Nand память: Флеш-память — Википедия – От NAND до NOR: что означают различные типы флэш-памяти? — TECHNODOR

Содержание

Технология флеш-памяти 3D NAND / OCZ Storage Solutions corporate blog / Habr

Всем привет! Как вы знаете, современная планарная флеш-память NAND почти исчерпала свой потенциал. Основной её проблемой является то, что уменьшать размеры кристалла становится все труднее. По прогнозам экспертов, 14-15 нм технологические нормы станут пределом планарной флеш-памяти, по крайней мере на ближайшее время. А на смену ей придет технология «вертикальной» флеш-памяти – 3D NAND.


Очень важно понимать, что же мешает дальнейшему уменьшению размеров кристалла. Прежде всего, для освоения более тонких техпроцессов необходимо дорогостоящее оборудование, покупка которого может в дальнейшем не оправдаться с экономической точки зрения. И если приобретение новых литографических машин – вопрос решаемый, то проблему перетекания заряда из одной ячейки в другую, из-за которой возникают ошибки, решить не так легко.

Словом, индустрия оказалась в ситуации, когда ресурсы обычной, планарной, флеш-памяти оказались исчерпаны. Поэтому появилась идея размещать ячейки не только в плоскости, но еще и слоями. Таким образом, чип получает трехмерную структуру и способен вмещать значительно больше информации на единицу площади, нежели двухмерные кристаллы. Технология получила название 3D NAND. Тут же стоит отметить, что производители используют различные техники для создания трехмерной памяти, поэтому архитектура 3D NAND у каждой компании может иметь свои особенности и отличия.
Первой компанией, наладившей производство трехмерной флеш-памяти под названием 3D V-NAND и накопителей на их основе, был корейский гигант Samsung. Еще в 2013 году они объявили о выпуске первых трехмерных чипов типа MLC, насчитывающих 24 слоя.  А уже через год 3D реализацию получила флеш-память TLC, число слоев которой увеличилось до 32.
Как вы знаете, в основе конструкции планарной флеш-памяти лежит транзистор с плавающим затвором. Плавающий затвор обладает способностью удерживать заряд в течение длительного времени. Как оказалось, в этом кроется основной недостаток конструкции: при уменьшении техпроцесса вследствие износа ячеек заряд может перетекать из одной ячейки в другую. Для решения этой проблемы Samsung использует технологию 3D Charge Trap Flash, что в переводе с английского означает «ловушка заряда».
Её суть заключается в том, что заряд теперь помещается не в плавающий затвор, а в изолированную область ячейки из непроводящего материала, в данном случае — нитрида кремния (SiN). Тем самым снижается вероятность «утечки» заряда и повышается надежность ячеек.

Помимо всего прочего, применение технологии CTF позволило сделать чипы памяти более экономичными. По данным Samsung, экономия может достигать 40% в сравнении с планарной памятью.

Трехмерная ячейка 3D V-NAND представляет собой цилиндр, внешний слой которого является управляющим затвором, а внутренний – изолятором. Ячейки располагаются друг над другом и формируют стек, внутри которого проходит общий для всех ячеек цилиндрический канал из поликристаллического кремния. Количество ячеек в стеке эквивалентно количеству слоев флеш-памяти.
3D V-NAND память также может похвастаться более высокой скоростью работы. Этого удалось достичь за счет упрощения алгоритма записи в ячейку – теперь вместо трех операций выполняется всего одна. Упрощение алгоритма стало возможным благодаря меньшей интерференции между ячейками. В случае с планарной памятью из-за возможных помех между соседними ячейками требовался дополнительный анализ перед записью. Вертикальная память свободна от этой проблемы, и запись выполняется за один шаг.
Ну и несколько слов о надежности. 3D V-NAND память значительно меньше подвержена износу благодаря тому, что для записи информации в ячейку не требуется высокого напряжения. Напомним, для того чтобы поместить данные в ячейку планарной памяти применяется напряжение порядка 20 В. Для трехмерной памяти этот показатель ниже. На надежности благоприятно сказался и тот факт, что производство трехмерной флеш-памяти не требует тонких технологических норм. Например, третье поколение памяти 3D V-NAND с 48 слоями производится по отлаженному 40 нм техпроцессу.
Пока Samsung производила чипы трехмерной флеш-памяти себе в убыток (что, кстати, было официально подтверждено корейской компанией), другие производители флеш-памяти разрабатывали конкурирующие технологии. Так, компании Toshiba и SanDisk объединились в альянс для выпуска трехмерной флеш-памяти BiCS 3D NAND (Bit Cost Scalable).
Работа над технологией началась еще в 2007 году силами одной Toshiba, а первые образцы трехмерной флеш-памяти BiCS были продемонстрированы в 2009 году. С тех пор развитие технологии не форсировалось. Кроме того, альянс Toshiba/SanDisk четко дал понять, что они не собираются выводить трехмерную флеш-память в массовое производство до тех пор, пока это не будет экономически выгодно.
Основным отличием 3D флеш-памяти Toshiba от планарной, как и в случае с Samsung 3D V-NAND, является использование технологии CTF вместо классических транзисторов с плавающим затвором. Материалом для изолированной области также служит нитрид кремния (SiN). Принцип действия технологии в BiCS 3D NAND остается тем же самым: информация помещается не в плавающий затвор, как раньше, а в изолированную область.
Что выгодно отличает BiCS 3D NAND от технологии 3D V-NAND, так это использование U-образных строк (линий). Это означает, что ячейки группируются не в ряд, а в имеющую форму буквы U последовательность. По словам Toshiba, такой подход позволяет добиться максимальной надежности и скорости работы. Это стало возможным благодаря тому, что в U-образном дизайне переключающий транзистор и линия истока располагаются в верхней части последовательности (а не в нижней, как при «рядном» дизайне) и не подвергаются высокотемпературному воздействию, вследствие чего уменьшается количество ошибок при чтении и записи.
Также к преимуществам U-образного дизайна Toshiba относит и тот факт, что такая конструкция не требует использования фотолитографии в глубоком ультрафиолете. Поэтому для изготовления трехмерной флеш-памяти компания может использовать существующие производственные мощности.

Интересно и то, что в производстве BiCS 3D NAND компания Toshiba впервые в массовом будет применять технологию тонкопленочных транзисторов (TFT).

Что касается технических характеристик чипов BiCS, то это будут 48-слойные кристаллы памяти типа TLC. Их плотность составит 256 Гбит. При производстве будет использоваться отлаженный 30-40 нм техпроцесс. В целом, по характеристикам первые массовые чипы BiCS 3D NAND будут очень схожи с третьим поколением кристаллов Samsung 3D V-NAND.
Альянс Micron/Intel также ведет разработку собственной трехмерной флеш-памяти. Многие эксперты предрекали, что все проекты 3D NAND будут использовать технологию CFT, однако Micron с Intel удивили всех и пошли иным путем. Основу их трехмерной флеш-памяти составляют ячейки с плавающим затвором. В Micron утверждают, что именно такая архитектура позволяет более надежно хранить заряд в ячейке.
Кроме этого, в производстве 3D NAND используется технология «CMOS Under the Array». Её смысл состоит в том, что вся управляющая логика размещается не рядом с массивом памяти, как в 2D NAND, а под ним. Подобный дизайн позволяет освободить до 20% площади чипа и разместить на этом месте ячейки памяти.

Micron обещает наладить массовое производство чипов трехмерной флеш-памяти уже в этом году. Это будут 32-слойные кристаллы плотностью 256 Гбит (MLC) и 384 Гбит (TLC).
Об архитектуре трехмерной флеш-памяти SK Hynix известно не многое. Изначально южнокорейская компания планировала использовать ячейки с плавающим затвором, однако в конце концов выбор пал на технологию CTF. В этом году SK Hynix обещает наконец-то наладить массовое производство 3D NAND. Это будут 48-слойные чипы TLC емкостью 256 Гбит.
Ну а что касается компании OCZ, то выход SSD-накопителей на основе трехмерной флеш-памяти BiCS, безусловно, входит в наши самые ближайшие планы. Дата выхода новых устройств будет зависеть от компании Toshiba, которая обещает наладить поставки чипов BiCS 3D NAND уже во второй половине текущего года.

Как не заблудиться в SLC, MLC и TLC при выборе SSD | Периферия | Дайджест новостей

Производительность и срок службы SSD в первую очередь зависят от флэш-памяти NAND и контроллера с прошивкой. Они являются основными составляющими цены накопителя, и при покупке логично обращать внимание именно на эти компоненты. Сегодня мы поговорим о NAND.

Тонкости технологического процесса производства флэш-памяти вы при желании найдете на сайтах, специализирующихся на обзорах SSD. Моя же статья ориентирована на более широкий круг читателей и преследует две цели:

1. Приоткрыть завесу над невнятными спецификациями, опубликованными на сайтах производителей SSD и магазинов.

2. Снять вопросы, которые могут у вас возникнуть при изучении технических характеристик памяти разных накопителей и чтения обзоров, написанных для «железных» гиков.

Технические характеристики NAND, публикуемые на официальных сайтах производителей и в сетевых магазинах, далеко не всегда содержат подробную информацию. Более того, терминология сильно варьируется, и я подобрал для вас данные о пяти различных накопителях.

Вам что-нибудь говорит эта картинка?

Ок, допустим, Яндекс.Маркет — не самый надежный источник информации. Обратимся к сайтам производителей — так легче стало?

Может быть, так будет понятнее?

А если так?

Или все-таки лучше так? 🙂

Производителей флэш-памяти намного меньше, чем компаний, продающих SSD под своими брендами. В большинстве накопителей сейчас установлена память от:

— Intel/Micron

— Hynix

— Samsung

— Toshiba/SanDisk

Intel и Micron не случайно делят одно место в списке. Они производят NAND по одинаковым технологиям в рамках совместного предприятия IMFT.

На ведущем заводе в американском штате Юта одна и та же память выпускается под марками этих двух компаний почти в равных пропорциях. С конвейера завода в Сингапуре, который сейчас контролирует Micron, память может сходить также и под маркой ее дочерней компании SpecTek.

__________________________________

Все производители SSD покупают NAND у вышеперечисленных компаний, поэтому в разных накопителях может стоять фактически одинаковая память, даже если ее марка отличается.

__________________________________

Казалось бы, при таком раскладе с памятью все должно быть просто. Однако существует несколько типов NAND, которые в свою очередь подразделяются по разным параметрам, внося путаницу.

Это три разных типа NAND, главным технологическим отличием между которыми является количество битов, хранящихся в ячейке памяти.

SLC является самой старой из трех технологий, и вы вряд ли найдете современный SSD с такой NAND. На борту большинства накопителей сейчас MLC, а TLC – это новое слово на рынке памяти для твердотельных накопителей.

Вообще, TLC давно используется в USB-флэшках, где выносливость памяти не имеет практического значения. Новые технологические процессы позволяют снизить стоимость гигабайта TLC NAND для SSD, обеспечивая приемлемое быстродействие и срок службы, в чем логично заинтересованы все производители.

__________________________________

Занятно, что пока широкая публика обеспокоена ограниченным количеством циклов перезаписи SSD, по мере развития технологий NAND этот параметр только снижается!

__________________________________

В первой записи серии мы подсчитывали ресурс накопителя с MLC NAND, и если просто поделить его на три, картина получится не самой радужной. Но это вовсе не значит, что от TLC надо бежать, как черт от ладана.

Во-первых, в моих прикидках за основу был взят заоблачный мультипликатор увеличения объема записи 10х, который на практике в разы ниже. Профильные сайты нередко оценивают его в 2-3х, и даже еще меньше для контроллеров SandForce, применяющих сжатие данных при записи.

Во-вторых, дело не только в количестве циклов перезаписи и мультипликаторе. В контроллер могут закладываться технологии, призванные снизить физическую нагрузку на ячейки памяти при чтении и записи путем адаптации к подаваемому напряжению.

__________________________________

Объемы производства TLC NAND для SSD пока невелики, поэтому неудивительно, что первая ласточка прилетела от компании, имеющей свое производство памяти.

__________________________________

Судя по обзорам и тестам, Samsung 840 неплохо проявил себя, особенно на фоне накопителей с MLC предыдущего поколения.

Кстати, этот накопитель характеризует большая резервная область, призванная продлить срок службы TLC. Королем же производительности в 2012 году стал Samsung 840 Pro с 21nm Toggle Mode MLC на борту.

Сейчас на рынке преобладают накопители с памятью MLC, но и эта память делится на два типа в соответствии с используемым интерфейсом.

ONFi (Open NAND Flash Interface) – это альянс производителей флэш-памяти, выпускающейся по единому стандарту. Обратите внимание на присутствие там Intel и Micron, равно как и на отсутствие Samsung с Toshiba. Последняя пара выпускает память с интерфейсом Toggle Mode.

Примечание. Пропускная способность указана для каждого канала NAND.

В начале 2013 года можно купить накопители с памятью ONFi 1.0 и 2.x, а также Toggle Mode 1.0.

Память MLC NAND: асинхронная ONFi 1.0 против синхронной ONFi 2.х

Несмотря на то, что память с пропускной способностью до 200MB/s выпускается уже какое-то время, Intel и Micron не спешат отказываться от выпуска более старой и медленной памяти. Дело в том, что она дешевле, и это позволяет производителям SSD позиционировать накопители в разные сегменты рынка.

Давайте возьмем для примера спецификации двух твердотельных накопителей Corsair в том виде, как они опубликованы на сайте.

Все числовые показатели у них практически идентичны, разве что первый на йоту побыстрее и потребляет побольше энергии. На сайте не указано, но у этих накопителей еще и одинаковый контроллер SandForce-2281 (на что также намекает емкость 120 Гб).

__________________________________

В обоих накопителях установлена память Intel-Micron 25nm MLC NAND. Но в таблице выделено главное отличие: у первого накопителя эта память синхронная, а второго – aсинхронная!

__________________________________

Несмотря на минимальное различие в паспортных характеристиках быстродействия, накопитель с синхронной памятью превосходит коллегу почти во всех аспектах бенчмарков (в таблице по ссылке не отображается название Force GT, но это он).

Как видите, производители не выставляют напоказ ключевые отличия между линейками накопителей, однако это можно понять по цене. SSD с асинхронной памятью продаются немного дешевле, поскольку ее стоимость ниже, чем у синхронной. Зачастую индикатором может служить маркетинговое позиционирование на сайте (более производительные накопители стоят выше в списке).

В серии Vertex 4 используется синхронная память Intel Micron 25nm MLC, а в Agility 4 — асинхронная.

Память MLC NAND: 2.х

Буква “x” обобщает различные этапы второй версии спецификаций ONFi. В 2012 году большинство накопителей снабжалось памятью MLC, изготовленной в рамках технологического процесса 25nm по спецификациям ONFi 2.1.

Впрочем, в конце года на рынке появился накопитель Intel 335 с памятью Intel 20nm MLC NAND, что соответствовало уже спецификациям ONFi 2.3. Переход на новый технологический процесс не приносит дивидендов в быстродействии, поскольку пропускная способность интерфейса все так же ограничена 200MB/s.

В спецификации ONFi 2.3 заложена поддержка протокола EZ-NAND, призванного улучшить коррекцию ошибок (ECC), уровень которых растет по мере уменьшения размера ячеек памяти. Однако для этого в NAND должен быть встроен отдельный контроллер. В Intel 335 он отсутствует, поэтому данную модель можно считать «переходной».

__________________________________

Более того, меньший размер ячеек памяти 20nm породил сомнения в выносливости NAND, произведенной по этой технологии!

__________________________________

Intel оценивает ее идентично 25nm NAND — в 3 000 циклов перезаписи. Гарантийный срок составляет 3 года, как и у Intel 330 при тех же объемах записи в 20GB в день.

Так или иначе, поскольку Intel и Micron переходят на 20nm процесс, логично ожидать в 2013 году появления накопителей с такой памятью под различными брендами.

Память MLC NAND 2.х: 3K против 5K

Этого вопроса я уже касался ранее, поэтому дополнительную информацию вы найдете по ссылкам в этом разделе статьи. Производитель NAND может по-разному оценивать срок службы флэш-памяти, даже когда она создана по одной технологии. Это хорошо видно на примере Intel 25nm MLC NAND, которую компания подразделяет по количеству циклов перезаписи — 3 000 и 5 000.

Соответственно, такая память отличается по цене, что позволяет производителям SSD разнообразить линейки накопителей. Разница между SSD Intel 330 и 520 заключается только в ресурсе NAND, а для вас она выражается в двух дополнительных годах гарантии и цене, конечно.

Таким образом, гарантийный срок службы накопителя зависит от выносливости памяти, установленной в нем.

Память MLC NAND: Toggle Mode 2.0 против синхронной ONFi 2.x

Некоторые производители SSD ставят в разные линейки продуктов память с различными интерфейсами. Хорошим примером служит тот же Corsair, но теперь с серией Neutron (в таблице приведены характеристики быстродействия, заявленные производителем).

Как видите, при прочих равных память Toggle Mode на бумаге выглядит побыстрее ONFi 2.x в последовательной записи и случайном чтении. В принципе, бенчмарки это подтвердили, но все же посмотрите их самостоятельно (например, AnandTech 120Gb, 240Gb).

Вне зависимости от того, приобрели вы твердотельный накопитель или только планируете покупку, после прочтения этой записи у вас может возникнуть вопрос, вынесенный в подзаголовок.

Ни одна программа тип памяти не показывает. Эту информацию можно найти в обзорах накопителей, но есть и более короткий путь, особенно когда нужно сравнить между собой несколько кандидатов на покупку.

__________________________________

На специализированных сайтах можно найти базы данных по SSD, и вот вам пример.

__________________________________

Я без проблем нашел там характеристики памяти своих накопителей, за исключением SanDisk P4 (mSATA), установленного в планшете.

Давайте сначала пройдемся по основным пунктам статьи:

— производителей NAND можно пересчитать по пальцам одной руки

— в современных твердотельных накопителях используется два типа NAND: MLC и TLC, только набирающая обороты

— MLC NAND различается интерфейсами: ONFi (Intel, Micron) и Toggle Mode (Samsung, Toshiba)

— ONFi MLC NAND делится на асинхронную (дешевле и медленнее) и синхронную (дороже и быстрее)

— производители SSD используют память разных интерфейсов и типов, создавая разнообразный модельный ряд на любой кошелек

— официальные спецификации редко содержат конкретную информацию, но базы данных SSD позволяют точно определить тип NAND.

Конечно, в таком зоопарке не может быть однозначного ответа на вопрос, вынесенный в подзаголовок. Вне зависимости от бренда накопителя, NAND соответствует заявленным спецификациям, иначе ОЕМ-производителям нет смысла ее покупать (они дают на SSD свою гарантию).

Однако… представьте, что лето вас порадовало небывалым урожаем земляники на даче!

Она вся сочная и сладкая, но вам просто не съесть столько, поэтому вы решили продать часть собранных ягод.

__________________________________

Самую лучшую землянику вы оставите себе или выставите на продажу? 🙂

__________________________________

Можно предположить, что производители NAND устанавливают самую лучшую память в свои накопители. Учитывая ограниченное количество компаний, выпускающих NAND, список производителей SSD получается еще короче:

— Crucial (подразделение Micron)

— Intel

— Samsung

Опять же, это лишь предположение, не подкрепленное достоверными фактами. Но разве вы поступили бы иначе на месте этих компаний?

Обрезал, но она доступна по ссылке автора статьи

SLC, MLC и TLC при выборе SSD

Введение

Производительность и срок службы SSD в первую очередь зависят от флэш-памяти NAND и контроллера с прошивкой. Они являются основными составляющими цены накопителя, и при покупке логично обращать внимание именно на эти компоненты. Сегодня мы поговорим о NAND.

Тонкости технологического процесса производства флэш-памяти вы при желании найдете на сайтах, специализирующихся на обзорах SSD. Моя же статья ориентирована на более широкий круг читателей и преследует две цели:

  1. Приоткрыть завесу над невнятными спецификациями, опубликованными на сайтах производителей SSD и магазинов.
  2. Снять вопросы, которые могут у вас возникнуть при изучении технических характеристик памяти разных накопителей и чтения обзоров, написанных для «железных» гиков.

Для начала я проиллюстрирую проблему картинками.

Что указывают в характеристиках SSD

Технические характеристики NAND, публикуемые на официальных сайтах производителей и в сетевых магазинах, далеко не всегда содержат подробную информацию. Более того, терминология сильно варьируется, и я подобрал для вас данные о пяти различных накопителях.

Вам что-нибудь говорит эта картинка?

ехнические характеристики NAND

Ок, допустим, Яндекс.Маркет — не самый надежный источник информации. Обратимся к сайтам производителей — так легче стало?

Технические характеристики NAND

Может быть, так будет понятнее?

Технические характеристики NAND

А если так?

Nand, Micron MLC

Или все-таки лучше так?

Components

Между тем, во всех этих накопителях установлена одинаковая память! В это трудно поверить, особенно глядя на две последних картинки, не правда ли? Дочитав запись до конца, вы не только в этом убедитесь, но и будете читать подобные характеристики как открытую книгу.

Производители памяти NAND

Производителей флэш-памяти намного меньше, чем компаний, продающих SSD под своими брендами. В большинстве накопителей сейчас установлена память от:

  • Intel/Micron
  • Hynix
  • Samsung
  • Toshiba/SanDisk

Intel и Micron не случайно делят одно место в списке. Они производят NAND по одинаковым технологиям в рамках совместного предприятия IMFT.

Технические характеристики NAND

На ведущем заводе в американском штате Юта одна и та же память выпускается под марками этих двух компаний почти в равных пропорциях. С конвейера завода в Сингапуре, который сейчас контролирует Micron, память может сходить также и под маркой ее дочерней компании SpecTek.


Казалось бы, при таком раскладе с памятью все должно быть просто. Однако существует несколько типов NAND, которые в свою очередь подразделяются по разным параметрам, внося путаницу.

Типы памяти NAND: SLC, MLC и TLC

Это три разных типа NAND, главным технологическим отличием между которыми является количество битов, хранящихся в ячейке памяти.

SLC является самой старой из трех технологий, и вы вряд ли найдете современный SSD с такой NAND. На борту большинства накопителей сейчас MLC, а TLC – это новое слово на рынке памяти для твердотельных накопителей.

характеристики NAND

Вообще, TLC давно используется в USB-флэшках, где выносливость памяти не имеет практического значения. Новые технологические процессы позволяют снизить стоимость гигабайта TLC NAND для SSD, обеспечивая приемлемое быстродействие и срок службы, в чем логично заинтересованы все производители.


В первой записи серии мы подсчитывали ресурс накопителя с MLC NAND, и если просто поделить его на три, картина получится не самой радужной. Но это вовсе не значит, что от TLC надо бежать, как черт от ладана.

Во-первых, в моих прикидках за основу был взят заоблачный мультипликатор увеличения объема записи 10х, который на практике в разы ниже. Профильные сайты нередко оценивают его в 2-3х, и даже еще меньше для контроллеров SandForce, применяющих сжатие данных при записи.

Во-вторых, дело не только в количестве циклов перезаписи и мультипликаторе. В контроллер могут закладываться технологии, призванные снизить физическую нагрузку на ячейки памяти при чтении и записи путем адаптации к подаваемому напряжению.


Судя по обзорам и тестам, Samsung 840 неплохо проявил себя, особенно на фоне накопителей с MLC предыдущего поколения.

HDD 250GB

Кстати, этот накопитель характеризует большая резервная область, призванная продлить срок службы TLC. Королем же производительности в 2012 году стал Samsung 840 Pro с 21nm Toggle Mode MLC на борту.

Интерфейсы MLC NAND: ONFi и Toggle Mode

Сейчас на рынке преобладают накопители с памятью MLC, но и эта память делится на два типа в соответствии с используемым интерфейсом.

ONFi (Open NAND Flash Interface) – это альянс производителей флэш-памяти, выпускающейся по единому стандарту. Обратите внимание на присутствие там Intel и Micron, равно как и на отсутствие Samsung с Toshiba. Последняя пара выпускает память с интерфейсом Toggle Mode.

Пропускная способность памяти


В начале 2013 года можно купить накопители с памятью ONFi 1.0 и 2.x, а также Toggle Mode 1.0.

Память MLC NAND: асинхронная ONFi 1.0 против синхронной ONFi 2.х

Несмотря на то, что память с пропускной способностью до 200MB/s выпускается уже какое-то время, Intel и Micron не спешат отказываться от выпуска более старой и медленной памяти. Дело в том, что она дешевле, и это позволяет производителям SSD позиционировать накопители в разные сегменты рынка.

Давайте возьмем для примера спецификации двух твердотельных накопителей Corsair в том виде, как они опубликованы на сайте.

Характеристика

Все числовые показатели у них практически идентичны, разве что первый на йоту побыстрее и потребляет побольше энергии. На сайте не указано, но у этих накопителей еще и одинаковый контроллер SandForce-2281 (на что также намекает емкость 120 Гб).


Несмотря на минимальное различие в паспортных характеристиках быстродействия, накопитель с синхронной памятью превосходит коллегу почти во всех аспектах бенчмарков (в таблице по ссылке не отображается название Force GT, но это он).

Как видите, производители не выставляют напоказ ключевые отличия между линейками накопителей, однако это можно понять по цене. SSD с асинхронной памятью продаются немного дешевле, поскольку ее стоимость ниже, чем у синхронной. Зачастую индикатором может служить маркетинговое позиционирование на сайте (более производительные накопители стоят выше в списке).

каталог накопителей

В серии Vertex 4 используется синхронная память Intel Micron 25nm MLC, а в Agility 4 — асинхронная.

Память MLC NAND: 2.х

Буква “x” обобщает различные этапы второй версии спецификаций ONFi. В 2012 году большинство накопителей снабжалось памятью MLC, изготовленной в рамках технологического процесса 25nm по спецификациям ONFi 2.1.

Впрочем, в конце года на рынке появился накопитель Intel 335 с памятью Intel 20nm MLC NAND, что соответствовало уже спецификациям ONFi 2.3. Переход на новый технологический процесс не приносит дивидендов в быстродействии, поскольку пропускная способность интерфейса все так же ограничена 200MB/s.

В спецификации ONFi 2.3 заложена поддержка протокола EZ-NAND, призванного улучшить коррекцию ошибок (ECC), уровень которых растет по мере уменьшения размера ячеек памяти. Однако для этого в NAND должен быть встроен отдельный контроллер. В Intel 335 он отсутствует, поэтому данную модель можно считать «переходной».


Intel оценивает ее идентично 25nm NAND — в 3 000 циклов перезаписи. Однако гарантийный срок составляет лишь 3 года, в отличие от 5-летней гарантии на Intel 520 при тех же объемах записи в 20GB в день.

Так или иначе, поскольку Intel и Micron переходят на 20nm процесс, логично ожидать в 2013 году появления накопителей с такой памятью под различными брендами.

Память MLC NAND: Toggle Mode 2.0 против синхронной ONFi 2.x

Некоторые производители SSD ставят в разные линейки продуктов память с различными интерфейсами. Хорошим примером служит тот же Corsair, но теперь с серией Neutron (в таблице приведены характеристики быстродействия, заявленные производителем)

Характеристика накопителей, сравнение

Как видите, при прочих равных память Toggle Mode на бумаге выглядит побыстрее ONFi 2.x в последовательной записи и случайном чтении. В принципе, бенчмарки это подтвердили, но все же посмотрите их самостоятельно (например, AnandTech 120Gb, 240Gb).

Как определить конкретный тип памяти в SSD

Вне зависимости от того, приобрели вы твердотельный накопитель или только планируете покупку, после прочтения этой записи у вас может возникнуть вопрос, вынесенный в подзаголовок.

Ни одна программа тип памяти не показывает. Эту информацию можно найти в обзорах накопителей, но есть и более короткий путь, особенно когда нужно сравнить между собой несколько кандидатов на покупку.


Я без проблем нашел там характеристики памяти своих накопителей, за исключением SanDisk P4 (mSATA), установленного в планшете.

В каких SSD установлена самая лучшая память

Давайте сначала пройдемся по основным пунктам статьи:

  • производителей NAND можно пересчитать по пальцам одной руки
  • в современных твердотельных накопителях используется два типа NAND: MLC и TLC, только набирающая обороты
  • MLC NAND различается интерфейсами: ONFi (Intel, Micron) и Toggle Mode (Samsung, Toshiba)
  • ONFi MLC NAND делится на асинхронную (дешевле и медленнее) и синхронную (дороже и быстрее)
  • производители SSD используют память разных интерфейсов и типов, создавая разнообразный модельный ряд на любой кошелек
  • официальные спецификации редко содержат конкретную информацию, но базы данных SSD позволяют точно определить тип NAND

Конечно, в таком зоопарке не может быть однозначного ответа на вопрос, вынесенный в подзаголовок. Вне зависимости от бренда накопителя, NAND соответствует заявленным спецификациям, иначе ОЕМ-производителям нет смысла ее покупать (они дают на SSD свою гарантию).

Однако… представьте, что лето вас порадовало небывалым урожаем земляники на даче!

Она вся сочная и сладкая, но вам просто не съесть столько, поэтому вы решили продать часть собранных ягод.


Можно предположить, что производители NAND устанавливают самую лучшую память в свои накопители. Учитывая ограниченное количество компаний, выпускающих NAND, список производителей SSD получается еще короче:

  • Crucial (подразделение Micron)
  • Intel
  • Samsung

Опять же, это лишь предположение, не подкрепленное достоверными фактами. Но разве вы поступили бы иначе на месте этих компаний?



NAND против DRAM | Журнал сетевых решений/LAN

В твердотельных SSD-накопителях корпоративного класса обычно используется технология флеш-памяти NAND, хотя иногда даже в хранилище данных применяются модули памяти DRAM, а некоторые компании пытаются комбинировать в своих системных архитектурах обе технологии.

Во флеш-памяти NAND применяется логический элемент NOT AND и, как и во многих других типах памяти, данные хранятся в массиве ячеек, где каждая ячейка содержит один или несколько битов данных. Динамическая оперативная память (Dynamic Random Access Memory, DRAM) — один из видов энергозависимой полупроводниковой памяти с произвольным доступом (RAM) — наиболее широко используется в качестве ОЗУ современных компьютеров.

В Micron Technology ожидают, что рынок памяти в ближайшие три-пять лет будет расти в 2,5 раза быстрее, чем остальная часть полупроводниковой промышленности. Но, если проанализировать историю роста продаж микросхем памяти (см. рис. 1), можно увидеть, что за каждым пиком следовал резкий спад, хотя глубина спада сокращалась с каждым новым циклом, поскольку рынок консолидировался, а спрос на память диверсифицировался — от ПК до смартфонов. По мере дальнейшей диверсификации этот рынок станет менее изменчивым.

Динамика продаж модулей памяти очень неустойчива, однако поставки памяти NAND увеличиваются стабильными темпами
Рис. 1. Динамика продаж модулей памяти очень неустойчива, однако поставки памяти NAND увеличиваются стабильными темпами

Ключевые характеристики DRAM SSD и NAND SSD — производительность, долговечность и, конечно, стоимость. Но главное отличие в другом.

ЭНЕРГОЗАВИСИМОСТЬ: ПРОБЛЕМА И РЕШЕНИЯ

Одним из основных преимуществ NAND SSD является энергонезависимость, то есть данные сохраняются в памяти даже при отключении питания. DRAM таким свойством не обладает, но этот недостаток может компенсироваться наличием внешних ИБП или встроенной батареи, которой оснащаются некоторые системы и даже платы DRAM.

Существует также память NVRAM, где NV (non-volatile) означает энергонезависимость. В энергонезависимом модуле с «двойной» встроенной памятью NVDIMM объединены флеш-память и DRAM. При сбое питания конденсатор позволяет скопировать данные из DRAM во флеш-память модуля, а после восстановления нормального режима работы данные копируются обратно в DRAM.

Например, в модулях Micron NVDIMM-N (см. рис. 2) на планке находится процессор FPGA, копирующий данные в память SLC NAND в случае сбоя питания, которое при этом обеспечивается суперконденсатором.

В 2017 году компания Micron представила модули NVDIMM-N емкостью 32 Гбайт. Они работают на частоте DDR4-2933 и представляют собой комбинацию ECC DRAM и NAND. Последняя служит только для резервирования данных
Рис. 2. В 2017 году компания Micron представила модули NVDIMM-N емкостью 32 Гбайт. Они работают на частоте DDR4-2933 и представляют собой комбинацию ECC DRAM и NAND. Последняя служит только для резервирования данных

Объединение DRAM с конденсатором и флеш-памятью может привести к созданию эффективной кеш-памяти для записи данных или высоконадежной серверной памяти, выдерживающей отказы питания. Концептуально и архитектурно эти хранилища хорошо сочетаются с другими энергонезависимыми накопителями — жесткими дисками HDD (см. рис. 3).

NAND заполняет пробел между HDD и DRAM
Рис. 3. NAND заполняет пробел между HDD и DRAM

Такие модули памяти, получившие название NVDIMM-N, могут найти применение в серверах баз данных и файловых хранилищах. В модулях NVDIMM-F используется только память NAND, и хотя производительность у них ниже, они энергонезависимы «по умолчанию» и сохраняют данные в случае сбоя питания без каких-либо дополнительных технических решений.

ПРОИЗВОДИТЕЛЬНОСТЬ

DRAM, будучи основной технологией оперативной памяти, обладает сбалансированной производительностью чтения/записи и заметно превосходит по этому параметру флеш-память NAND, особенно при операциях записи. Однако и стоимость DRAM значительно выше.

SD на базе NAND отлично подходит для ориентированных на чтение приложений, обеспечивая высокую скорость ввода-вывода в IOPS, но обладают более низкой производительностью при записи. Это связано с тем, что для записи нового блока данных требуется полностью удалить прежний блок.

Тем не менее производительность записи у накопителей NAND все же значительно выше, чем у механичес-ких дисков, а разработчики устройств NAND потратили немало сил и средств на совершенствование алгоритмов оптимизации записи. Кроме того, сравнивать технологии имеет смысл в применении к конкретным приложениям.

ДОЛГОВЕЧНОСТЬ

Срок службы флеш-памяти NAND следует оценивать не по времени эксплуатации, а по числу выполненных операций. В результате стирания и записи данных происходит ее постепенная деградация на уровне отдельных ячеек, что влияет на общую производительность и доступную емкость устройства. Если потребительские накопители NAND рассчитаны на 3000–10000 операций записи, то флеш-накопители корпоративного класса выдерживают до 100 000 циклов. DRAM работает в 100 раз быстрее NAND и служит в 100 раз дольше.

Итак, в отличие от DRAM, флеш-память довольно быстро изнашивается при интенсивном использовании. Иногда накопители изначально имеют большую емкость, чем заявляют вендоры, что помогает компенсировать падение производительности и емкости. А для снижения темпов деградации применяются все более сложные алгоритмы записи.

Память DRAM тоже подвержена аппаратным сбоям, и для их компенсации или исправления используются проверенные временем методологии. У DRAM нет ресурса записи, но со временем и она деградирует. Ошибки могут быть вызваны большим количеством факторов, включая перегрев, длительный срок использования, дефекты и т.?д.

Как показало одно из исследований ошибок памяти DRAM, проведенное в полевых условиях, у почти трети всех машин и более 8% модулей DIMM была зафиксирована по крайней мере одна исправимая ошибка в год («DRAM errors in the wild: a large-scale field study»). На некоторых платформах почти у половины систем возникали исправимые ошибки, хотя в среднем только около 1,3% систем были подвержены неисправимым ошибкам (для некоторых этот показатель составлял 2–4%).

На выручку приходит технология коррекции ошибок и их обнаружения. Наиболее распространенный вариант — память с исправлением ошибок (Error-Correcting Code, ECC). Другой вариант — Dell Reliable Memory Technology PRO (RMT PRO) — по своей концепции похож на технологию коррекции ошибок жесткого диска. Он позволяет выявить неисправимые ошибки и многобитовые исправимые ошибки в модуле DIMM и устранить проблему. При перезагрузке RMT PRO помечает дефектную часть отдельного модуля DIMM, сообщает о дефекте и местоположении сбойного участка DIMM в BIOS, удаляет эти плохие ячейки и небольшое количество соседних ячеек из пула используемой системной памяти.

Что же долговечнее — DRAM или NAND? Для обоих продуктов гарантируется работа в течение многих лет. Многие производители NAND предос-тавляют пятилетние гарантии, некоторые — до 10 лет. Отдельные накопители на основе DRAM имеют аналогичные характеристики. Трудно выделить здесь какое-либо существенное отличие.

СЦЕНАРИИ ИСПОЛЬЗОВАНИЯ

Обычно поставщики специализируются на устройствах DRAM или NAND, но некоторые вендоры начинают предлагать и то и другое. DRAM чаще всего позиционируется как кеш-память высокой производительности или как первый (самый быстрый) уровень в системах многоуровневого хранения данных (тиринга).

В гибридных пулах хранения NAND дополняет DRAM. Программное обеспечение автоматического тиринга может динамически перемещать «горячие» данные на быстрые (и более дорогие) устройства SSD с более медленных (зато более емких и относительно дешевых) жестких дисков (см. рис. 4).

SSD NAND дополняют HDD и позволяют оптимизировать производительность / стоимость хранения при использовании алгоритмов автоматического размещения данных
Рис. 4. SSD NAND дополняют HDD и позволяют оптимизировать производительность / стоимость хранения при использовании алгоритмов автоматического размещения данных

Аналитики считают, что эта твердотельная память, скорее всего, будет востребована в центрах обработки данных. Рост объемов транзакций, облачные вычисления, аналитика Больших Данных и рабочие нагрузки следующего поколения потребуют увеличения производительности. Поэтому данная технология окажется особенно полезной для ЦОД и в меньшей степени — для ПК.

Флеш-память NAND будет использоваться для хранения потоковых данных, для пакетной обработки, задач аналитики с системами управления базами данных. Это потребует удлинения очереди — примерно до 32 ожидающих выполнения операции чтения/записи или больше.

Спрос на память DRAM и NAND подстегивается выпуском новых моделей смартфонов, быстро набравшим популярность майнингом криптовалют, анонсами новых процессоров от AMD и Intel, а также новых ПК на их основе, что ведет к росту цен. Впрочем, они могут стабилизироваться благодаря дополнительному производству микросхем, которое начали в этом году Samsung и SK Hynix.

Большинство ИТ-организаций могут с выгодой использовать комбинацию DRAM и NAND исходя из архитектурной целесообразности и стоимости решения (см. рис. 5). Тем не менее, чтобы оптимизировать развертывание DRAM и NAND, полезно разобраться, чем различаются эти продукты, и оценить их перспективы.

Еще в 2004 году стоимость NAND сравнялась со стоимостью DRAM и до недавнего времени продолжала снижаться
Рис. 5. Еще в 2004 году стоимость NAND сравнялась со стоимостью DRAM и до недавнего времени продолжала снижаться

ПЕРСПЕКТИВЫ 3D NAND

Оба типа памяти продолжают развиваться: разработчики DRAM увеличивают емкость и тактовую частоту модулей памяти, а производители NAND переходят к объемной компоновке (3D NAND).

Так, Intel и Micron уже налаживают производство 64-слойной памяти 3D NAND, а также продолжают совместную разработку и производство энергонезависимой памяти 3D XPoint, что может повысить ее конкурентоспособность. Память NAND 3D XPoint, анонсированную компаниями Intel и Micron в 2015 году, выпускает их совместное предприятие IM Flash Technologies (см. таблицу).

Сравнение NAND и 3D XPoint
Сравнение NAND и 3D XPoint

3D XPoint обладает большей производительностью и долговечностью, чем NAND, и занимает промежуточную позицию между DRAM и NAND (см. таблицу). Появление 3D XPoint не приведет к повсеместной замене DRAM в серверах, но позволит сократить расходы благодаря замене части оперативной памяти, а также увеличить производительность твердотельных накопителей NAND.

Если в настоящее время стоимость DRAM составляет примерно 5 долларов за гигабайт, то NAND — около 25 центов. По данным Gartner, 3D XPoint будет стоить около 2,40 доллара за гигабайт для крупных партий, то есть намного дороже NAND, и такое положение дел сохранится по крайней мере до 2021 года.

Intel и Micron не сообщают подробностей о применяемой технологии. Предполагается, что 3D XPoint — это тип памяти с фазовым переходом (PCM), поскольку Micron уже разрабатывала такую технологию (со схожими свойствами).

Технология 3D XPoint обеспечивает до 10 раз большую производительность по сравнению с «обычной» NAND (при использовании интерфейса PCIe/NVMe), при этом она до 1000 раз долговечнее: выдерживает более миллиона циклов записи, что по сути означает пожизненную гарантию.

Для сравнения, сегодняшняя память NAND рассчитана на 3–10 тыс. циклов стирания-записи. С помощью програм-много обеспечения для оценки износа и исправления ошибок число циклов можно увеличить, но миллион циклов записи все равно пока недостижим.

Малая задержка 3D XPoint (в тысячу раз меньше, чем у накопителей NAND) позволяет применять созданные на основе данной технологи продукты для выполнения задач, характеризующихся высокой нагрузкой ввода-вывода,?— например, в системах обработки транзакций (см. рис. 6).

Комбинирование разных видов памяти / технологий хранения данных и получаемая в результате задержка в микросекундах
Рис. 6. Комбинирование разных видов памяти / технологий хранения данных и получаемая в результате задержка в микросекундах

3D XPoint призвана заполнить пробел в иерархии памяти и хранилищ данных для ЦОД, которая включает в себя SRAM (кеш-память на процессоре), DRAM (оперативная память), NAND (SSD), жесткие диски, магнитную ленту и оптические диски. Она занимает промежуточное место между DRAM и энергонезависимой флеш-памятью NAND.

Intel называет свою версию технологии 3D XPoint памятью Optane (см. рис. 7). Optane предназначена для обслуживания самых «горячих» данных в иерархии хранения или даже для увеличения емкости оперативной памяти. Например, ее можно применять для анализа в реальном времени текущих наборов данных или хранения и обновления записей.

В DC P4800X, первом SSD корпоративного класса от Intel, основанном на технологии 3D XPoint, используется интерфейс PCIe NVMe 3.0 x4
Рис. 7. В DC P4800X, первом SSD корпоративного класса от Intel, основанном на технологии 3D XPoint, используется интерфейс PCIe NVMe 3.0 x4

В 2017 году Intel начала поставлять продукты на базе новой технологии: модуль Intel Optane для ПК на 16/32 Гбайт и модуль Intel Optane SSD DC P4800X на 375 Гбайт. Этот первый 3D XPoint SSD может выполнять до 550 тыс. операций ввода-вывода в секунду (IOPS) при чтении и 500 тыс. IOPS при записи с глубиной очереди 16 или менее. Как и DRAM, 3D XPoint поддерживает байтовую адресацию, в то время как в NAND адресация происходит на уровне блока (см. рис. 8).

Модуль с памятью 3D XPoint от Intel применяется в качестве кеш-памяти для ускорения работы компьютеров с накопителями SATA
Рис. 8. Модуль с памятью 3D XPoint от Intel применяется в качестве кеш-памяти для ускорения работы компьютеров с накопителями SATA

По мнению аналитиков IDC, внедрение 3D XPoint в качестве нового уровня хранения данных является крупным технологическим прорывом, одним из наиболее важных с момента появления масштабных облачных ЦОД. Между тем, согласно Intel, продукты на базе Optane с успехом могут применяться не только в центрах обработки данных, но и в настольных компьютерах для ускорения доступа к данным.

Модуль Intel Optane для ПК, выполняя функции кеш-памяти, поможет повысить скорость работы любого устройства хранения SATA на платформе Intel Core i 7-го поколения. Intel утверждает, что он вдвое сокращает время загрузки ПК и повышает общую производительность системы на 28%.

DC P4800 наиболее эффективен в приложениях с произвольными операциями чтения-записи и в этом случае выступает в роли расширения серверной памяти DRAM. Optane показывает себя с лучшей стороны при произвольном чтении и записи.

Стоимость DC P4800 SSD емкостью 375 Гбайт в пересчете на 1 Гбайт составляет около 4,05 доллара. Скорость чтения у данного устройства — 550 тыс. IOPS с использованием блоков 4K с глубиной очереди 16. Скорость последовательного чтения-записи — до 2,4 и 2 Гбайт/с соответственно.

Для сравнения, твердотельный накопитель на базе NAND, например Intel DC P3700 емкостью 400 Гбайт, продается за 645 долларов, то есть стоимость за 1 Гбайт составляет 1,61 доллара. P3700 обеспечивает скорость чтения блоками 4K до 450 тыс. IOPS при глубине очереди до 128 для последовательного чтения/записи (до 2,8 и 1,9 Гбайт/с соответственно).

У Intel 3D XPoint Optane SSD задержка при чтении/записи составляет менее 10 мкс, что намного ниже, чем у многих твердотельных накопителей на основе NAND, для которых этот показатель находится в диапазоне от 30 до 100 мкс. Intel рассматривает два основных варианта использования Optane DC P4800X (см. рис. 9).

Intel DC P4800X имеет емкость 375 Гбайт
Рис. 9. Intel DC P4800X имеет емкость 375 Гбайт и обладает гораздо меньшими задержками, чем NAND

В планах Intel — выпуск Optane SSD емкостью 750 Гбайт и 1,5 Тбайт с интерфейсами PCIе/NVMe и U.2, а кроме того, компания планирует поставлять Optane в виде модулей DIMM в стиле DRAM.

Ранее иерархия памяти представляла собой следующую последовательность: кеш-память, основная оперативная память и диск. Жесткие диски всегда были самой большой проблемой при таком подходе: задержки при доступе к ним измеряются в миллисекундах, что на несколько порядков выше, чем у DRAM. Задержки у флеш-памяти NAND значительно ниже, чем у жестких дисков, но между NAND и DRAM все же существует значительный разрыв. Память Intel Optane может заполнить пробел между DRAM и NAND подобно тому, как NAND занимает промежуточное положение между DRAM и обычным жестким диском в современной системе.

Другое преимущество Optane — обеспечение схожей производительности при разной глубине очереди. SSD, как правило, работают тем быстрее, чем больше глубина очереди.

Компания Micron тоже намерена постепенно наращивать продажи своего продукта QuantX и перейти к массовому выпуску в 2019 году. Она позиционирует SSD-накопители QuantX как продукты для центров обработки данных, однако разрабатывает и 3D NAND потребительского класса. Для конечного пользователя это означает возможность анализировать больше данных и делать это в режиме реального времени.

По мере роста продаж 3D XPoint и увеличения масштабов производства эти накопители могут частично вытеснить модули DRAM. Их можно применять для кеширования записи или как замену/расширение оперативной памяти. К тому же для некоторых рабочих нагрузок важна не столько скорость доступа, сколько возможность хранить в памяти огромные объемы данных.

Micron объявила, что плотность памяти XPoint в десять раз выше, чем у коммерческих продуктов DRAM. Это справедливо, если сравнивать ее с продуктами DRAM класса 30 нм, поскольку у большинства таких продуктов крупных производителей DRAM плотность памяти составляет 0,06 Гбайт/мм2. У первого коммерческого продукта XPoint плотность памяти в три раза больше, чем у Samsung 1x DRAM, или в шесть раз больше, чем у Micron 20 нм DRAM.

Gartner прогнозирует, что технологию 3D XPoint начнут массово применять в центрах обработки данных уже в конце 2018 года. Экосистему ЦОД придется адаптировать к новой памяти, включая новые наборы микросхем и приложения.

НОВИНКИ И ПЛАНЫ

Последние версии 3D NAND содержат до 72 слоев флеш-памяти, и производители уже проектируют продукты с 96 слоями (они могут появиться в текущем году), а затем и 128 слоями. Кроме того, ожидается, что 3-разрядные ячейки (TLC) NAND заменят на 4 разрядные (QLC). Это позволит увеличить плотность памяти и снизить производственные затраты.

Год назад китайская компания Yangtze Memory Technologies объявила о планах запустить с 2018 года производство микросхем DRAM с техпроцессом 18–20 нм и 32-, а затем и 64-слойных модулей памяти 3D NAND. Это позволит ей составить конкуренцию Micron, Samsung и SK Hynix. К 2025 году в КНР планируется расширить производственные мощнос-ти для изготовления модулей памяти. Увеличить выпуск 64-слойной памяти NAND намерена и компания Toshiba. SK Hynix переходит с производства 48-слойной NAND на 72-слойную.

K Hynix анонсировала завершение разработки твердотельных накопителей SATA емкостью до 4 Тбайт, где применяются микросхемы памяти 3D NAND емкостью 512 Гбайт, состоящей из 72 слоев. Скорость последовательного чтения в новых SSD достигает 560 Мбайт/с, а записи — 515 Мбайт/с. При произвольном доступе скорость чтения может составлять 98 тыс., а записи — 32 тыс. IOPS. Кроме того, компания разрабатывает PCIe SSD на базе 72-слойной памяти емкостью более 1 Тбайт. Их характеристики — 2700/1100 Мбайт/с при последовательных операциях и 230/350 тыс. IOPS при произвольном доступе для чтения/записи соответственно.

В феврале и российская GS Group объявила о начале серийного выпуска SSD в Калининградской области. Как заявлено, эти 2,5-дюймовые накопители SATA построены на базе флеш-памяти 3D NAND ведущих производителей. До конца года планируется расширить линейку SSD за счет моделей емкостью до 1 Тбайт. Первая — емкостью 256 Гбайт — имеет скорость последовательного чтения и записи 550 и 450 Мбайт/с соответственно. И это лишь некоторые из последних новинок (см. рис. 10). Их появлению способствует высокий спрос со стороны производителей смартфонов и серверов для ЦОД.

Компания Patriot недавно выпустила накопители NVMe SSD на новом контроллере Phison E12, поддерживающем до восьми каналов NAND и интерфейс PCIe 3.0 x4. В основе новинки — 64-слойная память BICS 3D NAND от Toshiba. Емкость ее Viper SSD составляет от 240 Гбайт до 2 Тбайт. Производительность при последовательном чтении — 3200 Мбайт/с, последовательной записи — 3000 Мбайт/с, а при произвольном чтении и записи — 600K IOPS
Рис. 10. Компания Patriot недавно выпустила накопители NVMe SSD на новом контроллере Phison E12, поддерживающем до восьми каналов NAND и интерфейс PCIe 3.0 x4. В основе новинки — 64-слойная память BICS 3D NAND от Toshiba. Емкость ее Viper SSD составляет от 240 Гбайт до 2 Тбайт. Производительность при последовательном чтении — 3200 Мбайт/с, последовательной записи — 3000 Мбайт/с, а при произвольном чтении и записи — 600K IOPS

Модули памяти DRAM от Samsung производятся по техпроцессу 18 нм. Micron и SK Hynix планируют внедрить технологические нормы 10 нм, однако на этом пути предстоит преодолеть немало препятствий. Тем временем Samsung уже осваивает техпроцесс 7 нм.

amsung Electronics остается лидером рынка флеш-памяти. В этом году она нацелена на ускоренный запуск продуктов NAND с высокой плотностью памяти, расширение поставок емких накопителей в сегменте устройств начального и среднего уровней, а также накопителей корпоративного класса с интерфейсами PCIe и NVMe.

Второе место занимает Toshiba, которая сосредоточилась на поставках твердотельных накопителей с интерфейсом PCIe. Компания намерена увеличивать выпуск флеш-памяти NAND и наращивать мощности для производства 64-слойных микросхем 3D NAND.

За лидерами следуют Western Digital, Micron, SK Hynix и Intel. Все они успешно наращивают продажи и развивают производство по выпуску микросхем памяти 3D NAND.

При этом развитие обычной флеш-памяти NAND продолжится как минимум до 2025 года. Технологии флеш-памяти эволюционируют столь быстрыми темпами, что кардинально меняется вся концепция хранения (см. статью Дмитрия Ганьжи «Время флеша, или На пути к универсальной памяти» в мартовском номере «Журнала сетевых решений/LAN» за 2017 год). «Главным героем» этих изменений стала флеш-память NAND.

Появление высокоскоростных энергонезависимых устройств хранения класса Storage Class Memory (SCM) затронет все уровни инфраструктурного стека. Использование памяти различного типа может быть оправданным при создании многоуровневых архитектур хранения, а также для хранения часто запрашиваемых «горячих» данных в ЦОД.

Сергей Орлов, независимый эксперт

 

 

 

 

 

 

Поделитесь материалом с коллегами и друзьями

Восстановление данных с накопителей на основе NAND флэш-памяти

Основные принципы и особенности

Накопители на основе флэш-памяти с каждым днем принимают все более изощренные и миниатюрные формы, что повышает их мобильность до запредельной. Сегодня большинство электронных устройств, неспособных к перемещению в пространстве, теряют как минимум привлекательность среди основной массы потребителей, и, как максимум, возможность оказаться в нужном месте в нужное время. Такая мобильность иногда чревата последствиями. Вспомним и сравним, как часто мы теряли HDD-диски и насколько чаще теряем флэшки. Что касается производителей, то они оценили преимущества флэш-памяти и успешно используют ее во многих мобильных устройствах. В  числе наиболее востребованных на рынке — накопители на основе NAND флэш-памяти. Область их применения постоянно растет: от мобильных телефонов до маршрутизаторов. Такая популярность делает актуальным вопрос сохранности и безопасности информации с устройств такого типа. Именно это и стало поводом для детального рассмотрения основных принципов и особенностей восстановления информации с накопителей на основе NAND флэш-памяти.

Нам кажется, что при восстановлении данных наибольший интерес представляют именно комплексные решения — сочетание собственных аналитических методов восстановления, экономящих время, и гибкость полуавтоматических режимов, которые помогают вручную изучить и оценить состояние накопителя.

По статистике нашего центра восстановления данных, доля случаев обращения пользователей с флеш-накопителями в процентном соотношении непрерывно растет, и в июне 2009 года сравнялась с количеством случаев для IDE HDD. Из  100% случаев восстановления, на IDE HDD и флэш-накопители приходится по 20%. На сегодняшний день, наибольший объем работ по восстановлению данных мы производим на SATA-накопителях. В то же время по нашим прогнозам, примерно через год количество случаев с FLASH-накопителями существенно потеснит случаи восстановления данных с SATA.

Удивительно, но мало кто знает, что практически при любом повреждении флэш-накопителя данные можно восстановить в большинстве случаев! Однако необходимо выбрать правильный алгоритм, недостаточно просто считать информацию с микросхем памяти. Полезные данные располагаются в микросхемах памяти не в том виде, в котором они представлены пользователю. Сложность восстановления заключается в повторении способа размещения данных, который был использован в накопителе.

Почему ломаются накопители, или немного теории

Есть два основных типа повреждений флэш-накопителей:

  1. Логический, при котором носитель физически определяется в системе при штатном подключении, но содержит повреждения, препятствующие получению доступа к данным стандартными средствами операционной системы. В данном случае для восстановления данных применимы все логические инструменты, позволяющие восстанавливать логическую структуру файловой системы носителя.
  2. Физический или повреждение служебных данных — в этом случае доступ к содержимому микросхем флэш-памяти невозможен. К сожалению, подавляющее большинство случаев повреждения относится именно к такому типу.

Разницу между логическим и физическим повреждением флэшки можно описать простым примером. При логическом повреждении достаточно лишь произвести форматирование, после чего накопитель исправен, «чист» и готов к использованию. Если повреждение физическое, то ваш накопитель не определится в системе и, соответственно, не сможет быть отформатирован.

Следующие 20 КБ информации специально подготовлены для тех, кто хочет подробнее узнать об этих типах повреждений.

Итак, вернемся к логическим повреждениям.

Во-первых, это повреждения в результате программного сбоя или аппаратных особенностей служебной области данных, используемой контроллером в работе механизма трансляции. Виной этому, прежде всего, износ, приводящий к появлению избыточного числа битовых ошибок, которые невозможно скорректировать реализованным алгоритмом ECC. Не менее вероятны и сбои внутреннего программного обеспечения.

Во-вторых, ухудшение теплопроводности корпуса флэш-накопителя приводит к повышению температуры внутренних компонентов, что повышает вероятность сбоев и возникновения ошибок. Сообщения операционной системы о необходимости отформатировать накопитель или предложение «Вставить диск» — это как раз последствия и признаки подобных ошибок. При этом зачастую накопитель как физическое устройство в системе определяется идентификатором производителя (Vendor ID) и типом устройства (Device ID), соответствующим установленному в нем контроллеру.

При обнаружении неустранимой ошибки служебной области, контроллер перестает обращаться к микросхемам памяти, возвращая в ответ на команду чтения заранее сформированный сектор (чаще всего, заполненный нулями). Еще он может  «информировать» об отсутствии носителя. Подобная тактика объясняется, главным образом, необходимостью уменьшить влияние на микросхемы памяти и не допустить дальнейшего повреждения данных. При этом данные, в большинстве случаев, остаются полностью корректными и располагаются в микросхемах памяти, но доступ к ним посредством штатного интерфейса становится невозможным.

К слову, применение общедоступных специализированных утилит (например, находящихся на сайте http://www.flashboot.ru) при повреждениях служебной информации иногда позволяет вернуть накопителю работоспособность, но при этом пользовательские данные почти наверняка будут уничтожены.

Действия, выполняемые стандартными утилитами от производителя, состоят из стирания всех микросхем памяти и восстановления формата поврежденной служебной области. Идет  переучет блоков с нестабильным чтением. Очевидно, что сохранение данных пользовательской зоны не является приоритетным при такой операции, и подобное требование значительно усложнило бы утилиту.

В подобных случаях наиболее надежным методом восстановления данных является применение специализированных комплексов, которые позволяют работать напрямую с микросхемами памяти, реализуя эмуляцию работы контроллера без применения штатного, аппаратного контроллера  и интерфейса.

Что касается физических, то это повреждения контроллера, платы электроники и линий интерфейса, приводящие к невозможности функционирования накопителя как цельного устройства. Тут причинами могут быть как механические воздействия, так и влияние электрических факторов. Например, статического электричества, неверной полярности  USB разъемов ПК, проблем с питанием адаптеров или картоводов. Флэш-накопитель с подобной неисправностью при штатном (напрямую или через картовод) подключении не определяется в системе или сопровождается сообщением системы о «неопознанном устройстве». При воздействии электрических факторов повреждается, в основном, именно контроллер и окружающие элементы. Микросхемы памяти, как правило, остаются работоспособными. При этом данные пользователя на них полностью сохраняются.

Есть вероятность успешного возобновления работы накопителя при замене МС контроллера на заведомо рабочий, полностью совпадающий или «похожий», но эта вероятность крайне мала. Даже относительно одинаковые контроллеры отличаются по применяемым алгоритмам распределения данных и алгоритмам ECC, в результате чего при замене возможны ситуации несовместимости. При этом работоспособность накопителя не восстановится, но новый контроллер, обнаружив несоответствие формата данных на микросхемах памяти, вероятно, переформатирует ее «под себя», уничтожив пользовательские данные. Хотя иногда подобная практика и имеет успех.

Как и в случае с логическим повреждением, здесь также рекомендуемым методом восстановления данных является использование специализированных комплексов, работающих напрямую с микросхемами памяти. Кстати, полезный совет. Если выберете метод восстановления «заменой контроллера», то лучше предварительно считайте содержимое всех микросхем памяти. Так удастся восстановить данные, если новый контроллер переформатирует микросхемы памяти «под себя».

Получается, что при любом типе неисправности, если данные недоступны, восстановление информации напрямую с микросхем памяти является более универсальным способом, и имеет меньше рисков повреждения данных, чем любой из методов, работающих через штатный интерфейс и контроллер накопителя.

Восстановление данных в деталях

Итак, как мы уже сказали, наиболее частые причины повреждения флэш-накопителей любого типа  — это проблемы электрического и теплового характера. Статическое электричество, некорректное подключение питания USB-разъемов на панели системного блока и другие проблемы с питанием становятся причинами сгорания контроллера накопителя. Это, естественно, делает невозможным любой доступ к содержимому микросхем флэшки. Если помехи питания кратковременны или незначительны, тогда маловероятно, что сам контроллер выйдет из строя, но и он может поспособствовать сбою при модификации данных на микросхемах памяти. В результате, нарушается логика работы механизма трансляции— по внешним признакам это эквивалентно повреждению контроллера. Учитывая, что контроллер оперирует блоками данных минимальным размером около 128К байт, такой кратковременный сбой может привести к полному стиранию основных структур файловой системы. Это, очевидно, сделает невозможным дальнейшее функционирование накопителя.

Так как восстановить данные? Чтобы сделать это непосредственно с микросхемами памяти, необходимо выполнить цепочку трех последовательных действий:

  1. используя паяльную станцию, выпаять все микросхемы памяти, присутствующие в накопителе
  2. с помощью считывающего устройства прочитать содержимое всех микросхем памяти
  3. используя специализированное программное обеспечение,  эмулировать работу штатного контроллера флэш-накопителя и получить результат — образ диска с пользовательскими данными.

Все это с успехом аккумулировано в программно-аппаратном комплексе PC-3000 Flash, естественно,  за исключением процедуры выпаивания микросхем памяти.

Программное обеспечение этого комплекса позволяет решить следующие задачи:

  • устранить перемешивание данных, вызванное аппаратными особенностями накопителя (контроллера) и конфигурации платы электроники
  • определить примененный в контроллере алгоритм и его параметры
  • при необходимости, логически восстановить разрушения файловой системы.

В комплексе PC 3000 Flash реализовано значительное число автоматических методов восстановления и методов, позволяющих выполнить отдельные действия всего процесса. Среди автоматических режимов комплекса хочется выделить режимы «Восстановление по контроллеру», когда для полного восстановления данных достаточно только указать тип примененного в флэш-накопителе контроллера. В этом случае все действия, необходимые для восстановления корректного доступа к данным, будут выполнены автоматически, и результатом станет образ диска с восстановленными данными. Комплекс включает большую базу данных о микросхемах флэш-памяти для автоматизации процесса считывания.

Однако автоматические режимы восстановления и анализа — это не все, на что способен комплекс. Еще в нем заложены широкие возможности для индивидуального изучения задачи восстановления при помощи разнообразного набора специализированных утилит. Также в состав PC 3000 Flash входит пополняемая база данных контроллеров, позволяющая ускорить процесс восстановления информации с помощью прямого указания типа контроллера. Только некоторый список поддерживаемых комплексом производителей контроллеров:

  • AlcorMicro
  • SK
  • SM
  • ChipsBank
  • iCreate
  • Lexar
  • USBest
  • PHISON
  • OTI
  • SSS
  • TOSHIBA

Описание работы по восстановлению информации было бы неполным без статистики, собранной и обработанной с декабря 2007 года. Около 80 процентов данных с флэш-накопителей  NAND удается восстановить в автоматическом режиме, то есть с помощью одного щелчка мышью. При детальном «ручном» восстановлении — 90 процентов данных обретают вторую жизнь. Сразу оговоримся, что оставшиеся 10 процентов информации тоже возможно спасти. Для этого потребуется время и сочетание технологий автоматического и механического восстановления.

Интересна и статистика восстановления данных при различных типах повреждений. От общего объема восстановления информации на накопителях на основе NAND флэш-памяти 45% приходится на устранение  неисправностей логического характера, соответственно, 55% — физического.

Не надо быть большим аналитиком, чтобы уловить тенденцию постоянного роста числа мобильных устройств. Очевидно, что количество информации, доверенной флэш-памяти, будет расти еще стремительнее. От сохранности данных и, в случае ЧП, их оперативного восстановления, зависит многое. Именно потому не стоят на месте и технологии восстановления данных. Будем держать руку на пульсе информации!

Оценка износа устройств с флэш-памятью eMMC

CNXSoft: Это пост от гостей Марселя Зисвилера (Marcel Ziswiler), менеджер платформы Embedded Linux, Toradex и Леонардо Грабоски Вейга (Leonardo Graboski Veiga), инженера по техническому маркетингу, Toradex, связанные с предстоящим докладом Марселя на тему «Оценка износа устройств с флэш-памятью eMMC» на конференции Embedded Linux 2019 года позже этот месяц.

Флэш-память была важной темой во встраиваемых системах на протяжении десятилетий. Она позволяет радикально улучшить размеры и надежность электронных устройств по сравнению с другими технологиями хранения. Другие преимущества флэш-памяти включают в себя отсутствие подвижных элементов и снижение энергопотребления. Однако, проблемы, связанные с флэш-памятью, не так широко освещаются в потребительской электронике. Среди них ограниченная прочность и большая сложность программного обеспечения.

Рисунок 1. от флэш-накопителей и SD-карт до SSD и интегральных микросхем, флэш-память является частью нашей повседневной жизни.

Как показано на рисунке 1, флеш-память везде в нашей повседневной жизни — от устройств, специально предназначенных для хранения данных, таких как флэш-накопители, SD-карты и жесткие диски SSD, до бытовой электроники, в которой используется флэш-память внутри, например смартфоны, модемы Wi-Fi и умные лампочки.

Знаковым противоположным примером является первая модель iPod, выпущенная в 2001 году. В ней использовался вращающийся жесткий диск для обеспечения высокой емкости хранения (для его времени — 5 или 10 ГБ). Однако, исследование показало, что частота отказов моделей с жестким диском была больше 20%, для сравнения, у моделей, оснащенных флэш-памятью она менее 10%. Из-за чувствительных движущихся частей, которые они содержат, вращающиеся диски не очень хорошо справляются с механическими ударами. Это играет значительную роль в частоте отказов портативных устройств, оснащенных магнитным накопителем.

Рисунок 2: Оригинальный iPod, выпущенный в 2001 году, является редким примером мобильного устройства с магнитным накопителем.

Nand Flash iPhone — что это, ошибки и как их исправить?

Всем привет! Буквально на днях встретил своего давнишнего приятеля. Мы разговорились, и он, со словами «Смотри с каким телефоном я сейчас хожу!», продемонстрировал свою старенькую кнопочную Nokia. Выяснилось, что на его iPhone стала постоянно «слетать» прошивка – пришлось отдать смартфон в сервисный центр. Казалось бы, обычное дело…

Однако, для приятеля оказался необычным тот перечь работ, которые будет проводить сервис. Полная диагностика, обновление программного обеспечения (при необходимости) и другие «обычные штуки» – здесь все стандартно и понятно. Главный же вопрос вызвала вот такая фраза мастера  – «скорей всего, надо перекатывать Nand Flash».

Далее с его слов:

Я, конечно, в сервисе не показал что не понимаю о чем речь – дескать и так все знаю без вас. Вы главное – делайте. Но пришел домой и сразу полез «гуглить» – а что это вообще такое, Nand Flash? И на фига его куда-то катать внутри iPhone?

Посмеялись с ним, разошлись, а я подумал – почему бы не написать коротенькую заметку на эту тему? Много времени это не займет, а людям, которые столкнулись с той же проблемой что и мой знакомый, станет чуточку понятней, что вообще происходит с их смартфоном. Подумал – сделал. Поехали!:)

Что такое Nand Flash в iPhone?

Это внутренняя память устройства. Да, да, то самое хранилище в котором постоянно исчезает место и которого очень часто не хватает владельцам iPhone на 16 GB.

Грубо говоря, Nand Flash в iPhone 7 32 GB это и есть те самые 32 GB внутренней памяти.

Расположена память на основной системной плате устройства и ни чем примечательным не выделяется – самый обычный чип.

Вот так выглядит Nand Flash память iPhone

Естественно, это никакая не флешка – нельзя разобрать iPhone, легко отсоединить Nand Flash, поставить другую и думать что все будет «ОК». Не будет. Хотя, стоит оговориться, что в некоторых случаях это все-таки возможно. Но об это чуть дальше. А пока переходим к неполадкам…

Причины неисправности

Вариантов не очень много, и все они, как правило «стандартные»:

  1. Падения устройства.
  2. Иные физические повреждения.
  3. Попадание жидкости.
  4. Брак.
  5. Джейлбрейк.

Здесь особо и расписывать нечего – понятное дело, что если устройство бросать и заливать водой, то это скажется на его работоспособности.

Хотя, отдельно все-таки отмечу такой пункт, как заводской брак – такое тоже очень даже возможно. Я был свидетелем подобной ситуации – iPhone только что куплен, а работать толком не работает – перезагружается, при восстановлении показывает ошибки и вообще ведет себя странно. Отдали в сервис, как итог – брак Nand Flash памяти и последующая замена устройства.

Симптомы неисправности Flash памяти iPhone

Каких-то четких и определенных симптомов у этой неисправности нет (на экране не выскакивает надпись – у вашего устройства проблемы с памятью), поэтому обо всем этом можно догадаться только по косвенным признакам:

  1. iPhone перезагружается при включении.
  2. Устройство «виснет на яблоке» во время загрузки.iPhone "висит на яблоке" - возможны проблемы с памятью
  3. Постоянно «слетает» прошивка.
  4. При попытке восстановления iOS через iTunes появляются различные ошибки.

Кстати, об ошибках…

Ошибки iTunes, указывающие на неисправность Nand Flash

Восстановление прошивки через iTunes – самый верный способ борьбы с различными неполадками в работе устройства. Однако, если у iPhone существуют проблемы с Nand Flash памятью, то процесс восстановления может прерываться и сопровождаться следующими характерными ошибками:

  1. Error 21, 9, 2009, 4005, 14, 40, 4013 – все они могут говорить о неполадках с питанием памяти, замыканиях в цепях питания, а также различных проблемах с Nand.
  2. Из относительно «свежего», ошибка 0XE8000013 – указывает на неправильную прошивку микросхемы Flash памяти.Ошибка 0XE8000013 - неправильная прошивка микросхемы памяти

Но, важно помнить вот о чем – iTunes устроен таким образом, что одна и та же цифра ошибки может иметь несколько причин.

Например, ошибка 4013 может сигнализировать как о проблемах с самой микросхемой, так и о неоригинальности использования провода для подключения к ПК.

Как видите, разброс очень большой – от простого провода, до очень сложного ремонта. Поэтому, использовать этот перечень ошибок для предварительного анализа ситуации можно, а вот слепо доверять – нельзя.

Ремонт Nand Flash памяти – возможно ли это?

Возможно. Но, конечно же, не «в домашних условиях». Более того, далеко не все сервисные центры умеют проделывать эту операцию. Например, «в палатке на рынке» вам с большой долей вероятности помочь не смогут – там просто не будет необходимого оборудования. Да и навык, какой-никакой, должен быть.

В который раз отдельно замечу – если у вашего iPhone не закончился гарантийный срок (как это проверить?), то ничего выдумывать не нужно – сдайте его по гарантии. С большой долей вероятности вы получите взамен новое устройство.

Если с гарантией «пролет», а ремонт Nand Flash памяти все-таки необходим, то у сервисного центра есть два варианта исправления ситуации:

  1. Так называемая, «перекатка» (иногда еще называют «реболл») микросхемы памяти. Происходит отпайка чипа, зачистка его дорожек, и он припаивается обратно. То есть, если говорить грубо, процедура «вытащить-вставить»:)«Перекатка» Nand Flash iPhone
  2. Полная замена Nand Flash. Отпаивается старая микросхема, а на ее место устанавливается новая. Казалось бы, так даже лучше – новая запчасть, все круто… Да. Но есть одно «но». Перед установкой нового чипа Nand его надо прошить. И здесь речь идет не об iTunes (тогда бы никаких проблем не было), а об использовании специального программатора и программного обеспечения.

Кстати, если говорить про оборудование для прошивки Nand Flash, то подобные программаторы достаточно разнообразны, но одна вещь их все-таки объединяет – цена. Все они стоят приличных денег – далеко не каждый может позволить себе такую штуку.

Какой вывод можно сделать из всего этого? Проблемы с памятью iPhone – это достаточно серьезная поломка, которую очень тяжело исправить самостоятельно. Но и безнадежной ситуацию назвать нельзя. Главное – найти хороший сервисный центр с грамотными специалистами и необходимым оборудованием. И тогда iPhone еще долго будет радовать вас своей работой!

P.S. Да уж, короткой заметки не получилось:) Впрочем, что есть, то есть – не удалять же теперь. Да и информация полезная – кому-нибудь да пригодится. Согласны? Ставьте «лайки», жмите на кнопки социальных сетей – поддержите автора! Он старался, честно. Спасибо!

P.S.S. Остались какие-то вопросы? Есть чем дополнить статью или хочется рассказать свою историю? Для этого существуют комментарии – пишите смело!

Оставьте комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *