. Геостационарная орбита перегружена космическими аппаратами (реальными и “бумажными») во всем спектре радиочастот, включая Ka-диапазон. Осуществить координацию новых спутниковых сетей – большая проблема.
  3. Использование КА на геостационарной орбите приводит к существенной задержке сигналов, которая находится на границе допустимых требований, предъявляемых к наземным линиям связи, имеющим спутниковые участки [66]. В перспективных сетях 4G/5G такая задержка не допускается.

Считается, что эффективное решение указанных выше проблем сопряжено с использованием негеостационарных орбит для размещения КА связи, создаваемых на основе высокопроизводительных и энергетически обеспеченных космических платформ. Использование низколетящих КА является единственным способом снижения запаздывания сигналов при распространении в космических радиолиниях. Однако техническая реализация таких проектов сопряжена с многочисленными проблемами. Анализ проблем и поиск решения начинаются на этапе проектирования системы. Требуется глубокий комплексный анализ, основанный на многих факторах, в том числе связанных с развертыванием орбитальной группировки (ОГ), поддержанием ее в работоспособном состоянии и последующим захоронением КА. Даже само разнообразие негеостационарных орбит является проблемой при принятии решений. А достоинства, кажущиеся на первый взгляд очевидными, могут повлечь за собой серьезные препятствия при практической реализации новой системы. Рассмотрим основные ограничения, которые необходимо учитывать при выборе того либо иного типа орбит.

Ограничения, влияющие на выбор орбит

Основные факторы, влияющие на выбор тех или иных орбит на начальном этапе проектирования системы, связаны как с действием возмущающих сил (атмосфера, аномальное гравитационное поле Земли и др.), так и с влиянием радиационных поясов Земли. Рассмотрим эти факторы более подробно.

Ракеты-носители и космодромы

Этап развертывания КА ОГ начинается с запуска одного или группы КА в составе ракеты-носителя (РН) на опорную орбиту. Под опорной орбитой понимают круговую орбиту с заданным наклонением и высотой 180–200 км. Дальнейшее довыведение КА на рабочую орбиту производится двигательной установкой космической платформы или разгонным блоком. Основными параметрами, определяющими выбор РН, является масса полезного груза, выводимая на опорную орбиту, и итоговое наклонение орбиты.

Значение наклонения опорной орбиты i связано с широтой старта φ и азимутом запуска α простым соотношением:

cos(i)=cos(φ)sin(α).

Последующая коррекция наклонения орбиты является одним из самых энергоемких маневров. Для реализации низкоорбитальных ОГ расположение космодрома и азимут запуска желательно выбирать так, чтобы сразу обеспечить групповой вывод КА на орбиту с заданным наклонением, после чего потребуется только подъем высоты и разведение КА в рабочие позиции.

Разрешенные диапазоны азимута запусков определяются с учетом фактически имеющихся зон падения ступеней РН для каждого космодрома. Например, для космодрома Куру диапазон азимутов пуска составляет 10,5–93,5 град, для космодрома Плесецк – 62,8–83 град. [5, 12].

Большинство коммерческих компаний – провайдеров пусковых услуг открыто предоставляют описание по применению конкретного типа РН. В них приводятся типовые значения азимутов запуска, реализуемые наклонения орбит, масса полезного груза, выводимого на опорную орбиту, геометрические параметры обтекателя, а также указывается космодром, имеющий соответствующую стартовую площадку [5, 6, 7, 8, 9, 10, 11, 12].

Атмосфера

Еще в период 1957–1960 гг. отмечалось значение влияния атмосферы на движение низкоорбитальных КА. Соответствующие оценки были произведены в работах [3, 4]. Влияние атмосферы приводит к возникновению внешней силы, как правило, направленной против вектора скорости КА. В Европе и США используется модель атмосферы, описанная в документах [14, 15]. Величина потерь энергии движения КА определяется баллистическим коэффициентом. Он зависит как от массы и эффективной площади КА, так и от плотности атмосферы. Согласно ГОСТ 25645.101–83 [13], при проведении баллистических расчетов влияние атмосферы должно учитываться для высот от 120 до 1500 км. При этом с ростом высоты сила торможения КА в атмосфере уменьшается в соответствии с уменьшением ее плотности. Уменьшаются и потребные затраты топлива на поддержание заданной высоты орбиты КА. Напротив, для крайне низких орбит уменьшаются затраты на утилизацию отслуживших срок КА, что весьма существенно для современных низкоорбитальных многоспутниковых систем.

В качестве примера на рис. 2 представлены графики изменения высоты орбиты следующих трех спутников:

  • KUAIZHOU 1 (NORAD 39262, дата запуска 25.09.2013 г., дата схода 01.09.2015 г.), выведенный на круговую орбиту высотой 300 км;
  • SHINDAISAT (NORAD 39572, дата запуска 27.02.2014 г., дата схода 24.11.2014 г.), выведенный на круговую орбиту высотой 400 км;
  • TJ3SAT (NORAD 39385, дата запуска 20.11.2013 г., дата схода 17.09.2015 г.), выведенный на круговую орбиту высотой 500 км.

Из трех спутников система коррекции орбиты была установлена только на KUAIZHOU. На графике (рис. 2) хорошо видна пилообразная структура, обусловленная работой системы коррекции орбиты, пытающейся парировать тормозящее влияние атмосферы. После прекращения работы системы коррекции (10.07.2015 г.) спутник не просуществовал и 2 месяцев. Спутник SHINDAISAT, не имеющий системы коррекции, но выведенный на высоту 400 км, просуществовал 9 месяцев. Спутник TJ3SAT, не имеющий системы коррекции, но выведенный на высоту 500 км, просуществовал почти 2 года.

На высотах выше 500 км влияние атмосферы заметно падает. Так, уменьшение высоты апогея российского микроспутника UGATUSAT (NORAD 35869), запущенного 17.09.2009 г. на орбиту высотой 822 км, за 6 лет составило всего 1 км. Высотная полоса от 500 до 700 км используется в основном спутниками дистанционного зондирования Земли (ДЗЗ), поскольку в ней сочетаются требования по разрешению получаемых снимков и затраты на удержание высоты орбиты. Для спутников систем связи высота орбиты составляет, как правило, от 700 км.

Большое количество выведенных к настоящему времени в космическое пространство объектов (см. рис. 1) составляет известную проблему “космического мусора» [16], которая уже привела к реальным столкновениям КА на орбите. Поэтому возможность естественной утилизации низколетящих КА за счет диссипативного влияния остаточной атмосферы учитывается при разработке ОГ КА.

В то же время из рис. 1 следует, что на отметке примерно в 2 тыс. км и выше число спутников резко снижается и доходит практически до нулевой отметки. Это обусловлено значительным ростом влияния на этих высотах радиационных поясов Земли.

Радиационные пояса Земли

Известно, что радиационное излучение негативно влияет на надежность аппаратуры спутника, причем прежде всего на полупроводниковые приборы, к которым относятся в том числе панели солнечных батарей (СБ). В этом случае деградация панелей СБ может потребовать значительного увеличения их площади для обеспечения требуемой мощности в конце срока активного существования (САС).

До последнего времени считалось, что около Земли расположены два радиационных пояса. Внутренний (протонный) находится в области высот примерно от 2 до 6,5 тыс. км над поверхностью Земли, а внешний (электронный) находится в области высот примерно от 13 до 42 тыс. км [19, 20, 21, 22]. Во внешнем поясе недавно был обнаружен максимум радиационного воздействия, формирующий третий пояс, находящийся на высотах примерно от 19 до 22 тыс. км [23, 24].

Пространственная структура радиационных поясов показана на рис. 3. Пространственные параметры поясов меняются в зависимости от периода времени и уровня солнечной активности.

Анализ баллистических данных каталогизированных околоземных искусственных объектов показал, что в диапазоне высот от 1600 до 2000 км в настоящее время находится примерно 70 космических аппаратов, подавляющая часть которых – это вышедшие из строя или выведенные на орбиту захоронения КА.

Таким образом, рабочие высоты низкоорбитальных спутниковых систем связи лежат в диапазоне от 700 км до примерно 1600 км. Нижнее значение ограничено торможением в остаточной атмосфере, верхнее – радиационными поясами. Оба фактора ограничивают время активного существования КА.

Для систем на средневысотных орбитах используется пространство между внутренним и внешним радиационными поясами. Этот высотный эшелон использует система связи O3B (высота 8062 км).

Высокоэллиптические орбиты (ВЭО) типа Loopus и “Молния» пересекают радиационные пояса и, соответственно, в большей степени подвержены их негативному влиянию. Вопросы оптимизации расположения ВЭО относительно радиационных поясов рассматривались, например, в [25]. В частности, на рис. 4 показаны области эффективного соприкосновения 12-часовой высокоэллиптической орбиты “Молния» с радиационными поясами.

Исследования влияния радиационного воздействия на микросхемы памяти SRAM проводились с помощью КА PROBA-2, который был выведен на орбиту высотой 700 км 2 ноября 2009 г. РН “Рокот». Полученные результаты приведены в [26], а дислокация моментов обнаруженных эффектов воздействия приведена на рис. 5.

Влияние возмущений гравитационного поля Земли

Движение спутника происходит под воздействием ряда внешних сил. В первом приближении предполагается, что внешняя сила одна – центральное гравитационное поле Земли. Это позволяет получить простые аналитические выражения для описания движения КА.

В реальности на спутник действует целая система сил (и моментов). Все эти внешние силы, за исключением центральной составляющей, относят к возмущающим. Это, прежде всего, возмущения от аномального гравитационного поля Земли, гравитационного поля Солнца и Луны, атмосферы и давления солнечного света. Под воздействием возмущающих сил параметры орбиты медленно меняются во времени и проявляются как систематические уходы и колебания.

В качестве примера на рис. 6 представлено положение орбиты на протяжении полутора лет службы спутника системы ГЛОНАСС Cosmos-2492 (NORAD 39620), запущенного 23.03.2014 г. на орбиту высотой 19 100 км. Видно, что за это время плоскость орбиты развернулась примерно на 20 град.

На рис. 7 представлено положение орбиты на протяжении двух месяцев службы спутника ДЗЗ Yaogan-27 (NORAD 40697), запущенного 27.08.2015 г. на орбиту высотой 1200 км. Видно, что за это время плоскость орбиты развернулась примерно на 60 град. Это означает, что если при выведении КА на орбиту обеспечить положение плоскости орбиты по нормали к направлению “Земля–Солнце», то спутник никогда не будет затеняться Землей. Это гарантирует лучшие условия для работы системы электроснабжения КА (СЭС). Таким образом, орбиты, долгота восходящего узла которых прецессирует в направлении на восток с угловой скоростью примерно 1 град./сутки, называются солнечно-синхронными. Семейство таких орбит имеет наклонение в диапазоне примерно 96–103 град. и высоты в диапазоне от 700 до 1500 км [38].

В классе круговых орбит внешние силы приводят в основном к изменению высоты орбиты, наклонения и долготы восходящего узла. Для эллиптических орбит дополнительную проблему создает прецессия положения линии апсид, задаваемого аргументом перигея. Существенно снизить скорость прецессии можно, если обеспечить значение наклонения, близкое к критическому, – около 62,8 град. На рис. 8 представлены графики изменения наклонения и аргумента перигея объекта SL-12 (NORAD 26393), являющегося останками разгонного блока спутника SIRIUS 1 (NORAD 26390), запущенного на орбиту “Тундра» 30.06.2000 г. На графике видно, как под действием внешних сил наклонение орбиты падает с 63,4 град. до 60,8 град. При этом аргумент перигея также вначале снижается с 270 до 245 град., но после того, как значение наклонения упало ниже 62,3 град., начинает дрейфовать в обратную сторону.

Такое взаимное влияние параметров орбиты друг на друга может оказаться весьма полезным. Как уже упоминалось выше, наиболее энергетически емкими орбитальными маневрами являются те, которые связаны с изменением положения плоскости орбиты в пространстве, то есть изменение наклонения и долготы восходящего узла. Если не требуется высокая оперативность решения задачи, то для коррекции этих параметров можно использовать такой естественный фактор, как прецессия орбиты под действием возмущений. Общий подход такой – корректируются низкоэнергетические параметры орбиты, что приводит к дрейфу высокоэнергетических параметров. После достижения требуемых значений скорректированные низкоэнергетические параметры возвращают к исходным значениям.

Пространственные топологии орбит

Конструктивные особенности ОГ систем связи определяются стремлением минимизировать количество КА в ОГ и необходимостью создания упорядоченной пространственной структуры, позволяющей планировать совместное использование выделенного радиочастотного спектра. Поэтому выбор пространственной топологии космического сегмента низкоорбитальных спутниковых систем является одной из основных задач на этапе системного проектирования.

Пространственная структура орбитальных группировок КА на низких круговых орбитах (НКО), как правило, использует построение Уолкера-Можаева [27, 28]. При этом реализуют либо конфигурацию рис. 9а, когда плоскости равномерно расставляются по долготе восходящего узла на дуге 0–180 град. (например, система Iridium), либо конфигурацию рис. 9б, когда расстановка плоскостей выполняется на дуге 0–360 град. (например, система Globalstar).

Наиболее общий фундаментальный подход к синтезу пространственной топологии кинематически правильных орбитальных структур основан на применении теории групп симметрии и разработан Можаевым Г.В. [28].

Орбитальные группировки на основе низких круговых орбит

Известно большое разнообразие практических решений построения низкоорбитальных ОГ КА систем связи. Особая активность сегодня связана с проектированием систем LEO-HTS.

Полярные орбиты

Примером использования таких орбит являются системы Iridium и “Гонец». В этих системах используются низкие круговые полярные орбиты с наклонением, близким к 90 град. В системе Iridium используется орбита с наклонением 86,4 град. и высотой 780 км. В системе “Гонец» применяется орбита с наклонением 82,5 град. и высотой 1500 км. Такие типы орбит отличаются высокой стабильностью взаимного расположения долгот восходящих узлов орбит различных объектов ОГ по отношению к дисперсии высоты полета КА. Это позволяет строить пространственную структуру ОГ по принципу набора орбитальных плоскостей, плотно покрывающих поверхность земного шара зонами радиовидимости КА. При этом управление взаимным расположением КА направлено на сохранение взаимного положения между ними внутри плоскостей и фазовых соотношений между КА в соседних плоскостях. Маневр по переводу КА из одной орбитальной плоскости в другую практически не используется ввиду энергетической неэффективности. Поэтому КА, выводимые на орбиту одним пуском, как правило, находятся в одной орбитальной плоскости. Обычно для систем, использующих приполярные орбиты, между плоскостями оказываются неисправные КА, находящиеся в неуправляемом полете или переведенные на орбиту захоронения.

Для минимизации количества КА в орбитальной группировке используется конфигурация из орбитальных плоскостей, разнесенных по долготе восходящего узла на интервале 0–180 град. При этом в экваториальной и среднеширотной области Земли покрытие независимо формируется “восходящим» и “нисходящим» потоками КА орбитальной группировки (см. рис. 10а). Соответственно, имеются области “сшивки», где космические аппараты в соседних плоскостях разных потоков движутся в противоположных направлениях. В приполярных районах поверхности Земли для такого типа ОГ возникает многократное перекрытие зон радиовидимости соседних КА. При этом совместное использование выделенного для работы системы связи радиочастотного спектра (например, в случае системы Iridium) достигается отключением либо всех, либо некоторых антенных лучей космических аппаратов, формирующих перекрывающиеся зоны. В процессе проектирования учитывается необходимость распределения полос частот между лучами КА для обеспечения их бесконфликтного многократного использования.

Например, в случае системы “Гонец» проблема многократного покрытия, формируемого КА ОГ в полярных районах, решена путем планирования использования полос частот в выделенном участке радиочастотного спектра, которое гарантирует их бесконфликтное многократное использование, и не требует ни полного, ни частичного отключения КА. Схема движения КА в ОГ “Гонец» показана на рис. 10б.

Наклонные орбиты

В орбитальной группировке системы Globalstar используются низкие круговые орбиты высотой 1414 км и наклонением 52 град. ОГ содержит 48 КА в 8 орбитальных плоскостях. Орбитальные плоскости разнесены по долготе восходящего узла на интервале 0–360 град. Таким образом, в ОГ нет выраженных восходящего и нисходящего потоков КА (см. рис. 11).

На этапе развертывания и восполнения ОГ в системе Globalstar в полной мере используется упомянутый выше принцип коррекции одних параметров орбиты путем изменения других. Так, например, анализ баллистических данных показывает, что скорость прецессии линии узлов (дрейф долготы восходящего узла) рабочей орбиты системы Globalstar на высоте 1414 км составляет примерно 3,04 град./сутки. Выведение спутников системы осуществляется, как правило, групповым запуском. Спутники выводятся на опорную орбиту высотой 930 км. Прецессия линии узлов на опорной орбите составляет примерно 3,82 град./сутки. Следовательно, плоскости опорной и рабочей орбит смещаются относительно друг друга с угловой скоростью около 0,8 град./сутки. В этом случае для выведения каждого КА в требуемую плоскость достаточно просто дождаться момента времени, когда плоскости опорной и рабочей орбит совпадут. Затем высоту орбиты повышают до номинальной и устанавливают КА в нужную фазовую позицию внутри орбитальной плоскости.

Исследуя эволюции КА в ОГ Globalstar, можно обнаружить, что маневр разведения КА такого типа является обычным. Поэтому, как правило, КА Globalstar, выведенные на орбиту одним пуском, в дальнейшем не находятся в одной плоскости. Эта особенность используется при восполнении орбитальной группировки. Последний по времени запуск 6 КА системы Globalstar состоялся 6 февраля 2013 г. с космодрома “Байконур». При этом 6 выведенных на орбиту КА пополнили 4 разные орбитальные плоскости. Интервалы времени, в течение которых КА переводились в рабочую плоскость, представлены в таблице 1.

Орбитальная группировка Globalstar создает, как правило, двукратное покрытие поверхности Земли зонами радиовидимости КА в области широт ±52 град. Бесконфликтное совместное использование выделенного радиочастотного спектра осуществляется за счет применения технологии CDMA.

В то же время следствием использования наклонения орбиты 52 град. и высоты полета К А 1440 км является невозможность обслуживания системой космическими аппаратами полярных областей поверхности Земли (см. рис. 11).

Солнечно-синхронные орбиты

Как уже отмечалось, существование солнечно-синхронных орбит (ССО) определяется дрейфом линии узлов под действием аномального гравитационного поля Земли. Если угловая скорость прецессии лини узлов будет равна угловой скорости радиус-вектора Земли относительно Солнца, то взаимная ориентация объектов “Солнце-Земля-плоскость орбиты КА» будет стационарной.

Наиболее часто ССО используются в системах дистанционного зондирования Земли [38], для которых важно сохранение постоянства условий освещенности от витка к витку. Однако в последнее время ССО предлагают использовать и для связных систем. При этом система управления движением КА постоянно удерживает его ориентацию относительно плоскости орбиты, обеспечивая оптимальную освещенность солнечных батарей на протяжении года.

Таким образом, исключается проведение отдельного маневра ориентации СБ на Солнце. При этом также облегчается взаимная ориентация КА в соседних плоскостях, что упрощает создание межспутниковых линий связи. Но все же проблемы остаются в зонах сшивки потоков восходящих и нисходящих КА.

В этой связи представляет интерес проект низкоорбитальной спутниковой системы гонконгской компании Yaliny, имеющей офис в Москве [34, 35]. О проекте известно, что к работе привлекаются российские разработчики. На спутнике используется многолучевая бортовая фазированная антенная решетка, а межспутниковые линии предполагается реализовать в оптическом диапазоне. Проектируемая система Yaliny может быть отнесена к типу систем LEO-HTS. В качестве рабочей орбиты разработчики выбрали ССО наклонением 97,8 град. и высотой 600 км [37]. Орбитальная группировка системы будет включать 9 орбитальных плоскостей по 15 КА в каждой. Всего в ОГ будет 135 КА. Дополнительно в каждой плоскости планируется разместить по одному резервному КА. Угловой разнос между плоскостями — 22 град. (расстановка на дуге 180 град.). Фазовый сдвиг между КА в одной плоскости — 24 град. Фазовый сдвиг между КА в смежных плоскостях составляет 8 град. (рис. 13) и не является регулярным.

В качестве опорной орбиты для развертывания ОГ выбрана орбита высотой 550 км. Скорость взаимного дрейфа плоскостей между КА на рабочей и опорной орбитах в этом случае составит около 0,025 град./сутки. Переход с опорной на рабочую орбиту осуществляется в момент совпадения плоскостей. Это позволяет снизить затраты рабочего тела на компенсацию ошибок выведения. Масса КА – 630 кг. Срок активного существования (САС) – 10 лет. Заявленная мощность системы энергообеспечения спутника (СЭС) – до 10 кВт.

Схема движения подспутниковых точек с мгновенной зоной покрытия для углов места выше 14 град. и структура ОГ системы представлены на рис. 13. Предварительный анализ показал, что гарантированная глобальная зона покрытия обеспечивается при требованиях на минимальный угол места 14 град.

Часть орбитальных плоскостей будет находиться в условиях периодического прохождения КА в области тени Земли. Другая часть орбитальных плоскостей будет постоянно полностью освещена. Затененные участки орбиты будут находиться над ночными областями поверхности Земли. Соответственно, абонентский трафик должен быть меньше, чем на территориях, находящихся в дневной области, где КА хорошо освещены. Это свойство снижает нагрузку на систему электропитания КА, находящихся в тени.

Каким образом авторы проектов собираются решать вопросы радиочастотного обеспечения и эффективного совместного использования частотного ресурса в областях пересечения зон видимости КА, особенно севернее 50 град. с.ш., пока не сообщается.

Орбитальные группировки на основе средневысотных орбит

Круговые орбиты с высотой от 8 тыс. км до 25 тыс. км относят к средневысотным околоземным орбитам (Medium Earth Orbit – MEO) [18], наиболее известными являютсяОГ навигационных систем GPS и ГЛОНАСС. В 1990-х гг. предпринимались попытки развернуть несколько связных систем на этих орбитах, но ни одна из них не дошла до практической реализации по экономическим соображениям. По состоянию на конец 2015 г. существует только одна система связи с орбитами данного типа – это сверхинформативная система O3b [36]. Такие системы сегодня получили общее обозначение MEO-HTS.

В настоящее время полностью развернут космический сегмент системы связи O3B. В составе ОГ 12 КА на круговых экваториальных орбитах (см. рис. 15). Высота орбит 8000 км. Орбитальная группировка ориентирована на обслуживание пояса широт ±45 град.

Использование экваториальной орбиты отражает идею реализации СЭС и управления движением, аналогичную той, которая используется на геостационарных КА. Весной и осенью КА периодически попадают в тень Земли (см. рис. 15).

Дальнейшее развитие системы, вероятно, будет связано с расширением зоны обслуживания путем дополнения ОГ спутниками, размещаемыми в двух орбитальных плоскостях на эллиптических орбитах [29]. Подобная конфигурация орбитальной структуры предполагалась в проекте системы связи ELLIPSO. При этом экваториальная ОГ называлась CONCORDIA, а ОГ на основе эллиптической орбиты – BORELIAS [30, 31].

Существует несколько предложений, сформулированных в виде патентов, в которых предлагается использование в качестве эллиптического сегмента орбитальной группировки солнечно-синхронных орбит [33]. Данная конструктивная особенность позволяет применить те же КА, что и на экваториальной орбите, которые оборудованы системой, обеспечивающей одноосную ориентацию солнечных батарей путем вращения вокруг оси, проходящей через корпус КА. В этом случае обеспечивается удержание плоскостей СБ по нормали к направлению на Солнце во время движения на каждом витке.

Однако требует дополнительного анализа то, что на каждом витке КА будет кратковременно пребывать в области тени Земли.

Орбитальные группировки на основе высокоэллиптических орбит

К высоко эллиптическим орбитам относятся эллиптические орбиты с периодом обращения 12, 24 часа и больше. Наиболее известны “Молния», “Тундра» и Loopus.

Орбиты типа “Молния»

Освоение высокоэллиптической орбиты (ВЭО) в нашей стране началось с запуска космического аппарата “Молния-1″. Это событие произошло 50 лет назад. В настоящее время с термином “спутниковая связь» прочно ассоциируются геостационарные КА. Однако именно орбита “Молния» дала начало гражданской спутниковой связи. Дело в том, что энергетики имеющихся в 1965 г. ракет-носителей не хватало, чтобы вывести на геостационарную орбиту космический аппарат связи достаточной массы. Первые запуски давали траекторию, не очень похожую на классическую форму орбиты “Молния» в связи с неточностью выведения КА (см. рис. 16а), однако “Молния 1-4″, запущенная 20 октября 1966 г., после коррекции орбиты образовывала правильную траекторию (см. рис. 16б).

В 1965 г. была опубликована работа [39], где затрагивались вопросы использования ВЭО для построения систем связи, а в [40] уже достаточно детально рассматривались свойства устойчивой высокоэллиптической орбиты с периодом 12 часов [41, 42]. Примерно в 1994 г. проводились исследования по поиску вариантов рационального построения ОГ перспективной системы спутниковой связи. В ходе этих исследований параметры орбиты “Молния» были незначительно скорректированы: аргумент перигея 270 (вместо 285) град., а эксцентриситет уменьшен с 0,725 до 0,715. При этом трасса спутника на апогейном участке стала описывать характерную для ГСО “восьмерку», причем в верхней петле “восьмерки» спутник находился около 6–8 ч (см. рис. 17).

Такой модифицированной орбите “Молния» для большей определенности было дано название “Кентавр» [46, 47]. Таким образом, орбита “Кентавр» – это результат выполнения двух требований: минимизации углового движения КА относительно Земли и обеспечения примерного совпадения точек входа и выхода КА на рабочем апогейном участке орбиты. На этой орбите используется характерная “петля», минимизирующая угловые девиации КА относительно точек на поверхности Земли (см. рис. 18). Величиной эксцентриситета осуществляется “подстройка» точки “входа–выхода» КА в апогейный участок для обеспечения “бесшовного» переключения абонентов со спутника на спутник.

Параметры орбиты “Молния» и ее модификации “Кентавр» приведены в таблице 2.


На рис. 19 показана пространственная структура варианта ОГ “Кентавр», состоящая из 3 орбитальных плоскостей, содержащих по 1 КА.

Вопросы динамической устойчивости космических систем, использующих орбитальную группировку КА на высокоэллиптической орбите, подробно рассматривались в [48, 49], где было показано, что путем индивидуального подбора начальных условий движения КА можно добиться существенного улучшения стабильности всей ОГ в целом. При этом с учетом возможной коррекции орбит КА срок активного существования КА ОГ составит не менее 7 лет. Коррекция орбиты космического аппарата, размещенного на ВЭО, может осуществляться с использованием двигателей малой тяги [50].

Уникальные свойства системы связи, использующей квазигеостационарную орбиту, обеспечивают работу земных станций на территории РФ под углами места не менее 38 град. Также появляется возможность в ряде случаев совместно с геостационарными КА использовать радиочастотный диапазон [44]. В настоящее время в ОАО “ИСС им. М.Ф. Решетнёва» рассматривается возможность создания системы подвижной спутниковой связи с космическими аппаратами на геостационарной и высокоэллиптической орбите [52] c абонентскими линиями в S-диапазоне частот. Соответственно, в этом диапазоне для обеспечения приемлемой энергетики абонентских радиолиний мобильных спутниковых терминалов необходимо использование крупноапертурной бортовой антенной системы.

В классе геостационарных КА крупноапертурные бортовые антенны в настоящее время используются в системе TURAYA. Однако для ВЭО необходимо учитывать особенности работы системы управления движением (СУД) КА, обеспечивающей требуемую ориентацию КА на рабочем участке орбиты. Исследования данного вопроса в [55] показало принципиальную реализуемость такой системы управления движением КА.

КА такого класса, как правило, выполняются на базе трехосно-стабилизированной платформы. Система угловой ориентации обеспечивает построение на борту орбитальной системы координат. Перед выходом КА на рабочий (в данном случае – апогейный) участок осуществляется программный разворот КА по каналу рыскания на угол, при котором последующий разворот панелей СБ обеспечит наведение их на Солнце [54]. Очевидно, что для разных орбитальных плоскостей значение угла программного разворота будет разным. В процессе движения КА по апогейному участку угол между вектором скорости КА и местным меридианом будет непрерывно меняться. Так как система угловой ориентации обеспечивает фиксированное положение КА в орбитальной системе координат (т.е. относительно вектора скорости), то с точки зрения наземного наблюдателя спутник будет совершать медленное вращательное движение относительно его местной вертикали. Возникающий эффект углового дрейфа может составить от 90 до 120 град.

Данный эффект необходимо учитывать при планировании работы полезной нагрузки, особенно при формировании непрерывной рабочей зоны с использованием бортовой многолучевой антенны. Абонентские станции будут гарантированно переходить из луча в луч. Для системы мобильной связи данное обстоятельство не играет существенной роли. Однако для системы фиксированной связи в Ku-диапазоне (например, проект “Экспресс-РВ») данный эффект крайне нежелателен, так как подобные системы не предусматривают в своих протоколах передачу абонентов из луча в луч.

Техническое решение данной проблемы может быть достигнуто за счет:

  1. Применения на рабочем участке орбиты более сложного углового маневра, аналогичного маневру, который осуществляют спутники ДЗЗ для исключения “смазывания» получаемых изображений. Такой способ управления ориентацией КА на рабочем участке описан в [51] для орбиты “Молния».
  2. Использования бортовой антенны с управляемой ориентацией диаграммы направленности. В [60] описано техническое решение Thales Alenia Space, компенсирующее на рабочем участке орбиты разворот зоны обслуживания и изменение ее геометрического размера за счет применения двухрефлекторной антенны. Сканирование осуществляется за счет вращения контррефлектора. Данное техническое решение было предложено с учетом опыта создания КА системы CD Radio, использующей орбиту Tundra.
  3. Использования бортовой многолучевой антенны с переключением лучей, компенсирующим смещение зон на поверхности Земли [53].

Так как перигей орбиты “Молния» расположен на высотах около 1000 км, то для разгрузки гироскопических исполнительных устройств (например, гиродинов) целесообразно использовать электромагнитные исполнительные органы, взаимодействующие с магнитным полем Земли. Перед выходом КА на рабочий участок СУД обеспечивает упреждающий угловой маневр для приведения ориентации КА в рабочее положение к моменту начала рабочего сеанса. Существенным недостатком орбит типа “Молния» является неизбежное пересечение всех радиационных поясов Земли четыре раза в сутки.

Орбита типа Tundra

Наряду с орбитой “Молния» широко известна геосинхронная высокоэллиптическая орбита Tundra. Она применяется в системе Sirius, созданной компанией CD Radio [59], которая является держателем ряда патентов в области спутникового радиовещания. КА ОГ выводились с помощью российской РН “Протон». Орбита Tundra имеет наклонение 63,4 град. и период 24 часа (см. рис. 20a). Высота движения КА на такой орбите больше, чем у КА на орбите “Молния», в том числе реализуются и более высокий апогей и перигей.

Трасса другой орбиты (см. рис. 20б) внешне очень напоминает трассу КА на орбите Tundra. На этой орбите работает КА QZS-1 (MICHIBIKI) спутниковой системы навигации японского космического агентства JAXA Quasi-Zenith Satellites System. Тем не менее, это близкая к круговой орбита (эксцентриситет 0,075), у которой наклонение равно 40,7 град. Рабочий апогейный участок при этом расположен на территории Японских островов (см. рис. 20б).

Подробно параметры орбиты, адаптированные применительно к территории Российской Федерации, приведены в [51, 62], где рассмотрены вопросы длительной устойчивости орбитальной группировки. В отличие от орбиты “Молния» перигей орбиты Tundra в зависимости от конфигурации ОГ может находиться в пределах от 18 000 км до 21 100 км. Соответственно, КА на такой орбите в меньшей степени подвержены радиационному воздействию. Также в меньшей степени сказываются аномалии гравитационного поля Земли. Это позволяет использовать наклонение орбиты, немного отличающееся от критического, без заметного ухудшения устойчивости ОГ.

Однако эффективность использования в системах разгрузки магнитного поля Земли значительно ниже, чем в случае орбиты “Молния». С другой стороны, эксцентриситет орбиты Tundra заметно меньше, чем у орбиты “Молния». Соответственно, нагрузка на гиродины системы ориентации КА на орбите Tundra будет меньше.

Также из-за меньшей скорости изменения высоты КА на рабочем участке для орбиты Tundra заметно меньше величина доплеровского сдвига частоты [67], и в меньших пределах изменяется задержка распространения радиосигнала. Обоснование выбора оптимального варианта системы, обслуживающей северные территории и в целом Российскую Федерацию, может быть темой отдельного исследования [56, 57, 58].

Средневысотные эллиптические орбиты, Cobra, Jocos

Семейство геосинхронных орбитальных структур образуется набором орбит КА, период обращения которых обеспечивает целое число витков за одни или несколько звездных суток [45]. На основе этих орбит строятся локально стационарные орбитальные группировки [43]. В таблице 3 приводятся характеристики некоторых из этого геосинхронного семейства орбит.

На рис. 20 показан соответствующий график. При этом орбиты Tundra, Sixteenhour, Loopus, “Молния» и “Кентавр» относятся к высокоэллиптическим, а Cobra [63, 64, 65], Wonder и Jocos – к средневысотным эллиптическим орбитам (СЭО).

Заключение

Орбитальная группировка космических аппаратов является важнейшим элементом, определяющим облик и стоимость космической системы. Принципы и идеи, закладываемые в процессе проектирования, должны учитывать множество разнородных и часто противоречивых факторов. Одновременно необходимо принимать во внимание ограничения, связанные с взаимодействием космических систем с наземными сетями связи.

Сегодня прослеживается тенденция, связанная с появлением ряда проектов в области космической связи, направленных на использование многоспутниковых группировок негеостационарных КА. Она показывает, что идет поиск новых технологических решений с использованием практически всех типов орбит.

Представленные выше сведения показывают, что задача оптимального построения космического сегмента системы связи является многокритериальной. Сведения, представленные выше, позволяют выполнить экспресс-оценку оптимальности построения космического сегмента системы связи с учетом ее целевых задач.

В заключение авторы выражают глубокую благодарность редакционному коллективу за предоставленную возможность обсуждения темы статьи и ряд предложений и замечаний, внесенных по ходу ее создания.

Литература

  1. Анпилогов В.Р. Эффективность низкоорбитальных систем спутниковой связи на основе малых космических аппаратов // Технологии и средства связи. – 2015. – № 4. С. 62–66.
  2. Системы связи на основе негеостационарных спутников Ka-диапазона // Технологии и средства связи. – 2009. – № 6-2 / Специальный выпуск “Спутниковая связь и вещание-2010″. Под общей редакцией Анпилогова В.Р. С. 42–43.
  3. Эльясберг П.Е. Справка-доклад. О времени существования 3-го спутника. – 24.02.1960.
  4. Охоцимский Д.Е., Энеев Т.М., Таратынова Г.П. Определение времени существования искусственного спутника земли и исследование вековых возмущений его орбиты // Успехи физических наук. Т. LXIII. Вып. 1. – 1957 г.
  5. Ariane 5 User’s Manual. Issue 4. Revision 0. Arianspace. November 2004.
  6. Atlas launch system. Mission planner’s guide. Lockheed Martin Corporation. Atlas commercial launch services 2007.
  7. Delta IV.Payload Planners Guide. United Launch Alliance. September 2007.
  8. Dnepr User’s guide. Space Launch System. Космотранс т.м. November 2001.
  9. LM-3a user’s manual. China. Academy of launch vehicle tecnologi. Issue 1999.
  10. Minotaur I User’s Guide. Orbital sciences corporation. January 2006.
  11. Proton Launch System Mission Planner’s Guide. LKEB-9812-1990. Revision 6, ILS. December 2004.
  12. Rockot user’s guide. Eurockot Launch Services GmbH. Issue 4. Rev 0. November 2004.
  13. ГОСТ 25645.101–83 “Атмосфера Земли верхняя».
  14. U.S.Standard Atmosfere. NASA. 1975.
  15. Guide to Reference and Standard Atmosphere Models. ANSI/AIAA. American National Standard. American Institute of Aeronautics and Astronautics. 2004.
  16. Назаренко А.И. Актуальные вопросы моделирования техногенного загрязнения околоземного космического пространства. [online]. Доступ через: www.iki.rssi.ru/seminar/20010529/1.ppt .
  17. Улыбышев Ю.П. Проектирование спутниковых систем непрерывного обзора: краткий исторический обзор, современное состояние и новые решения. – Королев: РКК “Энергия» им. С.П. Королева, – 2008.
  18. Capderou M. Satellites Orbits and Missions. Springer 2005.
  19. Модель космоса. Т. 1. Физические условия в космическом пространстве. Под ред. М.И. Панасюка. – Изд. КДУ, 2007.
  20. Фортескю П., Старк Д., Суинред Г. Разработка систем космических аппаратов. – М,: Альпина Паблишер, 2015.
  21. Шилов А.Е., Волков С.Н., Безродных И.П., Семенов В.Т. Радиационные условия для высокоорбитальных космических аппаратов в период максимума солнечной активности // Вопросы электромеханики. Труды НПП ВНИИЭМ, Т. 115. – 2010. – С. 47–52. [online]. Доступ через: http://jurnal.vni-iem.ru/text/115/47.pdf.
  22. Jordan C. E. NASA RADIATION BELT MODELS AP-8. September 30 1989.
  23. Scientists explain the formation of unusual ring of radiation in space. September 22 2013. [online]. Доступ через: http://phys.org/news/2013-09-scientists-formation-unusual-space.html.
  24. Васильева А.Л. Объяснено происхождение третьего радиационного пояса Земли. МГУ НИИ ЯФ им. Д.В. Скобельцына. – 25 сентября 2013. [online]. Доступ через: http://www.sinp.msu.ru/ru/post/13909 .
  25. Trishchenko А.Р., Trishchenko L.D., Garand L. Three-Apogee 16-h Highly Elliptical Orbit as Optimal Choice for Continuous Meteorological Imaging of Polar Regions // Journal of atmospheric and oceanic technology. P. 1408. V. 28. November 2011.
  26. Donder E. LEO radiation environment: impacts on PROBA. BIRA-IASB. Space Weather Section. Brussels. 31 March 2014.
  27. Walker, J.G. Some Circular Orbit Patterns Providing Continuous Whole Earth Coverage // Journal of the British Interplanetary Society. Vol. 24. July 1971. P. 369–384.
  28. Можаев Г.В. Синтез орбитальных структур спутниковых систем: (Теоретико-групповой подход). – М.: Машиностроение, 1989. – C. 303.
  29. Wood L., Lou Y., Olusola O. Revisiting elliptical satellite orbits to enhance the O3b constellation // Journal of the British Interplanetary Society. March 2014.
  30. Castiel D. Non-geostationary orbit satellite constellation for continuous coverage of northern latitudes above 25° and its extension to global coverage tailored to the distribution of populated land masses on earth. Patent US 5 931. 417 Aug. 3. 1999.
  31. Draim J.E. Сonstellation of elliptical orbit satellites with line of apsides lying in or near the equatorial plane. Patent Us 6,457,678. Oct. 1 2002.
  32. Castiel D., Draim J.; Brosius J.; Schor M. Elliptical orbit satellite, system, and deployment with controllable coverage characteristics. Patent US 5788187. 4 Aug. 1998.
  33. Unated States Patent US 5794891. Metod of controlling the attitude control for satellites on orbit inclined relative to the equator. 18 Aug. 1998.
  34. Материалы сайтов. [online]. Доступ через: http://yaliny.com/tech-nology/, http://www.3dnews.ru/810491
  35. Спутниковый стартап. Гонконгский стартап россиянина Вадима Теплякова разрабатывает систему спутниковой связи стоимостью минимум в $250 млн // Газета Ведомости. 18 августа. [online]. Доступ через: http://www.vedomosti.ru/newspaper/articles/2014/03/13/ sputnikovyj-startap .
  36. Системы связи на основе негеостационарных спутников Ka-диапазона // Технологии и средства связи. – 2009. – № 6-2 / Спеиальный выпуск “Спутниковая связь и вещание-2010″. Под общей редакцией Анпилогова В.Р. С. 42–43.
  37. Calling the future: Yaliny overview. Project technical presentation. Yaliny. October 2015.
  38. Чернов А.А., Чернавский Г.М. Орбиты спутников дистанционного зондирования Земли. Лекции и упражнения. – М.: Изд. Радио и связь, 2004.
  39. Камнев Е.Ф. Петрович Н.Т. Вопросы космической радиосвязи. – 1965.
  40. Чернавский Г.М., Бартенев В.А. Орбиты спутников связи. – М.: Связь, 1978.
  41. Патент РФ 2059540 “Способ формирования системы локального обзора поверхности планеты». Заявка от 08.10.1987.
  42. Разумный Ю.Н. Локально-стационарные орбиты искусственных спутников Земли // Труды XXV чтений К.Э. Циолковского (Калуга, 11–14 сентября 1990). Секция “Проблемы ракетной и космической техники». – М.: ИЕЕТ АН СССР, 1991. – С. 56–61.
  43. Разумный Ю. Н., Школьников Д. О., Разумный В. Ю. Проектирование спутниковых систем связи на локально-стационарных орбитах // Труды МАИ. № 34. [online]. Доступ через: www.shkolnikov.net/publications/download/15-ru.pdf .
  44. Кантор Л.Я, Хейфец В.Н. Квазигеостационарная орбита // Электросвязь. – № 4. – 2001.
  45. Bousquet M., Pham-Minh D., Cavallaro,G. HEO Constellation Design for Tactical Communications // Satellite Telecommunications (ESTEL). 2012 IEEE First AESS European Conference on 2-5 Oct. 2012.
  46. Витер В.В., Гриценко А.А. Система спутников на эллиптических орбитах, эмулирующая характеристики системы спутников на геостационарной орбите. Патент РФ № 2223205. Заявка от 28.03.2002.
  47. Витер В.В., Липатов,А.А., Гриценко А.А. и др. Виртуальные и псевдостационарные орбиты в региональных системах спутниковой связи и вещания // Технологии и средства связи. – № 5. – 2001.
  48. Назаров А.Е. Устойчивость спутниковых систем непрерывного обслуживания на высокоэллиптических орбитах // Общероссийский научно-технический журнал “Полет». – Москва. – № 7. – 2007.
  49. Назаров А.Е. Обеспечение динамической устойчивости орбитальной структуры космической системы “Арктика-М» // Научно-технический журнал “Вестник НПО им. Лавочкина». – № 2. – 2013.
  50. Протопопов А.П., Богачев А.В., Воробьева Е.А. Коррекция орбиты космического аппарата на высокоэллиптической орбите двигателями малой тяги // Электронный журнал “Труды МАИ». Выпуск № 68.
  51. Камнев Е.Ф, Аболиц А.И.. Акимов А.А. Системы спутниковой связи с эллиптическими орбитами, разнесением ветвей и адаптивной обработкой. – М.: Глобсатком, 2009.
  52. Тестоедов Н.А., Выгонский Ю.Г., Кузовников А.В. Отечественная система персональной подвижной спутниковой связи с космическими аппаратами на геостационарной и высокоэллиптической орбите // Наукоемкие технологии. – Т. 16. – № 3. – М., 2015.
  53. Выгонский Ю.Г., Мухин В.А., Кузовников А.В., Сомов В.Г. Комбинированная спутниковая система связи с земными и космическими абонентами на базе геосинхронных спутников-ретрансляторов, оснащенных многолучевыми антеннами // Фундаментальные исследования. – № 9. – 2014.
  54. Бортовые системы управления космическими аппаратами. [Учебное пособие]. – Под ред. А.С. Сырова. – М.: Изд. МАИ-принт, 2010.
  55. Якимов Е.Н., Раевский В.А., Лукьяненко М.В. Синтез системы управления ориентацией космического аппарата на высокоэллиптической орбите // Вестник СибГАУ. – № 3(49). – 2013.
  56. Гриценко А.А., Юрьев Р.Н. Подвижная спутниковая связь в России и Арктике – выбор орбитальной группировки. Инфосфера № 9. – 2015.
  57. Бахарева В.E., Гусаков Г.С., Шучев В.Г. Орбитальная группировка для связи в высокоширотных и полярных регионах // Электросвязь. – № 5. – 2009.
  58. Датьев И.О. Развитие инфотелекоммуникационных систем арктических территорий // Труды Кольского научного центра РАН 5/2014(24). – Информационные технологии. – Вып. 5.
  59. Системы непосредственного подвижного спутникового вещания // Технологии и средства связи. – 2009. – № 6-2 / Специальный выпуск “Спутниковая связь и вещание-2010″. Обзор под редакцией Анпилогова В.Р. С. 27–29.
  60. Angeletti P. Guida U. Lisi M. Heo satellite systems for broadband aeronautical communications // 21st International Communications Satellite Systems Conference and Exhibit. AIAA 2003-2347.
  61. Акимов А. Полещук В. Шевчук Д. Моделирование рабочей зоны спутниковой группировки, сформи
    рованной на орбите “Тундра» // Технологии и средства связи. – 2013. – № 6-2 / Специальный выпуск “Спутниковая связь и вещание-2014″.
  62. Акимов А., Шевчук Д., Чазов В. Модификация орбиты “Тундра» для обслуживания территории России и анализ ее устойчивости // Технологии и средства связи-2014. – С. 50– 56.
  63. Draim J.E. Inciardi R. Cefola P. “Demonstration of the COBRA Teardrop Concept Using Two Smallsats in 8-Hour Elliptic Orbits ,15th Annual/USU Conferece on Small Satellites, SSC01-II-3, 2001.
  64. .Draim J.E., Inciardi R.,Proulx R., Paul J. Cefola P.J., Carter D., E. Larsen D.E.
    Beyondgeo-usingellipticalorbitcon-stellations to multiplythe Space Real Estate, PII:SOO94-5765(02)00036-X, Acta Astronautica Vol. 5 I, No. 1-9, pp. 467–489.2002.
  65. Draim J.E.,. Cefola P.J. Сobra teardrop arrays for mobile users with seamless handovers, AIAA 2006-5439, 24th AIAA International Communications Satellite Systems Conference (ICSSC) and 4t, 11 — 14 June 2006, San Diego, California
  66. РД 45.041–99.Нормы на электрические параметры цифровых каналов и трактов спутниковых систем передачи. Утвержден Приказом Гостелекома России от 28 сентября 1999 г. № 48.
  67. Tsimbal M., Panko S. Features of the HEO Satellite Communication Systems, International Siberian Conference on Control and Communications, 2015.
  68. А. Шалагинов. Проекты многофункциональных спутниковых систем для Арктических регионов России // Технологии и средства связи. – № 6 (2). – 2013 / Специальный выпуск “Спутниковая связь и вещание-2014″. С 16–17.
  69. Б. Локшин. Об одной возможности организации подвижной связи с ВЭО в Ku-диапазоне // Технологии и средства связи. – № 6 (2). – 2013 / Специальный выпуск “Спутниковая связь и вещание-2014″. С. 18–20.
  70. В. Анпилогов. О проблемах спутниковой связи и вещания в Арктике // Технологии и средства связи. – № 6 (2). – 2013/ Специальный выпуск “Спутниковая связь и вещание-2014″. С. 24–31.

Опубликовано: Специальный выпуск «Спутниковая связь и вещание»-2016
Посещений: 18047

Статьи по теме

  Автор


Степанов Александр АлександровичДиректор ФГУП «НПЦ «Вигстар», к.т.н.

Всего статей:  4

  Автор


Александр АкимовГлавный специалист, ЦНИИ экономики, информатики и систем управления

Всего статей:  8

  Автор


Андрей ГриценкоГенеральный директор АО «Информационный Космический Центр «Северная Корона», к.т.н.

Всего статей:  10

  Автор


Вадим ЧазовС.н.с. отдела астрометрии и службы времени, Государственный астрономический институт им. П.К. Штернберга МГУ им. М.В. Ломоносова, д.ф.-м.н.

Всего статей:  4

В рубрику «Спутниковая связь» | К списку рубрик  |  К списку авторов  |  К списку публикаций


Лаборатория наблюдений искусственных спутников Земли

В Казахстане, история наблюдений искусственных спутников Земли (ИСЗ) началась в Астрофизическом институте им. В.Г. Фесенкова в 1957 году сразу же после запуска первого спутника. В тот же год институт вошел в состав сети станций оптических наблюдений ИСЗ Советского Союза, предназначенной для контроля за околоземным космическим пространством. В течении ряда лет, начиная с 1967 года, в институте в лаборатории наблюдений искусственных спутников Земли под руководством В.С. Матягина проводились наблюдения автоматических межпланетных станций, запускаемых в сторону Луны, Марса и Венеры. В 1971 году Валерий Матягин в составе авторского коллектива был удостоен Государственной премии СССР за разработку аппаратуры, программного обеспечения и проведение высокоточных наблюдений искусственных спутников Земли. В 1991-1996 гг. на основании результатов наблюдений под руководством А.В. Диденко была создана база данных и вышел из печати Каталог геостационарных спутников (ГСС), включающий информацию о 259 ГСС. По результатам наблюдений 1991-1999 гг. подготовлен и издан второй выпуск каталога, включающий информацию о 670 ГСС.

Начиная с 2000-х наблюдения ГСС ведутся на телескопе “Цейсс-1000”, оснащенном современной ПЗС-камерой. Параллельно ведутся поисковые наблюдения на недавно созданном пункте наблюдений ГСС на обсерватории Ассы-Тургень на базе телескопа RC500 компании “Астросиб”. В настоящее время в секторе регулярно проводятся наблюдения зоны удержания группировки казахстанских геостационарных спутников. Ведется мониторинг области геостационарной зоны в области контролируемых пунктами РК долгот, в которых локализованы геостационарные спутники, обеспечивающие связь, навигацию и телекоммуникацию на территории России, Средней и Юго-Восточной Азии. Этому способствует выгодное географическое положение обсерваторий АФИФ, поскольку они расположены на долготах, близких к долготе точки либрации 75°. Это позволяет контролировать практически все пассивные и активные геостационарные спутники, находящиеся вблизи данной точки либрации.

Наглядным примером эффективного применения наземной информации для анализа нештатных ситуаций могут служить работы, проведенные в секторе по американскому аппарату DSP-21, российским спутникам связи «Ямал-101» и «Экспресс АМ-11», по казахстанскому спутнику Казсат-1.

Телескоп “Цейсс-1000”,
обсерватория Тянь-Шань.
Телескоп RC500,
обсерватория Ассы-Тургень.

Как устроен навигатор для искусственных спутников Земли? — Академия Яндекса

Где человек — там мусор: вокруг Земли летают сотни тысяч разных обломков, способных повредить космический аппарат. Обычно при возникновении опасности столкновения спутник вручную переводят на другую орбиту. Но скоро, если будут реализованы амбициозные планы организации широкополосного спутникового доступа в Интернет, число искусственных спутников перевалит за десять тысяч и совершать маневры вручную будет уже непрактично. Система SpaceNav, созданная группой российских разработчиков, должна автоматизировать этот процесс.

Вероятность столкновения

Сейчас вокруг Земли летают всего лишь 1950 функционирующих спутников, но им уже приходится совершать маневры уклонения от космического мусора и друг от друга, например, международная космическая станция (МКС) сделала 25 таких манёвров в 1999-2017 годах. Но скоро спутников станет в разы больше: один только SpaceX планирует запустить до 12 000 устройств группировки Starlink для того, чтобы обеспечить широкополосный доступ в интернет по всему миру.

Сейчас решение о маневре принимают люди на основе информации от систем вроде CORAM (Collision Risk Assessment and Avoidance Manoeuvres), которую использует Европейское космическое агентство (ЕКА). Эта же система дает сведения о потенциальных столкновениях, маневрах и траекториях нескольких объектов одновременно и предлагает оператору варианты уклонения. Рост числа спутников и других опасных объектов сделает ручное управление группировками из тысяч космических аппаратов непрактичным и неэффективным.

Еще в 1978 году астрофизик Дональд Кесслер описал эффект, названный впоследствии его именем, — лавинообразное нарастание числа опасных объектов на околоземной орбите. Каждое столкновение порождает сотни опасных обломков и тем самым повышает вероятность нового столкновения, вплоть до полной непригодности орбиты для использования. Десять лет назад в результате первого в истории столкновения двух искусственных спутников — «Космос-2251» и «Iridium 33», общим весом полторы тонны — возникло не менее 600 крупных обломков.

Выход из ситуации один — нужно автоматизировать управление. О прошлых и текущих проектах такого рода мало что известно: сфера космических технологий не отличается открытостью, но что-то обнаружить удается. Например, можно найти информацию о тендере ЕКА на разработку такой автономной системы и заявление SpaceX, запустившего первые 60 аппаратов группировки Starlink 25 мая, о том, что они оснащены автономной системой уклонения от столкновений, хотя эксперты пока не уверены в эффективности принятых мер.

Космический навигатор

Группа российских разработчиков в конце прошлого года представила «Космический навигатор» SpaceNav. Это совместный проект Научно-учебной лаборатории методов анализа больших данных ВШЭ, ФГУП ЦНИИМаш, АО «Российские космические системы» и Школы анализа данных Яндекса, с участием компании Phygitalism. Группой руководит Денис Зеленов из ЦНИИмаш при участии Андрея Устюжанина, основные разработчики — Никита Казеев (ВШЭ и ШАД) и Леонид Гремячих (ВШЭ). Хотя впереди еще большой путь, но уже начаты переговоры о пилотном внедрении системы для Международной космической станции.

SpaceNav — автономная система, построенная из модулей, что позволяет по мере надобности менять компоненты и методы оценки вероятности столкновения и задавать различные процедуры принятия решений. Система способна учитывать не менее десяти опасных объектов одновременно, используя новый алгоритм оптимизации маневра.

Расчёты вероятности столкновения

Система использует обучение с подкреплением (reinforcement learning) и позволяет настраивать функцию оптимизации в широком диапазоне параметров. С точки зрения пользователя, настройка функции оптимизации выглядит как простое указание предельных значений всех важных для данного случая параметров: скажем, пользователь сообщает системе, что ему важнее всего соблюсти такое-то минимальное расстояние до ближайших объектов и потратить не больше вот такого объема топлива.

Схема работы SpaceNav устроена следующим образом:

Получив необходимые инструкции и данные, SpaceNav начинает вычислять оптимальный маневр. В процессе вычисления используются, в частности, методы поиска по сетке (grid search) и перекрестной энтропии.

  • Метод поиска по сетке работает в одном из двух режимов. Базовый режим учитывает только ближайший опасный объект, так что после каждого маневра вычисления начинаются заново. Из-за этого аппарат может израсходовать больше топлива и значительно отклониться от номинальной орбиты. Общий режим принимает в расчет все опасные объекты одновременно, что позволяет предпринять один маневр для уклонения сразу от нескольких потенциальных столкновений.
  • Метод перекрестной энтропии позволяет рассчитать маневр в любом направлении и его оптимальное время. В основе метода лежит стохастическая оптимизация (stochastic optimization). В заметно упрощенном виде она выглядит как серия всё более успешных попыток найти наилучшее решение.

Хотя в штатном режиме система будет работать без участия человека, компания Phygitalism в демонстрационных целях разработала экспериментальный интерфейс с использованием виртуальной реальности: голограмма Земли и космических объектов с обозначением их орбит, 2D-интерфейс с масштабируемой визуализацией процесса маневрирования, возможность интерактивного выбора траектории уклонения, визуальные и звуковые предупреждения о возможных столкновениях.

Кнут и пряник в числовом выражении

Одной из сильных сторон проекта разработчики считают использование обучения с подкреплением — метода, который всё шире применяется в разработках, связанных с искусственным интеллектом. Если сильно упростить, то всякое решение оценивается неким числом — наградой, зависящей от соответствия предложенного решения заданной функции оптимизации.

Применительно к SpaceNav схема в общем виде такая: есть состояние среды (сведения о движении и свойствах объектов и другие параметры), и есть агент (собственно нейронная сеть), который предлагает действие. После выполнения действия состояние среды меняется, и агент получает обратную связь — выраженную числом награду, которая зависит от соблюдения требований к оптимизации и от отсутствия отклонений, за которые предусмотрен штраф. Постепенно агент «тренируется» — учится получать максимальную награду. Оценивать можно отдельное действие, новое состояние среды и даже всю сессию расчетов от начала до конца.

Отдельное преимущество такого подхода — возможность не слишком упрощать информацию о состоянии среды ради возможности напрямую вычислить наиболее эффективное действие. В каждом цикле агент предлагает решения, всё более близкие к оптимальному, а если в роли агента выступает уже обученная нейронная сеть, выдает маневры сразу, на основе параметров конкретной опасной ситуации.

Навигатор в виртуальной реальности

Не менее важной частью работы было тестирование «Космического навигатора». Разработчики создали генератор опасных ситуаций, который создает случайную среду и объекты в ней в соответствии с заданным диапазоном возможных свойств объектов и окружающих условий и с учетом акцента на низкой околоземной орбите (от 160 до 2000 километров над уровнем моря), где высоки относительные скорости спутников, в отличие от геостационарной орбиты (для сравнения — 35 786 километров над уровнем моря).{-4}, но это было связано с тем, что главными критериями были выбраны экономия топлива и поддержка орбиты. Изменив параметры оптимизации, вероятность опасного сближения можно еще уменьшить.

Распознавание объектов

Проблемы, возникающие при создании качественных симуляций, подсказали еще одно возможное использование системы — для вычисления свойств неизвестного объекта по особенностям его движения. Дело в том, что генерация среды для тестирования — не такая простая задача, как можно подумать: навигатор будет работать с реальными объектами в околоземном пространстве, где на все объекты воздействуют изменяющиеся атмосферные, солнечные и геомагнитные условия и неоднородное гравитационное поле.

Как именно они воздействуют, зависит от свойств объектов, которые не всегда известны, если речь идет о мусоре. По мнению разработчиков, обучение с подкреплением помогает определить такой набор свойств объекта в симуляторе, при которых он ведет себя максимально похоже на реальный объект. В ходе спонтанной проверки гипотезы удалось определить наиболее подходящую площадь сечения (виртуального) космического объекта — 1,5 м².

Экспериментальный интерфейс от компании Phygitalism

Теперь, когда имеется жизнеспособный продукт, группа предполагает разработать графический интерфейс для навигатора, добавить функции использования нейронных сетей для быстрого начала маневра и оптимизации серии маневров и предоставить возможности интеграции с внешними системами, например, с базой данных космического мусора DISCOS (поддерживается ЕКА), российскими АСПОС ОКП (Автоматизированная система предупреждения об опасных ситуациях в околоземном космическом пространстве) и ЦУПом. Подробнее о работе можно почитать в препринте.

Что такое спутник? — Разъяснение истории и технологий

Всемирная неделя космоса 2020 будет отмечать влияние спутников на человечество с 4 по 10 октября. Узнайте, как отпраздновать здесь, и ознакомьтесь с историей спутников ниже!

Спутник — это космический объект, который вращается вокруг более крупного объекта. Есть два типа спутников: естественные (такие как Луна, вращающаяся вокруг Земли) или искусственные (например, Международная космическая станция, вращающаяся вокруг Земли).

В солнечной системе есть десятки и десятки естественных спутников, и почти на каждой планете есть хотя бы одна луна. У Сатурна, например, как минимум 53 естественных спутника, а в период с 2004 по 2017 год у него также был искусственный — космический корабль Кассини, который исследовал окольцованную планету и ее спутники.

Однако искусственные спутники стали реальностью только в середине 20 века. Первым искусственным спутником был Спутник, российский космический зонд размером с пляжный мяч, который стартовал в октябре.4 января 1957. Этот акт шокировал большую часть западного мира, поскольку считалось, что у Советов не было возможности отправлять спутники в космос.

Краткая история искусственных спутников

После этого подвига 3 ноября 1957 года Советы запустили еще более массивный спутник — Спутник-2, на котором была собака Лайка. Первым спутником Соединенных Штатов был Explorer 1 31 января 1958 года. Спутник был всего на 2 процента массы Спутника 2, однако весил 30 фунтов (13 кг).

Спутники и Explorer 1 стали первым кадром в космической гонке между Соединенными Штатами и Советским Союзом, которая длилась по крайней мере до конца 1960-х годов.Внимание к спутникам как политическому инструменту начало уступать место людям, поскольку обе страны отправили людей в космос в 1961 году. Однако позже в этом десятилетии цели обеих стран начали расходиться. В то время как Соединенные Штаты продолжали высаживать людей на Луну и создавать космический шаттл, Советский Союз построил первую в мире космическую станцию ​​Салют-1, запущенную в 1971 году. Советский Союз Мир.)

Explorer 1 был первым U.Спутник S. и первый спутник с научными приборами. (Изображение предоставлено НАСА / Лаборатория реактивного движения)

Другие страны начали отправлять свои собственные спутники в космос, поскольку выгода от их применения распространилась по всему обществу. Метеорологические спутники улучшили прогнозы даже для удаленных районов. Спутники наблюдения за сушей, такие как серия Landsat, отслеживали изменения в лесах, воде и других частях поверхности Земли с течением времени. Телекоммуникационные спутники сделали междугородние телефонные звонки и, в конечном итоге, прямые телетрансляции со всего мира стали нормальной частью жизни.Последующие поколения помогли с подключением к Интернету. [Галерея изображений: Снимки Земли из космоса: Наследие спутников Landsat]

Благодаря миниатюризации компьютеров и другого оборудования теперь можно отправлять на орбиту гораздо меньшие спутники, которые могут выполнять научные, телекоммуникационные или другие функции. Сейчас компании и университеты часто создают «кубесаты» или спутники в форме куба, которые часто населяют низкую околоземную орбиту.

Их можно поднять на ракету вместе с большей полезной нагрузкой или отправить с мобильной пусковой установки на Международной космической станции (МКС).НАСА в настоящее время рассматривает возможность отправки CubeSats на Марс или на Луну Europa (около Юпитера) для будущих миссий, хотя CubeSats не подтверждено для включения.

МКС — самый большой спутник на орбите, на создание которого потребовалось более десяти лет. По частям, 15 стран внесли финансовую и физическую инфраструктуру в орбитальный комплекс, который был собран в период с 1998 по 2011 год. Руководители программы ожидают, что МКС будет работать как минимум до 2024 года.

Части спутника

Каждый годный к использованию искусственный спутник — будь то человеческий или роботизированный — состоит из четырех основных частей: энергосистемы (например, солнечной или ядерной), способа управления ее положением, антенны для передачи и приема информации и полезной нагрузки для собирать информацию (например, камеру или детектор частиц).

Однако, как будет показано ниже, не все искусственные спутники обязательно являются работоспособными. Даже винт или немного краски считается «искусственным» спутником, даже если в них отсутствуют эти детали.

Что мешает спутнику упасть на Землю?

Спутник лучше всего понимать как снаряд или объект, на который действует только одна сила — гравитация. Технически говоря, все, что пересекает линию Кармана на высоте 100 километров (62 мили), считается космическим.Однако спутник должен двигаться быстро — не менее 8 км (5 миль) в секунду — чтобы немедленно не упасть на Землю.

Если спутник движется достаточно быстро, он будет постоянно «падать» на Землю, но кривизна Земли означает, что спутник упадет вокруг нашей планеты, а не рухнет обратно на поверхность. Спутники, которые приближаются к Земле, рискуют упасть, потому что сопротивление атмосферных молекул замедлит работу спутников. Тем, кто находится на орбите дальше от Земли, приходится бороться с меньшим количеством молекул.

Есть несколько общепринятых «зон» орбит вокруг Земли. Один из них называется околоземной орбитой и простирается от 160 до 2000 км (от 100 до 1250 миль). Это зона орбиты МКС и где раньше выполнял свою работу космический челнок. Фактически, все человеческие миссии, кроме полетов Аполлона на Луну, проходили в этой зоне. Большинство спутников также работают в этой зоне.

Однако геостационарная или геостационарная орбита — лучшее место для спутников связи.Это зона над экватором Земли на высоте 35 786 км (22 236 миль). На этой высоте скорость «падения» вокруг Земли примерно такая же, как и при вращении Земли, что позволяет спутнику почти постоянно оставаться над одним и тем же местом на Земле. Таким образом, спутник поддерживает постоянную связь с фиксированной антенной на земле, обеспечивая надежную связь. Когда срок службы геостационарных спутников подходит к концу, протокол требует, чтобы их убрали с дороги, чтобы на их место пришел новый спутник.Причина в том, что на этой орбите достаточно места или столько «щелей», чтобы спутники могли работать без помех.

В то время как некоторые спутники лучше всего использовать вокруг экватора, другие лучше подходят для более полярных орбит — те, которые вращаются вокруг Земли от полюса к полюсу, так что их зоны покрытия включают северный и южный полюса. Примеры спутников на полярной орбите включают метеоспутники и разведывательные спутники.

Три небольших CubeSat плавают над Землей после запуска с Международной космической станции.Астронавт Рик Мастраккио опубликовал в Твиттере фотографию со станции 19 ноября 2013 г. (Изображение предоставлено: Рик Мастраккио (через Twitter под именем @AstroRM))

Что мешает одному спутнику врезаться в другой спутник?

По оценкам, сегодня на околоземной орбите находится около полумиллиона искусственных объектов, размером от пятен краски до полноценных спутников, каждый из которых движется со скоростью тысячи миль в час. Только часть этих спутников пригодна для использования, а это означает, что вокруг плавает много «космического мусора».Со всем, что выброшено на орбиту, вероятность столкновения увеличивается.

Космические агентства должны тщательно учитывать орбитальные траектории при запуске чего-либо в космос. Такие агентства, как Сеть космического наблюдения Соединенных Штатов, следят за орбитальным мусором с земли и предупреждают НАСА и другие организации, если сбившийся с пути объект может поразить что-то жизненно важное. Это означает, что время от времени МКС необходимо выполнять маневры уклонения, чтобы уйти с дороги.

Однако коллизии все же возникают.Одним из главных виновников космического мусора были остатки противоспутникового испытания 2007 года, проведенного китайцами, в результате которого в 2013 году образовался мусор, уничтоживший российский спутник. Также в том же году спутники Iridium 33 и Cosmos 2251 врезались друг в друга. создавая облако обломков.

НАСА, Европейское космическое агентство и многие другие организации рассматривают меры по сокращению количества орбитального мусора. Некоторые предлагают каким-то образом сбивать мертвые спутники, возможно, используя сеть или воздушные удары, чтобы сбить обломки с их орбиты и приблизить их к Земле.Другие думают о дозаправке мертвых спутников для повторного использования — технологии, которая была продемонстрирована с помощью роботов на МКС.

Спутники других миров

Большинство планет в нашей солнечной системе имеют естественные спутники, которые мы также называем лунами. Для внутренних планет: у Меркурия и Венеры нет лун. У Земли есть одна относительно большая луна, а у Марса есть два маленьких луны размером с астероид, называемые Фобос и Деймос. (Фобос медленно приближается к Марсу и, вероятно, распадется на части или упадет на поверхность через несколько тысяч лет.)

За поясом астероидов находятся четыре газовые планеты-гиганты, каждая из которых имеет пантеон лун. По состоянию на конец 2017 года у Юпитера было 69 известных спутников, у Сатурна — 53, у Урана — 27, а у Нептуна — 13 или 14. Новые луны иногда открываются — в основном с помощью миссий (прошлых или настоящих, как мы можем анализировать старые изображения) или выполнения свежие наблюдения в телескоп.

Сатурн — особый пример, потому что он окружен тысячами маленьких объектов, которые образуют кольцо, видимое даже в небольшие телескопы с Земли.Ученые, наблюдавшие за кольцами крупным планом более 13 лет во время миссии Кассини, увидели условия, в которых могут родиться новолуния. Ученые особенно интересовались пропеллерами, которые представляют собой следы в кольцах, созданные фрагментами в кольцах. Сразу после завершения миссии Кассини в 2017 году НАСА заявило, что, возможно, пропеллеры разделяют элементы формирования планет, которые происходят вокруг газовых дисков молодых звезд.

Однако даже у меньших объектов есть луны. Плутон технически карликовая планета.Однако люди, стоящие за миссией New Horizons, пролетевшей мимо Плутона в 2015 году, утверждают, что его разнообразная география делает его более похожим на планету. Однако одна вещь, которая не оспаривается, — это количество лун вокруг Плутона. У Плутона пять известных спутников, большинство из которых были открыты, когда New Horizons находился в разработке или на пути к карликовой планете.

У многих астероидов тоже есть спутники. Эти маленькие миры иногда летают близко к Земле, и луны появляются при наблюдениях с помощью радара. Несколько известных примеров астероидов с лунами включают 4 Весты (которые посетили миссия НАСА Рассвет), 243 Ида, 433 Эрос и 951 Гаспра.Есть также примеры астероидов с кольцами, такие как 10199 Харикло и 2060 Хирон.

Многие планеты и миры в нашей солнечной системе также имеют искусственные «луны», особенно вокруг Марса, где несколько зондов вращаются вокруг планеты, наблюдая за ее поверхностью и окружающей средой. Планеты Меркурий, Венера, Марс, Юпитер и Сатурн в какой-то момент истории имели искусственные спутники, наблюдавшие за ними. У других объектов также были искусственные спутники, такие как комета 67P / Чурюмова-Герасименко (посещенная миссией Розетты Европейского космического агентства) или Веста и Церера (оба посещались миссией НАСА «Рассвет».С технической точки зрения, во время миссий Аполлона люди летали на искусственных «лунах» (космических кораблях) вокруг нашей Луны в период с 1968 по 1972 год. НАСА может даже построить космическую станцию ​​«Врата в дальний космос» около Луны в ближайшие десятилетия, как стартовая точка для полетов людей на Марс.

Поклонники фильма «Аватар» (2009) помнят, что люди посетили Пандору, обитаемую луну газового гиганта по имени Полифем. Мы пока не знаем, есть ли у экзопланет луны, но подозреваем — учитывая, что планеты Солнечной системы имеют так много лун, — что у экзопланет тоже есть луны.В 2014 году ученые наблюдали объект, который можно интерпретировать как экзопланету, вращающуюся вокруг экзопланеты, но это наблюдение невозможно повторить, поскольку оно имело место, когда объект двигался перед звездой.

движений спутников и космических аппаратов

Цели обучения

К концу этого раздела вы сможете:

  • Объясните, как объект (например, спутник) можно вывести на орбиту вокруг Земли
  • Объясните, как объект (например, планетарный зонд) может покинуть орбиту

Универсальный закон всемирного тяготения Ньютона и законы Кеплера описывают движение спутников Земли и межпланетных космических кораблей, а также планет.Спутник, первый искусственный спутник Земли, был запущен в то время Советским Союзом 4 октября 1957 года. С тех пор тысячи спутников были выведены на орбиту вокруг Земли, а космические аппараты также совершили орбиты вокруг Луны, Венеры и Марса. , Юпитер, Сатурн и ряд астероидов и комет.

Когда искусственный спутник оказывается на орбите, его поведение не отличается от поведения естественного спутника, такого как наша Луна. Если спутник находится достаточно высоко, чтобы на нем не было атмосферного трения, он навсегда останется на орбите.Однако, хотя поддерживать спутник на орбите нетрудно, требуется много энергии, чтобы оторвать космический корабль от Земли и разогнать его до орбитальной скорости.

Чтобы проиллюстрировать, как запускается спутник, представьте себе пистолет, выпускающий пулю горизонтально с вершины высокой горы, как на рисунке 1, который был адаптирован из аналогичной диаграммы Ньютоном. Далее представьте, что трение воздуха можно устранить и ничто не мешает пуле.Тогда единственная сила, которая действует на пулю после того, как она покидает дуло, — это сила тяжести между пулей и Землей.

Рис. 1. Запуск пули на орбиту. (a) Для путей a и b скорость недостаточна, чтобы гравитация не притягивала пулю обратно к Земле; в случае c скорость позволяет пуле полностью облететь Землю. (b) Эта диаграмма Ньютона в его De Mundi Systemate , издание 1731 года иллюстрирует ту же концепцию, что и на (a).

Если пуля выпущена со скоростью, которую мы можем назвать v a , действующая на нее гравитационная сила тянет ее вниз к Земле, где она ударяется о землю в точке a . Однако, если ему дать более высокую начальную скорость, v b , его более высокая скорость унесет его дальше, прежде чем он упадет на землю в точке b .

Если наша пуля имеет достаточно высокую начальную скорость, v c , изогнутая поверхность Земли заставляет землю оставаться на том же расстоянии от пули, так что пуля падает вокруг Земли по полному кругу.Скорость, необходимая для этого, называемая круговой скоростью спутника, составляет около 8 километров в секунду, или около 17 500 миль в час в более привычных единицах измерения.

Ежегодно более 50 новых спутников запускаются на орбиту такими странами, как Россия, США, Китай, Япония, Индия и Израиль, а также Европейским космическим агентством (ESA), консорциумом европейских стран ( Фигура 2). Сегодня эти спутники используются для отслеживания погоды, экологии, систем глобального позиционирования, связи и военных целей, и это лишь некоторые из них.Большинство спутников выводится на низкую околоземную орбиту, поскольку для этого требуется минимальная энергия запуска. На орбитальной скорости 8 километров в секунду они обращаются вокруг планеты примерно за 90 минут. Некоторые из очень низких околоземных орбит не являются бесконечно стабильными, потому что по мере того, как атмосфера Земли время от времени раздувается, атмосфера этих спутников создает сопротивление трения, которое в конечном итоге приводит к потере энергии и «распаду» орбиты.

Рисунок 2: Спутники на околоземной орбите. На этом рисунке показаны более крупные куски орбитального мусора, которые отслеживает НАСА на орбите Земли. (Источник: NASA / JSC)

Межпланетный космический корабль

Исследование Солнечной системы проводилось в основном с помощью космических роботов, отправленных на другие планеты. Чтобы покинуть Землю, эти летательные аппараты должны достичь убегающей скорости , скорости, необходимой для полного удаления от Земли, которая составляет около 11 километров в секунду (около 25 000 миль в час). Покинув Землю, эти летательные аппараты движутся по направлению к своим целям, при условии лишь незначительных корректировок траектории, обеспечиваемых небольшими ракетными двигателями на борту.В межпланетном полете эти космические аппараты следуют по орбитам вокруг Солнца, которые изменяются только тогда, когда они проходят вблизи одной из планет.

По мере приближения к своей цели космический корабль отклоняется гравитационной силой планеты на измененную орбиту, при этом либо набирая, либо теряя энергию. Контроллеры космических кораблей действительно смогли использовать гравитацию планеты для перенаправления пролетающего космического корабля на вторую цель. Например, «Вояджер-2» использовал серию встреч с помощью гравитации для последовательных облетов Юпитера (1979), Сатурна (1980), Урана (1986) и Нептуна (1989).Космический корабль «Галилео», запущенный в 1989 году, один раз пролетел мимо Венеры и дважды мимо Земли, чтобы набрать энергию, необходимую для достижения своей конечной цели — вращения вокруг Юпитера.

Если мы хотим выйти на орбиту планеты, мы должны замедлить космический корабль с помощью ракеты, когда космический корабль приближается к пункту назначения, что позволит вывести его на эллиптическую орбиту. Требуется дополнительная тяга ракеты, чтобы сбить аппарат с орбиты для посадки на поверхность. Наконец, если планируется обратный полет на Землю, приземляющаяся полезная нагрузка должна включать в себя достаточную тяговую мощность, чтобы повторить весь процесс в обратном порядке.

Основные понятия и краткое изложение

Орбита искусственного спутника Земли зависит от обстоятельств его запуска. Круговая скорость спутника, необходимая для вращения вокруг поверхности Земли, составляет 8 километров в секунду, а скорость убегания с нашей планеты — 11 километров в секунду. Существует множество возможных межпланетных траекторий, включая те, которые используют облет одного объекта с помощью гравитации для перенаправления космического корабля к следующей цели.

Глоссарий

скорость убегания: скорость, которую должно достичь одно тело, чтобы оторваться от гравитации другого тела.

Спутник Земли | Определение и факты

Понимание функционирования искусственных спутников, проблемы перенаселенности и того, как космические джонки представляют угрозу для космических путешествий

Обзор искусственных спутников, включая проблему перенаселенности.

Contunico © ZDF Enterprises GmbH, Майнц См. Все видеоролики к этой статье

Спутник Земли , также называемый искусственным спутником , искусственный объект, выведенный на временную или постоянную орбиту вокруг Земли. Космические аппараты этого типа могут быть как с экипажем, так и без экипажа, причем последнее является наиболее распространенным.

Идея искусственного спутника в орбитальном полете была впервые предложена сэром Исааком Ньютоном в его книге Philosophiae Naturalis Principia Mathematica (1687).Он указал на то, что пушечное ядро, выпущенное с достаточной скоростью с вершины горы в направлении, параллельном горизонту, облетит Землю, прежде чем упасть. Хотя объект будет иметь тенденцию падать к поверхности Земли из-за силы тяжести, его импульс заставит его спуститься по кривой траектории. Большая скорость вывела бы его на стабильную орбиту, как у Луны, или вообще направила бы его от Земли.

Британская викторина

Объекты в космосе: факт или вымысел?

Из чего в основном состоят астероиды? Где образуются кометы? В этой увлекательной викторине по космической науке вы откроете для себя «внешние пределы» — от небесных тел до спутников.

4 октября 1957 года, почти через три столетия после того, как Ньютон предложил свою теорию, Советский Союз запустил первый спутник Земли, Спутник 1. Спутник совершал оборот вокруг Земли каждые 96 минут, и его простой радиосигнал был услышан учеными и радистами по всему миру. Мир. Соединенные Штаты вывели на орбиту свой первый спутник Explorer 1 три месяца спустя (31 января 1958 г.). Explorer, хотя и намного меньше, чем Sputnik, был оснащен приборами для обнаружения радиации и обнаружил самый внутренний из двух радиационных поясов Ван Аллена, зону электрически заряженных солнечных частиц, которая окружает Землю.

С тех пор, как эти первые усилия были предприняты, более 5000 спутников Земли были выведены на орбиту более чем 70 различными странами. По состоянию на 2017 год на орбите находится более 2000 спутников, большинство из которых из России или США. Спутники сильно различаются по размеру и конструкции: от небольших «пикоспутников» весом менее килограмма до Международной космической станции, космической лаборатории, в которой проживают шесть астронавтов, и имеющей массу более 400 тонн. Они одинаково разнообразны по функциям.Научные спутники в основном используются для сбора данных о поверхности и атмосфере Земли и для астрономических наблюдений. Метеорологические спутники передают фотографии облачности и измерения других метеорологических условий, которые помогают в прогнозировании погоды, в то время как спутники связи передают телефонные звонки, радио- и телевизионные программы и передачу данных между удаленными частями мира. Навигационные спутники позволяют экипажам океанских судов и самолетов определять местоположение своих судов в любую погоду.Некоторые спутники имеют явно военное применение, например, для разведки и наблюдения.

Международная космическая станция; Discovery

Международная космическая станция, сфотографированная членом экипажа STS-114 на борту космического челнока Discovery во время первого космического полета после катастрофы Columbia , 28 июля 2005 г.

NASA
Получите подписку Britannica Premium и получите доступ к эксклюзивному контенту.
Подпишитесь сейчас

Спутников можно вывести на любое количество разных орбит.Конкретный выбранный путь во многом определяется функцией космического корабля. Например, большинство метеорологических и разведывательных спутников запускаются на полярную орбиту, на которой полярная ось Земли представляет собой линию в плоскости орбиты. Поскольку Земля вращается под спутниками на полярной орбите, они проходят по всей ее поверхности в течение определенного периода времени, обеспечивая полное глобальное покрытие. С другой стороны, спутники связи обычно выводятся на экваториальную орбиту, что позволяет им обходить наиболее густонаселенные регионы Земли с запада на восток.Более того, спутники связи, составляющие сеть или систему, почти всегда запускаются на расстояние 22 300 миль (35 890 км) над Землей. На этой высоте движение спутника синхронизируется с вращением Земли, в результате чего аппарат остается неподвижным в одном месте. При правильном расположении три спутника связи, движущиеся по такой геостационарной орбите, могут передавать сигналы между станциями по всему миру. ( См. Также космический корабль; освоение космоса.)

Искусственный спутник — обзор

8.11.1 Введение

4 октября 1957 года Советский Союз запустил первый искусственный спутник «Спутник-1». Это была полированная металлическая сфера диаметром 58 см без научных инструментов, но с четырьмя внешними радиоантеннами для передачи простых радиоимпульсов на Землю ( Рис. 1 ). Спутник был запущен на космодроме Байконур, расположенном в Казахстане (входившем в состав СССР). Плотность верхних слоев атмосферы определялась сопротивлением спутника на орбите, а распространение его радиосигналов давало информацию об ионосфере.Спутник-1 был виден по всей Земле, и его радиоимпульсы были обнаружены даже радиолюбителями в разных частях мира. Сигналы продолжались 21 день до 26 октября 1957 г., когда разрядились батареи передатчика. Спутник-1 провел на орбите 3 месяца и 4 января 1958 года сгорел в плотных слоях атмосферы Земли. Это было началом спутниковой эры на Земле, инициированной Сергеем Королевым, главным конструктором программы советского спутника. Этот запуск спутника вызвал так называемую космическую гонку между Советским Союзом и Соединенными Штатами и привел к новым научным, технологическим, политическим и военным достижениям.

Рис. 1. Спутник-1 (https://en.wikipedia.org/wiki/Sputnik_1).

3 ноября 1957 года на орбиту был запущен Спутник-2 с первым живым животным — собакой по кличке Лайка. Это был конус размером 2х4 м, который весил около 500 кг. Спутник содержал научные приборы (два фотометра для измерения солнечного излучения — УФ и рентгеновского излучения и космических лучей), радиопередатчики, систему телеметрии, контроль температуры в кабине и систему регенерации. Технические и биологические данные передавались на Землю в течение 15 мин на каждой орбите.

12 апреля 1961 года советский военный летчик и космонавт Юрий Алексеевич Гагарин ( рис. 2 ) на космическом корабле «Восток» совершил первый пилотируемый орбитальный полет вокруг Земли. Он стал первым человеком, полетевшим в космос, и после одного оборота вокруг планеты успешно вернулся на Землю. Он был первым, кто увидел северную часть Тихого океана (до захода солнца) и южную часть Атлантического океана (после восхода солнца) из космоса. Этот факт можно считать началом дистанционного зондирования океана в Советском Союзе.6 августа 1961 г. Герман С. Титов на «Востоке-2» за 25 ч 18 мин космического полета произвел серию метеорологических и геофизических наблюдений, а также первые видеозаписи Земли.

Рис. 2. Ю. А. Гагарин (Ленинград, 1962).

Фото Леонида Михайловича Митника.

США стали второй страной, запустившей спутник. 1 февраля 1958 года это был «Эксплорер-1». 5 мая 1961 года США совершили первый суборбитальный полет космического корабля с астронавтом Аланом Шепардом на борту «Меркурий-Редстоун 3».Первый орбитальный космический полет был совершен 20 февраля 1962 года с астронавтом Джоном Гленном на борту «Меркурия-Атласа 6».

Специальные исследования суши, атмосферы и океана начались с вывода на орбиту 19 апреля 1971 года первой многоцелевой космической станции «Салют». Затем спутниковые исследования океана были продолжены на космической станции. «Салют-2», спущенный на воду 3 апреля 1973 года, и «Салют-3», спущенный на воду 25 июня 1974 года, когда проводились исследования загрязнения воды в реках, озерах и морях.Особое внимание было уделено наблюдениям облаков, тропических циклонов и тайфунов в Атлантическом океане во время международного эксперимента «ТРОПЭКС-74» в тропической части Атлантического океана. Космические экспедиции на «Салют-4», запущенные 26 декабря 1974 г., получили ряд очень интересных для океанологии сведений. В рамках космической экспедиции «Салют-5», запущенной 22 июня 1976 г., были проведены спутниковые наблюдения Тихого, Индийского и Атлантического океанов, а также Аральского моря (Гилберг, Еременко, 1986).

«Салют-6», запущенный 29 сентября 1977 г., представлял собой новое поколение орбитальных космических станций с увеличенным внутренним пространством и большим количеством научного оборудования, в том числе мультизональными космическими фотоаппаратами (МКФ-6, МКФ. -6М) и КАТЭ-140, а также спектрометр «Спектр-15» — уникальный инструмент для исследования суши и Мирового океана в течение почти 5 лет. Впервые спутниковые мультизональные фотонаблюдения, которые производятся двумя или несколькими камерами, работающими в собственном узком спектральном диапазоне, были выполнены Василием Лазаревым и Олегом Макаровым во время космического полета на «Союзе-12» в 1973 году.Такие же наблюдения проводились на космической станции «Салют-4» (Гильберг, Еременко, 1986).

19 апреля 1982 года на орбиту была запущена космическая станция «Салют-7», с борта продолжаются наблюдения за океаном. В частности, в августе 1983 г. в рамках программы «Интеркосмос» космонавты участвовали в эксперименте «Черное море», в ходе которого измерения из космоса выполнялись самолетом-лабораторией АН-30 Института космических исследований АН СССР. Наук, построено научно-исследовательское судно (НИС) «Профессор Колесников» и морская исследовательская платформа Морского гидрофизического института.В феврале 1984 г. наблюдения океана с помощью фото-, видео- и спектрометра были совмещены с визуальным колориметром «Цвет-1» (Color-1). Позже наблюдения за океаном со станции использовались для оперативной навигации и рыболовства (Гилберг, Еременко, 1986).

Впервые в космических полетах полностью автоматическая микроволновая радиометрическая система для наблюдений за океаном и земной поверхностью была использована в сентябре 1968 года на борту спутника СССР «Космос-243». Микроволновые измерения позволили оценить характеристики температуры поверхности моря (ТПМ), водяного пара в атмосфере и излучательной способности поверхности Земли через облачность.В течение нескольких дней радиометр «Космос-243» мог определять границу льда вокруг Антарктиды, выявлять особенности наземного льда на антарктическом континенте и получать вариации ТПО в океанах. В феврале 1980 г. микроволновый радиометр на борту спутника «Космос-384» обнаружил отрицательную аномалию ТПО около 1,5–2 ° C в районе формирования Гольфстрима. Через 2 месяца эта аномалия была обнаружена к востоку от Ньюфаундленда, а затем эта аномалия достигла побережья Европы, что привело к холодной и дождливой погоде сначала в Европе, а затем и в европейской части СССР (Гилберг, Еременко, 1986).

Продолжены океанографические измерения с других спутников серии «Космос», с метеорологических спутников серии «Метеор», с космических кораблей «Союз» и космических станций «Салют». Спутниковые наблюдения дали очень интересную информацию об океанических фронтах, водоворотах, апвеллингах, прибрежных и открытых океанских зонах высокой биологической продуктивности, сезонных характеристиках этих явлений. Детальный анализ прибрежных зон Черного, Азовского, Каспийского, Аральского и Охотского морей позволил выявить регионы, перспективные для добычи нефти и газа на шельфе.В феврале 1979 г. был запущен первый советский океанографический спутник «Космос-1076», с которого начался регулярный сбор оперативных глобальных океанографических данных. Спутник был оборудован спектрометром видимого диапазона с пространственным разрешением 20 км для исследования оптических характеристик морской воды, многоканальным ИК-радиометром для измерений ТПО и многоканальным микроволновым радиометром для измерений ТПО, ветра и ледяного покрова. В январе 1980 г. был запущен второй советский океанографический спутник «Космос-1151».У него был аналогичный набор датчиков для океанографических измерений. Оба спутника дали достаточно информации для создания первого банка спутниковых данных о Мировом океане. 6 февраля 1981 г. был запущен еще один океанографический спутник «Интеркосмос-21», который работал в тандеме с «Космосом-1151» на разных орбитах (Гилберг, Еременко, 1986).

Новым шагом в области дистанционного зондирования океана стал запуск космического корабля «Космос-1500» в сентябре 1983 года. Он был посвящен оперативному и регулярному мониторингу ледяного покрова полярных регионов и исследованию биоресурсов Мирового океана.Он имел радар бокового обзора для всепогодных и дневных и ночных наблюдений за морской поверхностью, сканирующий микроволновый радиометр бокового обзора для измерения яркостной температуры на частоте 37 ГГц, радиотелевизионную систему в составе многозонального сканирующего датчика высокого разрешения. , и бортовой радиокомплекс. Таким образом, это был первый советский океанографический спутник с ежедневным оперативным приемом и доставкой океанографической и метеорологической информации в любых погодных условиях (Гильберг, Еременко, 1986).

В этой статье мы рассматриваем исследования, проведенные в СССР, а затем в России в области дистанционного зондирования океана в следующих учреждениях: P.Институт океанологии им. П.П. Ширшова (Москва, Геленджик, Калининград), Институт космических исследований (Москва), Геофизический центр (Москва), Морской гидрофизический институт (Севастополь), В.И. Ильичева Тихоокеанский океанологический институт (Владивосток), Институт прикладной физики (Нижний Новгород) Российской академии наук (ранее Академия наук СССР; и ранее Академия наук Украинской ССР и Национальная академия наук Украины для Морского гидрофизического института) ), Арктический и антарктический научно-исследовательский институт (г.-Петербург), Российский государственный гидрометеорологический университет (Санкт-Петербург), Атлантический научно-исследовательский институт рыболовства и океанографии (Калининград) и ряд других. Это кажется нам очень важным, потому что большинство первых работ по дистанционному зондированию океана были опубликованы в русскоязычных изданиях (иногда неизвестных западным ученым) и никогда не переводились и не публиковались на английском языке. Этим объясняется огромное количество ссылок, которые мы включили в статью. Большинство из них были написаны в сотрудничестве с учеными из ранее упомянутых организаций.

Сколько спутников вращается вокруг Земли и почему управление космическим движением имеет решающее значение — Geospatial World

Вы когда-нибудь задумывались, сколько спутников вращается вокруг Земли? По данным Союза обеспокоенных ученых (UCS), который ведет базу данных активных спутников на орбите, по состоянию на 1 апреля 2020 года, всего в космосе находилось 2666 спутников, из которых 1918 находились на низкой околоземной орбите (НОО). .

И это только до апреля. С тех пор у нас было еще много запусков.Самой загруженной из них является SpaceX, которая в этом году запускала спутники в среднем по одной миссии в месяц для своего интернет-проекта Starlink. На данный момент он запустил на орбиту более 600 единиц и планирует еще несколько десятков тысяч. Amazon недавно объявила о своих планах запустить мега-группировку из более чем 3000 спутников, чтобы обеспечить подключение к Интернету в недостаточно подключенных частях мира. Исследовательская компания Euroconsult прогнозирует, что 2020-е годы станут десятилетием малых спутников, со в среднем 1000 запусков малых спутников в год.Для сравнения: в 2019 году было запущено в общей сложности 385 малых спутников.

По мере того, как спутники становятся меньше, их становится все проще строить и запускать. Кому-то все это может показаться музыкой, но некоторых экспертов это беспокоит.

«Космос может показаться бесконечным, но возможности для безопасного размещения и поддержания объекта на орбите Земли — нет. Риск столкновения между объектами в космосе очень реален, и крупные столкновения уже произошли », — написал Майкл Домингес, бывший высокопоставленный чиновник министерства обороны, исполнявший обязанности секретаря военно-воздушных сил и исполнительного агента министерства обороны по космосу.Даже одно столкновение может создать опасное поле обломков, которое может вывести из строя ряд критически важных возможностей, от которых мы зависим, таких как глобальная связь и навигация, и поставить под угрозу астронавтов, дислоцированных на Международной космической станции. Кроме того, финансовые последствия могут быть колоссальными.

ТАКЖЕ ЧИТАЙТЕ: Отчет подтверждает, что Департамент торговли является ведущим агентством по управлению космическим движением

Вот почему управление космическим движением является важной областью для правительств.В Соединенных Штатах это традиционно находилось в ведении Министерства обороны. Однако по мере увеличения количества объектов на орбите возникло ощущение, что ситуационная осведомленность в космосе как услуга Министерства обороны перестала быть адекватной. В рамках Директивы-3 космической политики в 2018 году ответственность за управление космическим движением была передана Министерству торговли. Недавно назначенная Конгрессом комиссия при Национальной академии государственного управления (NAPA) подтвердила, что Управление космической торговли при Министерстве торговли является наиболее подходящим гражданским агентством для выполнения таких задач.Домингес был председателем группы из пяти человек, в которую также входили бывший администратор НАСА Шон О’Киф и бывший директор NRO Мартин Фага.

Обломки на орбите

2666 спутников

UCS — это всего лишь количество активных спутников на орбите. Более чем вдвое больше погибших или потерянных, летающих по своим орбитам без связи с внешним миром. Кроме того, есть Международная космическая станция, космический телескоп Хаббл, ступени ракет или даже гайки и болты, оставленные астронавтами, не говоря уже о миллионах более мелких, трудных для отслеживания объектов, таких как пятна краски и кусочки пластика.По оценкам ЕКА , общее количество космических объектов на околоземной орбите составляет около 29 000 для размеров более 10 см, 670 000 для размеров более 1 см и более 170 миллионов для размеров более 1 мм!

Любой из этих объектов может вызвать повреждение работающего космического корабля. Например, согласно ESA, , столкновение с 10-сантиметровым объектом повлечет за собой катастрофическую фрагментацию типичного спутника, 1-сантиметровый объект, скорее всего, выведет из строя космический корабль и пробьет щиты МКС, а 1-миллиметровый объект может уничтожить подсистемы на борту космического корабля.

Хотя последнее крупное столкновение спутников произошло в 2009 году — когда неактивный российский космический аппарат Cosmos 2251 врезался в активный Иридиум 33 над Сибирью, отправив большое количество обломков на все более и более низкие орбиты, подобное фиаско было предотвращено 30 января этого года. Два спутника, IRAS и GGSE-4, принадлежащие НАСА и ныне не функционирующие, едва не столкнулись над Питтсбургом.

ТАКЖЕ ПРОЧИТАЙТЕ: Как меняется телекоммуникационная отрасль с помощью геопространственных технологий

Стоимость столкновения

Организация экономического сотрудничества и развития (ОЭСР) предупреждает в своем недавно опубликованном отчете, что экономическая и социальная уязвимость для космических опасностей, в частности космического мусора, растет.

Для спутников на геостационарной орбите ОЭСР показывает, что таких повреждений могут составить примерно 5-10% от общих затрат на миссию, которые могут составлять сотни миллионов долларов. В LEO относительные затраты на миссию могут быть даже выше 5-10%.

Однако он предупреждает, что цена бездействия будет намного выше. Достаточное количество обломков на орбите может в конечном итоге привести к «синдрому Кесслера» — теоретическому сценарию, в котором плотность объектов на НОО из-за загрязнения космоса настолько высока, что столкновения между объектами могут вызвать каскад, каждое столкновение порождает новые обломки, что увеличивает вероятность дальнейших столкновений.ОЭСР заявляет, что это может быть «критической точкой для экологии, которая может сделать некоторые орбиты непригодными для использования», что серьезно скажется на прогнозировании погоды, мониторинге климата, науках о Земле и космической связи.

ТАКЖЕ ПРОЧИТАЙТЕ: Новые правила FCC делают лицензирование малых спутников проще, быстрее и дешевле

Обеспечение безопасного пространства

Кроме того, существует проблема стран, проводящих противоспутниковые испытания на протяжении многих лет — недавнее испытание в России в июле этого года, вызвавшее осуждение со стороны США и Великобритании, — что еще больше усугубляет проблему мусора.

Удаление мусора и предотвращение столкновений жизненно важны для безопасной космической деятельности. Но поскольку небо над Землей кажется переполненным, пришло время сформировать независимую глобальную организацию с участием правительств, ученых и других заинтересованных сторон, чтобы разработать некоторые руководящие принципы и нормы для обеспечения безопасной космической деятельности.

ТАКЖЕ ПРОЧИТАЙТЕ: CLEOS: поднимая геоинформационную аналитику на новый уровень

В этом месяце в истории физики

Предоставлено NASA

Сергей Королев

Октябрь 1957: Советы запускают первый искусственный спутник на околоземную орбиту 4

50 лет назад, в октябре В 1957 году Советский Союз запустил Спутник, первый искусственный спутник Земли, шокировавший американскую общественность и положивший начало космической эре.

Люди мечтали о космических путешествиях еще до запуска спутника. В 1903 году русский ученый-ракетчик Константин Циолковский математически показал, что создание искусственного спутника возможно, хотя в США мало внимания уделяли его работе. Ракетная техника развивалась в течение следующих нескольких десятилетий, и идея космических полетов захватила воображение публики.

В 1952 году Международный совет научных союзов решил объявить Международный геофизический год.МГГ был назначен на 18 месяцев с июля 1957 года по декабрь 1958 года, выбранный потому, что в этот период солнечная активность будет высокой. «Год» был бы своего рода феерией геофизической науки, когда запланировано множество научных исследований.

В рамках МГГ МСНС призвал спутники на околоземной орбите для проведения научных экспериментов в течение года. В июле 1955 года Белый дом объявил о планах относительно первого спутника и призвал к подаче предложений. В сентябре был выбран спутник Vanguard Лаборатории морских исследований.Советский Союз также объявил о планах запуска спутника МГГ.

Российские спутниковые разработки возглавлял Сергей Королев, хотя его имя держалось в секрете до его смерти в 1966 году. Королев родился в 1907 году и получил образование в университете, чтобы стать аэрокосмическим инженером. В 1930-е годы он работал над созданием ракет большой дальности. В 1938 году его арестовали по сфабрикованному обвинению и отправили в тюрьму; Следующие несколько лет он провел в нескольких исправительно-трудовых лагерях, в том числе в одном из самых страшных лагерей ГУЛАГа.Во время Второй мировой войны его и других инженеров отправили в лагеря тюремных разработчиков, где заключенные инженеры разрабатывали ракеты для использования в военных целях. После войны Королев был освобожден из тюрьмы и продолжил работы по баллистическим ракетам большой дальности.

В 1953 году Королев начал работу над первой межконтинентальной баллистической ракетой R7, которую он успешно испытал в августе 1957 года. Эта мощная ракета была способна выводить на орбиту спутники весом более тонны. Запланированная научная нагрузка (которая позже стала Спутником III) еще не была готова, но Королев, узнав о планах Авангарда, был полон решимости выбить американцев в космос, поэтому он решил продолжить запуск меньшего спутника без каких-либо научных инструментов.Первоначально Советы надеялись запланировать запуск на 17 сентября, к 100-летию со дня рождения Циолковского; они смогли вывести свой первый спутник на орбиту всего несколько недель спустя.

Запущенный 4 октября 1957 года Спутник I представлял собой блестящую сферу из алюминиевого сплава размером с пляжный мяч. Он весил 184 фунта, что намного тяжелее планируемого американского спутника Vanguard. Спутник, название которого происходит от русского слова «спутник», совершал оборот вокруг Земли каждые 96 минут, пролетая по эллиптической траектории, достигающей 141.В 7 милях от Земли при самом близком приближении и в 588 милях от самой дальней точки. Радиолюбители могли легко улавливать сигналы, которые он постоянно посылал на частотах 20 и 40 МГц. Он продолжал кружить вокруг земного шара до января 1958 года.

Маленького пищащего шара было достаточно, чтобы напугать американскую публику, которая была застигнута врасплох запуском спутника. Американские ученые проследили его курс, и его сигналы транслировались по радио и телевидению. Спутник можно было даже увидеть с Земли в бинокль, когда он пролетал над головой.Общественность опасалась, что, поскольку Советы могут запустить спутник в космос, они также могут запустить ракеты с ядерными боеголовками, которые могут достичь США. Некоторые даже считали, что спутник шпионит за нами или что его бессмысленные звуковые сигналы на самом деле являются своего рода кодом. Президент Эйзенхауэр пытался успокоить страну, но его слова были восприняты как признак безразличия, что еще больше разозлило общественность.

В ответ на общественную панику по поводу того, что русские загнали нас в космос, министерство обороны одобрило еще один спутник, Explorer, в дополнение к миссии Vanguard.Примерно через два месяца после первого запуска спутника США, торопясь доказать свои возможности, попытались запустить «Авангард», но он взорвался на стартовой площадке.

Наконец, 31 января 1958 года США вышли в космос, успешно запустив спутник Explorer I. Explorer I сделал одно из самых важных научных открытий международного геофизического года, радиационные пояса Ван Аллена, и открытие. вскоре был подтвержден спутником Explorer-III, запущенным 26 марта 1958 года.17 марта 1958 года был запущен спутник «Авангард-1». Он весил всего около 3 фунтов и был размером с грейпфрут.

Менее чем через месяц после первого запуска спутника Советский Союз запустил второй спутник, на этот раз с первым живым пассажиром в космосе, собакой по кличке Лайка. За этим последовал запуск 15 мая 1958 года спутника Спутник-3, на котором было установлено множество научных инструментов. Русские отправили первого человека на орбиту 12 апреля 1961 года.

Сейчас вокруг Земли вращаются тысячи искусственных спутников. После спутника опасения, что США проиграют космическую гонку, привели к стремлению улучшить американский научный и инженерный потенциал. Правительство США выделило больше средств на науку, научному образованию уделялось особое внимание в школах, и все больше людей занялись наукой и инженерией. В октябре этого года мы отмечаем 50-летие спутника и 50 лет научных и технологических инноваций в космическую эру.

Создайте свой собственный искусственный спутник

Что такое спутник?

Спутник — это объект (например, Луна, планета или машина, вращающаяся вокруг планеты или звезды). Например, Земля является спутником, поскольку вращается вокруг Солнца. Точно так же Луна является спутником, потому что вращается вокруг Земли.

Земля и Луна — примеры естественных спутников. В астрономии слово «спутник» обычно относится к машине, запущенной в космос для орбиты Земли или другого космического объекта.Тысячи искусственных спутников Земли вращаются вокруг Земли. Некоторые фотографируют Землю, чтобы помочь метеорологам предсказывать погоду и отслеживать ураганы, а другие фотографируют другие планеты, Солнце, черные дыры или далекие галактики. Эти изображения помогают ученым лучше понять нашу Солнечную систему и Вселенную.

Однако большинство спутников на орбите Земли используются для связи, например, для передачи телевизионных сигналов и телефонных звонков по всему миру. Глобальная система позиционирования (GPS), ключевой инструмент навигации, представляет собой группу из более чем 20 спутников.Если у вас есть GPS-приемник, эти спутники могут определить ваше точное местоположение.

Почему важны спутники?

Спутники могут одновременно видеть большие участки Земли. Это позволяет им собирать больше данных быстрее, чем наземные инструменты.

Спутники также видят космос лучше, чем телескопы на поверхности Земли. Это потому, что они летают над облаками, пылью и молекулами в атмосфере, которые блокируют свет определенных длин волн от земли.

телевизионных сигналов не ушли далеко до появления спутников. Они движутся по относительно прямым линиям и быстро уходят в космос, а не следуют за кривой Земли. Иногда их загораживали горы или высокие здания. Телефонные звонки в далекие места также были проблемой. Прокладка телефонных проводов на большие расстояния или под водой — дело сложное и дорогое.

С помощью спутников телевизионные сигналы и телефонные звонки могут быть отправлены на спутник и почти мгновенно возвращены в разные места на Земле.

Какие части спутника?

Спутники бывают разных форм и размеров. Большинство из них имеют как минимум две общие части: антенну и источник питания. Антенна отправляет и принимает информацию, часто на Землю и обратно. Источником питания может быть солнечная панель или аккумулятор. Солнечные панели вырабатывают энергию, превращая солнечный свет в электричество.

На многих спутниках есть камеры и научные датчики. Иногда эти инструменты указывают на Землю для сбора информации о нашей земле, воздухе и воде.В других случаях они обращены в космос, чтобы собирать данные из нашей Солнечной системы и Вселенной за ее пределами.

Как спутники вращаются вокруг Земли?

Большинство спутников запускается в космос на ракетах. Спутник вращается вокруг Земли, когда его скорость уравновешивается притяжением Земли. Без этого баланса спутник полетел бы по относительно прямой линии в космос или упал бы обратно на Землю. Спутники вращаются вокруг Земли на разной высоте, с разной скоростью и по разным траекториям.Два наиболее распространенных типа орбиты — это «геостационарная» (jee-oh-STAY-shun-air-ee) и «полярная».

Геостационарный спутник движется с запада на восток над экватором. Он движется в том же направлении и с той же скоростью, что и вращение Земли. С Земли геостационарный спутник выглядит так, как будто он стоит на месте, поскольку он всегда находится над одним и тем же местом.

Спутники на полярной орбите движутся в направлении север-юг от полюса к полюсу.

Оставьте комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *