Максимальная информационная емкость flash память – ожидаемое и неожиданное. Часть 1. XIV конференция ассоциации USENIX. Технологии хранения файлов / ua-hosting.company corporate blog / Habr

Содержание

Емкость флеш-памяти информационная

Количество полезной информации, которую мы можем хранить в электронном виде, определяется емкостью конкретного устройства. Очень полезной с этой точки зрения является флеш-память. Особенностью устройств, что её используют, обычно называют значительный объем и малый физический размер носителя.

Что такое флеш-память?

Так называют разновидность полупроводниковой технологии создания электрически перепрограммируемой памяти. В схемотехнике так называют законченное с технологической точки зрения решение построения постоянных запоминающих устройств.

емкость флеш памяти

В быту словосочетание «флеш-память» используется для обозначения широкого класса твердотельных приборов хранения информации, выполненных с применением этой же технологии. Важными преимуществами, что обусловили их широкое распространение, являются:

  1. Компактность.
  2. Дешевизна.
  3. Механическая прочность.
  4. Большой объем.
  5. Скорость работы.
  6. Низкое энергопотребление.

Благодаря этому всему флеш-память можно найти во многих цифровых портативных устройствах, а также в ряде носителей информации. Увы, есть и недостатки, такие как ограниченный срок технической эксплуатации носителя и чувствительность к электростатическим разрядам. А вот какая емкость у флеш-памяти? Вряд ли сможете угадать, но попробуйте. Максимальная емкость флеш-памяти может достигать огромных размеров: так, несмотря на малые размеры, носители данных на 128 Гб в свободной продаже сейчас мало кого смогут удивить. Недалеко уже тот момент, когда 1 Тб слабо будет интересовать.

История создания

Предшественниками считают постоянные запоминающие устройства, которые стирались с помощью ультрафиолета и электричества. Они тоже имели транзисторные матрицы, у которых был плавающий затвор. Только вот в них инженерия электронов осуществлялась путём создания значительной напряженности электрического поля тонкого диэлектрика. Но при этом резко увеличивалась площадь разводки представленных в матрице компонентов, когда необходимо было создать поле обратной напряженности.

информационная емкость флеш памяти

Трудно было инженерам решить проблему с плотностью составляющих цепей стирания. В 1984 году она была успешно решена, а благодаря схожести процессов с фотовспышкой новая технология получила название «флеш» (по-английски — «вспышка»).

Принцип действия

Он базируется на регистрации и изменении электрического заряда, который есть в изолированной области полупроводниковой структуры. Эти процессы протекают между истоком большого потенциала и затвором для получения напряжения электрического поля в размещенном здесь тонком диэлектрике, чтобы этого оказалось достаточно для возникновения туннельного эффекта между карманом и каналом транзистора. Чтобы усилить его, используют небольшое ускорение электронов, и тогда возникает инжекция горячих носителей. Чтение информации возложено на полевой транзистор. Карман для него выполняет функцию затвора. Его потенциал меняет пороговые характеристики транзистора, которые и регистрируются цепями чтения. Конструкция имеет элементы, с помощью которых возможно осуществление работы с большим массивом подобных ячеек. Благодаря малому размеру всех деталей емкость флеш-памяти и выходит внушительной.

максимальная емкость флеш памяти

NOR- и NAND-приборы

Их различают методом, который положен в основу соединения ячеек в один массив, а также алгоритмов чтения и записи. Конструкция NOR базируется на классической двумерной матрице проводников, где на пересечении столбцов и строк имеется по одной ячейке. Во время действия проводник строк подключен к стоку транзистора, а ко второму затвору присоединяются столбцы. Исток подключен к подложке, которая является общей для всех. Эта конструкция позволяет легко считывать состояние конкретных транзисторов, подавая положительное питание на одну строку и один столбец.

Для представления, что такое NAND, вообразите трёхмерный массив. В его основе – всё та же матрица. Но уже не один транзистор расположен в каждом пересечении, а устанавливается уже целый столбец, который состоит из последовательно включенных ячеек. Такая конструкция имеет много затворных цепей всего в одном пересечении. При этом значительно можно увеличить (и этим пользуются) плотность компонентов. Минусом является то, что значительно усложняется алгоритм записи, доступа и чтения ячейки. Для NOR преимуществом является скорость работы, а недостатком – максимальная информационная емкость флеш-памяти. Для NAND размер — плюс, а минус – быстродействие.

SLC- и MLC-приборы

Существуют устройства, которые могут хранить один или несколько бит информации. В первом типе может быть только два уровня заряда плавающего затвора. Такие ячейки называют однобитовыми. В других их больше. Часто многобитовые ячейки ещё называют многоуровневыми. Они, как ни странно, отличаются дешевизной и объемом (в позитивном смысле), хотя и медленнее отвечают, а также переносят меньшее количество перезаписей.

какая емкость у флеш памяти

Аудиопамять

По мере развития MLC возникла идея записать аналоговый сигнал в ячейку. Применение получившийся результат получил в микросхемах, которые занимаются воспроизведением относительно небольших звуковых фрагментов в дешевых изделиях (игрушках, к примеру, звуковых открытках и подобных вещах).

Технологические ограничения

Процессы записи и чтения отличаются по энергопотреблению. Так, для первого приходится формировать высокое напряжение. В то же время при чтении затраты на энергию довольно малые.

максимальная информационная емкость флеш памяти

Ресурс записи

При изменении заряда копятся необратимые изменения в структуре. Поэтому возможность количества записей для ячейки ограничена. В зависимости от памяти и технологического процесса работы устройства могут пережить сотни тысяч циклов (хотя есть отдельные представители, которые и до 1000 не дотягивают).

В многобитовых устройствах гарантированный ресурс работы довольно низок по сравнению с другим типом организации. Но почему происходит сама деградация прибора? Дело в том, что нельзя индивидуально контролировать заряд, который имеет плавающий затвор в каждой ячейке. Ведь запись и стирание делаются для множества одновременно. Контроль качества проводится по средней величине или по референсной ячейке. Со временем происходит рассогласование, и заряд может выходить за грани допустимого, после чего информация становится нечитаемой. Далее ситуация только усугубляется.

Ещё одной причиной является взаимная диффузия проводящих и изолирующих областей в полупроводниковой структуре. При этом периодически возникают электрические пробои, что ведёт к размыванию границ, и флеш-карта памяти выходит из строя.

Срок хранения данных

Поскольку изоляция в кармане неидеальная, то постепенно происходит рассеивание заряда. Обычно срок, который может храниться информация, – около 10-20 лет. Специфические внешние условия катастрофически сказываются на периоде хранения. Так, повышенная температура, гамма-радиация или частицы высоких энергий смогут быстро уничтожить все данные. Сейчас самые передовые образцы, которые могут похвастаться тем, что у них значительная информационная емкость флеш-памяти, имеют слабые места. У них ниже срок хранения, чем у уже давно разработанных и откорректированных устройств, что не раз дорабатывались.

флеш карта памяти

Заключение

Несмотря на проблемы, указанные в конце статьи, технология флеш-памяти является очень эффективной, благодаря чему она получила широкое распространение. А её преимущества с лихвой покрывают недостатки. Поэтому информационная емкость флеш-памяти стала очень полезной и популярной в бытовой технике.

Емкость флеш-памяти информационная

Количество полезной информации, которую мы можем хранить в электронном виде, определяется емкостью конкретного устройства. Очень полезной с этой точки зрения является флеш-память. Особенностью устройств, что её используют, обычно называют значительный объем и малый физический размер носителя.

Что такое флеш-память?

Так называют разновидность полупроводниковой технологии создания электрически перепрограммируемой памяти. В схемотехнике так называют законченное с технологической точки зрения решение построения постоянных запоминающих устройств.

емкость флеш памяти

В быту словосочетание «флеш-память» используется для обозначения широкого класса твердотельных приборов хранения информации, выполненных с применением этой же технологии. Важными преимуществами, что обусловили их широкое распространение, являются:

  1. Компактность.
  2. Дешевизна.
  3. Механическая прочность.
  4. Большой объем.
  5. Скорость работы.
  6. Низкое энергопотребление.

Благодаря этому всему флеш-память можно найти во многих цифровых портативных устройствах, а также в ряде носителей информации. Увы, есть и недостатки, такие как ограниченный срок технической эксплуатации носителя и чувствительность к электростатическим разрядам. А вот какая емкость у флеш-памяти? Вряд ли сможете угадать, но попробуйте. Максимальная емкость флеш-памяти может достигать огромных размеров: так, несмотря на малые размеры, носители данных на 128 Гб в свободной продаже сейчас мало кого смогут удивить. Недалеко уже тот момент, когда 1 Тб слабо будет интересовать.

История создания

Предшественниками считают постоянные запоминающие устройства, которые стирались с помощью ультрафиолета и электричества. Они тоже имели транзисторные матрицы, у которых был плавающий затвор. Только вот в них инженерия электронов осуществлялась путём создания значительной напряженности электрического поля тонкого диэлектрика. Но при этом резко увеличивалась площадь разводки представленных в матрице компонентов, когда необходимо было создать поле обратной напряженности.

информационная емкость флеш памяти

Трудно было инженерам решить проблему с плотностью составляющих цепей стирания. В 1984 году она была успешно решена, а благодаря схожести процессов с фотовспышкой новая технология получила название «флеш» (по-английски — «вспышка»).

Принцип действия

Он базируется на регистрации и изменении электрического заряда, который есть в изолированной области полупроводниковой структуры. Эти процессы протекают между истоком большого потенциала и затвором для получения напряжения электрического поля в размещенном здесь тонком диэлектрике, чтобы этого оказалось достаточно для возникновения туннельного эффекта между карманом и каналом транзистора. Чтобы усилить его, используют небольшое ускорение электронов, и тогда возникает инжекция горячих носителей. Чтение информации возложено на полевой транзистор. Карман для него выполняет функцию затвора. Его потенциал меняет пороговые характеристики транзистора, которые и регистрируются цепями чтения. Конструкция имеет элементы, с помощью которых возможно осуществление работы с большим массивом подобных ячеек. Благодаря малому размеру всех деталей емкость флеш-памяти и выходит внушительной.

максимальная емкость флеш памяти

NOR- и NAND-приборы

Их различают методом, который положен в основу соединения ячеек в один массив, а также алгоритмов чтения и записи. Конструкция NOR базируется на классической двумерной матрице проводников, где на пересечении столбцов и строк имеется по одной ячейке. Во время действия проводник строк подключен к стоку транзистора, а ко второму затвору присоединяются столбцы. Исток подключен к подложке, которая является общей для всех. Эта конструкция позволяет легко считывать состояние конкретных транзисторов, подавая положительное питание на одну строку и один столбец.

Для представления, что такое NAND, вообразите трёхмерный массив. В его основе – всё та же матрица. Но уже не один транзистор расположен в каждом пересечении, а устанавливается уже целый столбец, который состоит из последовательно включенных ячеек. Такая конструкция имеет много затворных цепей всего в одном пересечении. При этом значительно можно увеличить (и этим пользуются) плотность компонентов. Минусом является то, что значительно усложняется алгоритм записи, доступа и чтения ячейки. Для NOR преимуществом является скорость работы, а недостатком – максимальная информационная емкость флеш-памяти. Для NAND размер — плюс, а минус – быстродействие.

SLC- и MLC-приборы

Существуют устройства, которые могут хранить один или несколько бит информации. В первом типе может быть только два уровня заряда плавающего затвора. Такие ячейки называют однобитовыми. В других их больше. Часто многобитовые ячейки ещё называют многоуровневыми. Они, как ни странно, отличаются дешевизной и объемом (в позитивном смысле), хотя и медленнее отвечают, а также переносят меньшее количество перезаписей.

какая емкость у флеш памяти

Аудиопамять

По мере развития MLC возникла идея записать аналоговый сигнал в ячейку. Применение получившийся результат получил в микросхемах, которые занимаются воспроизведением относительно небольших звуковых фрагментов в дешевых изделиях (игрушках, к примеру, звуковых открытках и подобных вещах).

Технологические ограничения

Процессы записи и чтения отличаются по энергопотреблению. Так, для первого приходится формировать высокое напряжение. В то же время при чтении затраты на энергию довольно малые.

максимальная информационная емкость флеш памяти

Ресурс записи

При изменении заряда копятся необратимые изменения в структуре. Поэтому возможность количества записей для ячейки ограничена. В зависимости от памяти и технологического процесса работы устройства могут пережить сотни тысяч циклов (хотя есть отдельные представители, которые и до 1000 не дотягивают).

В многобитовых устройствах гарантированный ресурс работы довольно низок по сравнению с другим типом организации. Но почему происходит сама деградация прибора? Дело в том, что нельзя индивидуально контролировать заряд, который имеет плавающий затвор в каждой ячейке. Ведь запись и стирание делаются для множества одновременно. Контроль качества проводится по средней величине или по референсной ячейке. Со временем происходит рассогласование, и заряд может выходить за грани допустимого, после чего информация становится нечитаемой. Далее ситуация только усугубляется.

Ещё одной причиной является взаимная диффузия проводящих и изолирующих областей в полупроводниковой структуре. При этом периодически возникают электрические пробои, что ведёт к размыванию границ, и флеш-карта памяти выходит из строя.

Срок хранения данных

Поскольку изоляция в кармане неидеальная, то постепенно происходит рассеивание заряда. Обычно срок, который может храниться информация, – около 10-20 лет. Специфические внешние условия катастрофически сказываются на периоде хранения. Так, повышенная температура, гамма-радиация или частицы высоких энергий смогут быстро уничтожить все данные. Сейчас самые передовые образцы, которые могут похвастаться тем, что у них значительная информационная емкость флеш-памяти, имеют слабые места. У них ниже срок хранения, чем у уже давно разработанных и откорректированных устройств, что не раз дорабатывались.

флеш карта памяти

Заключение

Несмотря на проблемы, указанные в конце статьи, технология флеш-памяти является очень эффективной, благодаря чему она получила широкое распространение. А её преимущества с лихвой покрывают недостатки. Поэтому информационная емкость флеш-памяти стала очень полезной и популярной в бытовой технике.

Pci flash память что это – емкость флеш памяти

Флэш-память относится к классу EEPROM, но использует особую технологию построения запоминающих ячеек. Стирание во флэш-памяти производится сразу для целой области ячеек (блоками или полностью всей микросхемы). Это позволило существенно повысить производительность в режиме записи (программирования). Флэш-память обладает сочетанием высокой плотности упаковки (ее ячейки на 30% меньше ячеек DRAM), энергонезависимого хранения, электрического стирания и записи, низкого потребления, высокой надежности и невысокой стоимости…Это репрограммируемые ЗУ.

Подобно ОЗУ, флэш-память модифицируется электрически внутрисистемно, но подобно ПЗУ, флэш энергонезависима и хранит данные даже после отключения питания. Однако, в отличие от ОЗУ, флэш нельзя переписывать побайтно. Флэш-память читается и записывается байт за байтом и предъявляет новое требование: ее нужно стереть перед тем, как записывать новые данные.

Флэш-память — это полупроводниковая память, причем особого типа. Ее элементарная ячейка, в которой хранится один бит информации, представляет собой не конденсатор, а полевой транзистор со специальной электрически изолированной областью, которую называют «плавающим затвором». Электрический заряд, помещенный в эту область, способен сохраняться в течение многих лет. При записи одного бита данных ячейка заряжается — заряд помещается на плавающий затвор, при стирании — заряд снимается с плавающего затвора и ячейка разряжается.

Выделяют среди таких устройств схемы со специализированными блоками (несимметричные блочные структуры). По имени так называемых Boot блоков в которых информация надежно защищена от случайного стирания, ЗУ называются Boot Block Flash Memory.

Флэш-память типа Boot Block служит для хранения обновляемых программ и данных в самых разных системах, включая сотовые телефоны, модемы, BIOS, системы управления автомобильными двигателями и многое другое. Используя флэш-память вместо EEPROM для хранения параметрических данных, разработчики добиваются снижения стоимости и повышения надежности своих систем.

Преимущества флэш-памяти по сравнению с EEPROM:
1.

Более высокая скорость записи при последовательном доступе за счёт того, что стирание информации во флэш производится блоками.
2. Себестоимость производства флэш-памяти ниже за счёт более простой организации.
Недостаток: Медленная запись в произвольные участки памяти.

Память с последовательным доступом Используются, где данные могут быть выстроены в очередь.

Флэш-память с адресным доступом. Хранение редко изменяемых данных. Запись и стирание осу­ществляет процессор выч устр-ва в обычном рабочем режиме. Для этого Флэш-память имеет дополнительное управление словами-командами, записывае­мыми процессором в специальный регистр микросхемы. При подаче специального напряжения программирования схема обеспечивает запись и стирание информации. Перед программировани­ем процессор считывает из микросхемы код — идентификатор, содержащий код фирмы-изготовителя и микросхемы для согласования алгоритмов стирания и записи, автоматически.

Стираются все байты памя­ти или выбранного блока, после чего все они проверяются, выполняется повторное стирание и проверка.

Программирование памяти ведется байт за байтом, записанная информация проверяется. Процессор счи­тывает из ЗУ записанный байт и сравнивает его с исходным.

Один из блоков предназначен для хранения ПО BIOS и аппаратно защищен от случайного стирания.

Принцип работы и устройство флеш-памяти

В ЗУ есть также блоки парамет­ров и главные блоки, не защищенные от случайного стирания. Главные блоки хранят основные управляющие программы, а бло­ки параметров — относительно часто меняемые параметры систе­мы.

Файловая Флэш-память применяется для замены твердых дис­ков. Сокращает потребляемую мощность, повышает надежность ЗУ, уменьшает их размеры и вес, повышает быстродействие при чтении данных. Программа может читаться процессором непосредственно из файловой Флэш-памяти, туда же записываются и результаты.

На основе файловой Флэш-памяти создаются компактные съемные внешние ЗУ.

ЗЭ – МНОП.

2 пороговых напр-ия. Uпор1 – имеет маленькую величину, 1-2 В. При подаче Uпор инициируется канал м/д стоком-истоком. Если м/д нитридом и двуокисью кремния есть заряды, то Uпор увеличилось до 7В.

Запись (программирование) флеш-памяти – процесс замены 1 на 0. Стирание – замена 0 на 1.

3.Архитектура РС. Процессоры ЭВМ. Структура процессоров и их основные характеристики. Системные шины и их характеристики. Локальные шины. Чипсеты.
Архитектура – это многоуровневая иерархия аппаратно-программных средств, каждый из уровней допускает многовариантное построение и применение.

Структура – это совокупность элементов и их связей.

ЭВМ – это комплекс технических и программных средств, предназначенный для автоматизации подготовки и решения задач пользователей.

Архитектура ЭВМ — это общее описание структуры и функций ЭВМ на уровне, достаточном для понимания принципов работы и системы команд ЭВМ, не включающее деталей технического и физического устройства компьютера.

К архитектуре относятся следующие принципы построения ЭВМ:

1. структура памяти ЭВМ;
2. способы доступа к памяти и внешним устройствам;
3. возможность изменения конфигурации;
4. система команд;
5. форматы данных;
6. организация интерфейса.

Архитектура современных персональных компьютеров основана на магистрально-модульном принципе. Информационная связь между устройствами компьютера осуществляется через системную шину (другое название — системная магистраль).

Шина — это кабель, состоящий из множества проводников. По одной группе проводников — шине данных передаётся обрабатываемая информация, по другой — шине адреса — адреса памяти или внешних устройств, к которым обращается процессор. Третья часть магистрали — шина управления, по ней передаются управляющие сигналы (например, сигнал готовности устройства к работе, сигнал к началу работы устройства и др).

Системная шина характеризуется тактовой частотой и разрядностью.Количество одновременно передаваемых по шине бит называется разрядностью шины. Тактовая частота характеризует число элементарных операций по передаче данных в 1 секунду. Разрядность шины измеряется в битах, тактовая частота – в мегагерцах.
Системные шины

Переда­ча информации между МП и осталь­ными элементами. Осуществляется также адресация устройств и обмен специальными служебными сигналами. Передачей информации по шине управляет одно из подключенных к ней устройств или специально выделенный для этого узел, называемый ар­битром шины.

Шина ISA (Industry Standard Architecture) есть 36-контактный разъем для плат расширения. За счет этого количество адресных линий – 4, а данных – 8. Можно передавать параллельно 16 разрядов данных, а благодаря 24 адресным линиям напрямую обращаться к 16 МБ сист памяти. Кол-во линий аппаратных прерываний — 15.

Шина EISA (Extended ISA). обеспечивает наи­больший возможный объем адресуемой памяти, 32-разрядную передачу данных, улучшенную систему прерываний, автоматическую конфи­гурацию системы и плат расширения. В EISA-разъем на системной плате компьютера совместим с ISA. Шина EISA позволяет адресовать 4Гб адресного про­ст-ва. Теор максимальная скорость 33 Мбайт/с. Шина тактируется частотой около 8—10 МГц.

Локальные шины предназначены для увеличения быстродействия компа, позволяя периферийным устройствам (видеоадаптеры, контроллеры накопителей) работать с тактовой частотой до 33 МГц и выще. Используется разъем типа MCA.

Шины PCI. Между локальной шиной процессора и самой PCI находится специальная согласующая м\схема

В соответствии со спецификацией PCI к шине могут подклю­чаться до 10 устройств. Шина PCI работает на фиксированной тактовой часто­те 33 МГц и предусматривает напряжение питания для контрол­леров как 5, так и 3,3 В, режим plug and play.

Шина PCI-X –высокопроизводительная PCI. является синхронной, т.е. все данные обрабатываются одновременно при поступлении управляющего сигнала. Разрядность шины 32-бита. При частоте 33 МГц теоретическая пропускная способность 132 МБ/с.

Всякая информация, передаваемая от процессора к другим устройствам по шине данных, сопровождаетсяадресом, передаваемым по адресной шине. Это может быть адрес ячейки памяти или адрес периферийного устройства. Необходимо, чтобы разрядность шины позволила передать адрес ячейки памяти. Таким образом, словами разрядность шины ограничивает объем оперативной памяти ЭВМ, он не может быть больше чем , где n – разрядность шины.

схема устройства компьютера, построенного по магистральному принципу

Чипсет — от англ. «chip set» — набор микросхем, спроектированных для совместной работы с целью выполнения набора каких-либо функций. Так, в компьютерах чипсет выполняет роль связующего компонента, обеспечивающего совместное функционирование подсистем памяти, ЦПУ, ввода-вывода и других. Чипсеты встречаются и в других устройствах, например, в радиоблоках сотовых телефонов.

Чипсет материнских плат компьютеров состоит из двух основных микросхем (иногда они объединяются в один чип):

  1. MCH — контроллер-концентратор памяти (Memory Controller Hub) — северный мост (northbridge) — обеспечивает взаимодействие центрального процессора (ЦП) с памятью и видеоадаптером. В новых чипсетах часто имеется интегрированная видеоподсистема.

    Контроллер памяти может быть интегрирован в процессор (например Opteron, Nehalem, UltraSPARC T1).

  2. ICH — контроллер-концентратор ввода-вывода (I/O Controller Hub) — южный мост (southbridge) — обеспечивает взаимодействие между ЦП и жестким диском, картами PCI, интерфейсами IDE, SATA, USB и пр.

Также иногда к чипсетам относят микросхему Super I/O, которая подключается к южному мосту и отвечает за низкоскоростные порты RS232, LPT, PS/2.

В настоящее время основными производителями чипсетов для настольных компьютеров являются фирмы Intel, nVidia, AMD (которая приобрела фирму ATI и в настоящее время выпускает чипсеты под своим именем), VIA и SIS.

Фирма Intel выпускает чипсеты только для собственных процессоров. Для процессоров фирмы AMD наиболее распространенными являются чипсеты nVidia (выпускаемые как правило под торговой маркой nForce) и AMD.

Чипсеты фирм VIA и SIS популярны в основном в секторе low end, а также в офисных системах, хотя встроенная графика у них по 3D возможностям значительно уступает nVidia и AMD.

Дата публикования: 2015-10-09; Прочитано: 262 | Нарушение авторского права страницы

Емкость флеш-памяти информационная

Количество полезной информации, которую мы можем хранить в электронном виде, определяется емкостью конкретного устройства. Очень полезной с этой точки зрения является флеш-память. Особенностью устройств, что её используют, обычно называют значительный объем и малый физический размер носителя.

Что такое флеш-память?

Так называют разновидность полупроводниковой технологии создания электрически перепрограммируемой памяти. В схемотехнике так называют законченное с технологической точки зрения решение построения постоянных запоминающих устройств.

В быту словосочетание «флеш-память» используется для обозначения широкого класса твердотельных приборов хранения информации, выполненных с применением этой же технологии. Важными преимуществами, что обусловили их широкое распространение, являются:

  1. Компактность.
  2. Дешевизна.
  3. Механическая прочность.
  4. Большой объем.
  5. Скорость работы.
  6. Низкое энергопотребление.

Благодаря этому всему флеш-память можно найти во многих цифровых портативных устройствах, а также в ряде носителей информации. Увы, есть и недостатки, такие как ограниченный срок технической эксплуатации носителя и чувствительность к электростатическим разрядам. А вот какая емкость у флеш-памяти? Вряд ли сможете угадать, но попробуйте. Максимальная емкость флеш-памяти может достигать огромных размеров: так, несмотря на малые размеры, носители данных на 128 Гб в свободной продаже сейчас мало кого смогут удивить. Недалеко уже тот момент, когда 1 Тб слабо будет интересовать.

История создания

Предшественниками считают постоянные запоминающие устройства, которые стирались с помощью ультрафиолета и электричества. Они тоже имели транзисторные матрицы, у которых был плавающий затвор. Только вот в них инженерия электронов осуществлялась путём создания значительной напряженности электрического поля тонкого диэлектрика. Но при этом резко увеличивалась площадь разводки представленных в матрице компонентов, когда необходимо было создать поле обратной напряженности.

Трудно было инженерам решить проблему с плотностью составляющих цепей стирания. В 1984 году она была успешно решена, а благодаря схожести процессов с фотовспышкой новая технология получила название «флеш» (по-английски — «вспышка»).

Принцип действия

Он базируется на регистрации и изменении электрического заряда, который есть в изолированной области полупроводниковой структуры. Эти процессы протекают между истоком большого потенциала и затвором для получения напряжения электрического поля в размещенном здесь тонком диэлектрике, чтобы этого оказалось достаточно для возникновения туннельного эффекта между карманом и каналом транзистора. Чтобы усилить его, используют небольшое ускорение электронов, и тогда возникает инжекция горячих носителей. Чтение информации возложено на полевой транзистор. Карман для него выполняет функцию затвора. Его потенциал меняет пороговые характеристики транзистора, которые и регистрируются цепями чтения. Конструкция имеет элементы, с помощью которых возможно осуществление работы с большим массивом подобных ячеек. Благодаря малому размеру всех деталей емкость флеш-памяти и выходит внушительной.

NOR- и NAND-приборы

Их различают методом, который положен в основу соединения ячеек в один массив, а также алгоритмов чтения и записи. Конструкция NOR базируется на классической двумерной матрице проводников, где на пересечении столбцов и строк имеется по одной ячейке. Во время действия проводник строк подключен к стоку транзистора, а ко второму затвору присоединяются столбцы. Исток подключен к подложке, которая является общей для всех. Эта конструкция позволяет легко считывать состояние конкретных транзисторов, подавая положительное питание на одну строку и один столбец.

Для представления, что такое NAND, вообразите трёхмерный массив. В его основе – всё та же матрица. Но уже не один транзистор расположен в каждом пересечении, а устанавливается уже целый столбец, который состоит из последовательно включенных ячеек. Такая конструкция имеет много затворных цепей всего в одном пересечении. При этом значительно можно увеличить (и этим пользуются) плотность компонентов. Минусом является то, что значительно усложняется алгоритм записи, доступа и чтения ячейки. Для NOR преимуществом является скорость работы, а недостатком – максимальная информационная емкость флеш-памяти. Для NAND размер — плюс, а минус – быстродействие.

SLC- и MLC-приборы

Существуют устройства, которые могут хранить один или несколько бит информации. В первом типе может быть только два уровня заряда плавающего затвора. Такие ячейки называют однобитовыми. В других их больше. Часто многобитовые ячейки ещё называют многоуровневыми. Они, как ни странно, отличаются дешевизной и объемом (в позитивном смысле), хотя и медленнее отвечают, а также переносят меньшее количество перезаписей.

Аудиопамять

По мере развития MLC возникла идея записать аналоговый сигнал в ячейку. Применение получившийся результат получил в микросхемах, которые занимаются воспроизведением относительно небольших звуковых фрагментов в дешевых изделиях (игрушках, к примеру, звуковых открытках и подобных вещах).

Технологические ограничения

Процессы записи и чтения отличаются по энергопотреблению. Так, для первого приходится формировать высокое напряжение. В то же время при чтении затраты на энергию довольно малые.

Ресурс записи

При изменении заряда копятся необратимые изменения в структуре. Поэтому возможность количества записей для ячейки ограничена. В зависимости от памяти и технологического процесса работы устройства могут пережить сотни тысяч циклов (хотя есть отдельные представители, которые и до 1000 не дотягивают).

В многобитовых устройствах гарантированный ресурс работы довольно низок по сравнению с другим типом организации. Но почему происходит сама деградация прибора? Дело в том, что нельзя индивидуально контролировать заряд, который имеет плавающий затвор в каждой ячейке. Ведь запись и стирание делаются для множества одновременно. Контроль качества проводится по средней величине или по референсной ячейке. Со временем происходит рассогласование, и заряд может выходить за грани допустимого, после чего информация становится нечитаемой. Далее ситуация только усугубляется.

Ещё одной причиной является взаимная диффузия проводящих и изолирующих областей в полупроводниковой структуре. При этом периодически возникают электрические пробои, что ведёт к размыванию границ, и флеш-карта памяти выходит из строя.

Срок хранения данных

Поскольку изоляция в кармане неидеальная, то постепенно происходит рассеивание заряда. Обычно срок, который может храниться информация, – около 10-20 лет. Специфические внешние условия катастрофически сказываются на периоде хранения. Так, повышенная температура, гамма-радиация или частицы высоких энергий смогут быстро уничтожить все данные. Сейчас самые передовые образцы, которые могут похвастаться тем, что у них значительная информационная емкость флеш-памяти, имеют слабые места. У них ниже срок хранения, чем у уже давно разработанных и откорректированных устройств, что не раз дорабатывались.

Заключение

Несмотря на проблемы, указанные в конце статьи, технология флеш-памяти является очень эффективной, благодаря чему она получила широкое распространение. А её преимущества с лихвой покрывают недостатки. Поэтому информационная емкость флеш-памяти стала очень полезной и популярной в бытовой технике.

Флеш-память — Национальная библиотека им. Н. Э. Баумана

Материал из Национальной библиотеки им. Н. Э. Баумана
Последнее изменение этой страницы: 18:11, 9 ноября 2017.

Флеш-память (англ. flash memory) — разновидность полупроводниковой технологии электрически перепрограммируемой памяти EEPROM. Это же слово используется в электронной схемотехнике для обозначения технологически законченных решений постоянных запоминающих устройств в виде микросхем на базе этой полупроводниковой технологии. В быту это словосочетание закрепилось за широким классом твердотельных устройств хранения информации.

Благодаря компактности, дешевизне, механической прочности, большому объёму, скорости работы и низкому энергопотреблению, флеш-память широко используется в цифровых портативных устройствах и носителях информации. Серьёзным недостатком данной технологии является ограниченный срок эксплуатации носителей, а также чувствительность к электростатическому разряду[Источник 1].

История

Флеш-память была открыта Фудзи Масуока (Fujio Masuoka), когда он работал в Toshiba в 1984 году. Имя «флеш» было придумано также в Toshiba коллегой Фудзи, Шойи Ариизуми (Shoji Ariizumi), потому что процесс стирания содержимого памяти ему напомнил фотовспышку (англ. flash). Масуока представил свою разработку на IEEE 1984 International Electron Devices Meeting (IEDM), проходившей в Сан-Франциско, Калифорния. Intel увидела большой потенциал в изобретении и в 1988 году выпустила первый коммерческий флеш-чип NOR типа.

Характеристики

Скорость некоторых устройств с флеш-памятью может доходить до 100 Мб/с. В основном флеш-карты имеют большой разброс скоростей и обычно маркируются в скоростях стандартного CD-привода (150 Кб/с). Так указанная скорость в 100x означает 100 × 150 Кб/с = 15 000 Кб/с= 14.65 Мб/с.

В основном объём чипа флеш-памяти измеряется от килобайт до нескольких гигабайт.

В 2005 году Toshiba и SanDisk представили NAND чипы объёмом 1 Гб, выполненных по технологии многоуровневых ячеек, где один транзистор может хранить несколько бит, используя разный уровень электрического заряда на плавающем затворе.

Компания Samsung в сентябре 2006 года представила 8 Гб чип, выполненный по 40-нм технологическому процессу. В конце 2007 года Samsung сообщила о создании первого в мире MLC (multi-level cell) чипа флеш-памяти типа NAND, выполненного по 30-нм технологическому процессу. Ёмкость чипа также составляет 8 Гб. Ожидается, что в массовое производство чипы памяти поступят в 2009 году.

Для увеличения объёма в устройствах часто применяется массив из нескольких чипов. В основном на середину 2007 года USB устройства и карты памяти имеют объём от 512 Мб до 15 Гб. Самый большой объём USB устройств составляет 128 Гб.

В основном объём чипа флеш-памяти измеряется от килобайт до нескольких гигабайт.

В 2005 году Toshiba и SanDisk представили NAND чипы объёмом 1 Гб, выполненных по технологии многоуровневых ячеек, где один транзистор может хранить несколько бит, используя разный уровень электрического заряда на плавающем затворе.

Компания Samsung в сентябре 2006 года представила 8 Гб чип, выполненный по 40-нм технологическому процессу. В конце 2007 года Samsung сообщила о создании первого в мире MLC (multi-level cell) чипа флеш-памяти типа NAND, выполненного по 30-нм технологическому процессу. Ёмкость чипа также составляет 8 Гб. Ожидается, что в массовое производство чипы памяти поступят в 2009 году.

Для увеличения объёма в устройствах часто применяется массив из нескольких чипов. В основном на середину 2007 года USB устройства и карты памяти имеют объём от 512 Мб до 15 Гб. Самый большой объём USB устройств составляет 128 Гб.

NAND тип флеш-памяти был анонсирован Toshiba в 1989 году на International Solid-State Circuits Conference. У него была больше скорость записи и меньше площадь чипа.

Стандартизацией чипов флеш-памяти типа NAND занимается Open NAND Flash Interface Working Group (ONFI). Текущим стандартом считается спецификация ONFI версии 1.0, выпущенная в 28 декабря 2006 года. Группа ONFI поддерживается крупнейшими производителями NAND чипов: Intel, Micron Technology и Sony[Источник 2].

Принцип работы

максимальные возможные объёмы данных для кристаллов, использующих однобитные (SLC) или двухбитные ( MLC)

Элементарной ячейка хранения данных флэш-памяти представляет из себя транзистор с плавающим затвором. Особенность такого транзистора в том, что он умеет удерживать электроны (заряд). Вот на его основе и разработаны основные типы флэш-памяти NAND и NOR. Конкуренции между ними нет, потому что каждый из типов обладает своим преимуществом и недостатком. Кстати, на их основе строят гибридные версии такие как DiNOR и superAND. Во флэш-памяти производители используют два типа ячеек памяти MLC и SLC.[Источник 3].

  • Флэш-память с MLC (Multi-level cell — многоуровневые ячейки памяти)ячейки более емкие и дешевые, но они с большим временем доступа и меньшим количеством циклов записи/стирания (около 10000).
  • Флэш-память, которая содержит в себе SLC (Single-level cell — одноуровневые ячейки памяти) ячейки имеет максимальное количество циклов записи/стирания(100000) и обладают меньшим временем доступа. Изменение заряда (запись/стирание) выполняется приложением между затвором и истоком большого потенциала, чтобы напряженность электрического поля в тонком диэлектрике между каналом транзистора и карманом оказалась достаточна для возникновения туннельного эффекта. Для усиления эффекта тунеллирования электронов в карман при записи применяется небольшое ускорение электронов путем пропускания тока через канал полевого транзистора.

Принцип работы флеш-памяти основан на изменении и регистрации электрического заряда в изолированной области («карман») полупроводниковой структуры. Чтение выполняется полевым транзистором, для которого карман выполняет роль затвора. Потенциал плавающего затвора изменяет пороговые характеристики транзистора, что и регистрируется цепями чтения. Эта конструкция снабжается элементами, которые позволяют ей работать в большом массиве таких же ячеек.

NOR и NAND

Компоновка шести ячеек NOR flash
Структура одного столбца NAND flash с 8 ячейками

Флеш память различается методом соединения ячеек в массив.

Конструкция NOR использует классическую двумерную матрицу проводников, в которой на пересечении строк и столбцов установлено по одной ячейке. При этом проводник строк подключался к стоку транзистора, а столбцов — ко второму затвору. Исток подключался к общей для всех подложке.

Конструкция NAND — трёхмерный массив. В основе та же самая матрица, что и в NOR, но вместо одного транзистора в каждом пересечении устанавливается столбец из последовательно включенных ячеек. В такой конструкции получается много затворных цепей в одном пересечении. Плотность компоновки можно резко увеличить (ведь к одной ячейке в столбце подходит только один проводник затвора), однако алгоритм доступа к ячейкам для чтения и записи заметно усложняется. Также в каждой линии установлено два МОП-транзистора. Управляющий транзистор разрядной линии (англ. bit line select transistor), расположенный между столбцом ячеек и разрядной линией. И управляющий транзистор заземления, расположенный перед землёй (англ. ground select transistor).

Технология NOR позволяет получить быстрый доступ индивидуально к каждой ячейке, однако площадь ячейки велика. Наоборот, NAND имеют малую площадь ячейки, но относительно длительный доступ сразу к большой группе ячеек. Соответственно, различается область применения: NOR используется как непосредственная память программ микропроцессоров и для хранения небольших вспомогательных данных.

Названия NOR и NAND произошли от ассоциации схемы включения ячеек в массив со схемотехникой микросхем КМОП-логики.

NAND чаще всего применяется для USB флеш накопителей, карт памяти, SSD. NOR в свою очередь во встраиваемых системах.

Существовали и другие варианты объединения ячеек в массив, но они не прижились.

NOR

NOR Флеш память

Архитектура NOR получила название благодаря логической операции ИЛИ — НЕ (в переводе с английского NOR). Принцип логической операции NOR заключается в том, что она над несколькими операндами (данные, аргумент операции…) дает единичное значение, когда все операнды равны нулю, и нулевое значение во всех остальных операциях. В нашем случае под операндами подразумевается значение ячеек памяти, а значит в данной архитектуре единичное значение на битовой линии будет наблюдается только в том случае , когда значение всех ячеек, которые подключены к битовой линии, будут равны нулю (все транзисторы закрыты). В этой архитектуре хорошо организован произвольный доступ к памяти, но процесс записи и стирания данных выполняется относительно медленно. В процессе записи и стирания применяется метод инжекции горячих электронов. Ко всему прочему микросхема флеш-памяти с архитектурой NOR и размер ее ячейки получается большим, поэтому эта память плохо масштабируется.Флеш-память с архитектурой NOR как правило используют в устройствах для хранения программного кода. Это могут быть телефоны, КПК, BIOS системных плат…
Применение NOR-флеши, устройства энергонезависимой памяти относительно небольшого объёма, требующие быстрого доступа по случайным адресам и с гарантией отсутствия сбойных элементов:

  • Встраиваемая память программ однокристальных микроконтроллеров. Типовые объёмы — от 1 кбайта до 1 Мбайта.
  • Стандартные микросхемы ПЗУ произвольного доступа для работы вместе с микропроцессором.
  • Специализированные микросхемы начальной загрузки компьютеров (POST и BIOS), процессоров ЦОС и программируемой логики. Типовые объёмы — единицы и десятки мегабайт.
  • Микросхемы хранения среднего размера данных, например, DataFlash. Обычно снабжаются интерфейсом SPI и упаковываются в миниатюрные корпуса. Типовые объёмы — от сотен кбайт до технологического максимума.

Максимальное значение объёмов микросхем NOR — до 256 Мбайт.

NAND

NAND Флеш память

Данный тип памяти был разработан компанией Toshiba. Эти микросхемы благодаря своей архитектуре применяют в маленьких накопителях , которые получили имя NAND (логическая операция И-НЕ). При выполнении операция NAND дает значение нуль только, когда все операнды равны нулю, и единичное значение во всех других случаях. Как было написано ранее, нулевое значение это открытое состояние транзистора. В следствии этого в архитектуре NAND подразумевается, что битовая линия имеет нулевое значение в том случае, когда все подключенные к ней транзисторы открыты, и значение один, когда хотя бы один из транзисторов закрыт. Такую архитектуру можно построить, если подсоединить транзисторы с битовой линией не по одному (так построено в архитектуре NOR) , а последовательными сериями (столбец из последовательно включенных ячеек).

Данная архитектура по сравнению с NOR хорошо масштабируется потому, что разрешает компактно разместить транзисторы на схеме. Кроме этого архитектура NAND производит запись путем туннелирования Фаулера — Нордхейма, а это разрешает реализовать быструю запись нежели в структуре NOR. Чтобы увеличить скорость чтения, в микросхемы NAND встраивают внутренний кэш. Как и кластеры жесткого диска так и ячейки NAND группируются в небольшие блоки. По этой причине при последовательном чтении или записи преимущество в скорости будет у NAND. Но с другой стороны NAND сильно проигрывает в операции с произвольным доступом и не имеет возможности работать на прямую с байтами информации. В ситуации когда нужно изменить всего несколько бит, система вынуждена переписывать весь блок, а это если учитывать ограниченное число циклов записи, ведет к большому износу ячеек памяти.В последнее время ходят слухи о том, что компания Unity Semiconductor разрабатывает флэш-память нового поколения, которая будет построена на технологии CMOx. Предполагается, что новая память придет на смену флеш-памяти типа NAND и преодолеет ее ограничения, которые в памяти NAND обусловлены архитектурой транзисторных структур. К преимуществам CMOx относят более высокую плотность и скорость записи, а также более привлекательную стоимость. В числе областей применения новой памяти значатся SSD и мобильные устройства. Ну, что же правда это или нет покажет время.[Источник 4]

Запись

Для записи заряды должны попасть в плавающий затвор, однако он изолирован слоем оксида. Для перенесения зарядов может использоваться эффект туннелирования. Для разряда необходимо подать большой положительный заряд на управляющий затвор: отрицательный заряд с помощью туннельного эффекта покинет плавающий затвор. И наоборот, для заряда плавающего затвора необходимо подать большой отрицательный заряд.

Также запись может быть реализована с помощью инжекции горячих носителей. При протекании тока между истоком и стоком повышенного напряжения электроны могут преодолевать слой оксида и оставаться в плавающем затворе. При этом необходимо, чтобы на управляющем затворе присутствовал положительный заряд, который создавал бы потенциал для инжекции.

В MLC для записи разных значений используются разные напряжения и время подачи.

Каждая запись наносит небольшой ущерб оксидному слою, поэтому число записей ограничено.

Запись в NOR и NAND компоновке состоит из двух стадий: вначале все транзисторы в линии устанавливаются в 1 (отсутствие заряда), затем нужные ячейки устанавливаются в 0.

На первой стадии очистка ячеек происходит с помощью туннельного эффекта: на все управляющие затворы подаётся сильное напряжение. Для установки конкретной ячейки в 0 используется инжекция горячих носителей. На разрядную линию подаётся большое напряжение. Вторым важным условием этого эффекта является наличие положительных зарядов на управляющем затворе. Положительное напряжение подаётся лишь на некоторые транзисторы, на остальные транзисторы подаётся отрицательное напряжение. Таким образом ноль записывается только в интересующие нас ячейки.

Первая стадия в NAND аналогична NOR. Для установки нуля в ячейку используется туннельный эффект, в отличие от NOR. На интересующие нас управляющие затворы подаётся большое отрицательное напряжение.

Технологическое масштабирование

Из-за своей высокорегулярной структуры и высокого спроса на большие объёмы техпроцесс при изготовлении флеш-памяти NAND уменьшается более быстро, чем для менее регулярной DRAM-памяти и почти нерегулярной логики (ASIC). Высокая конкуренция между несколькими ведущими производителями лишь ускоряет этот процесс. В варианте закона Мура для логических микросхем удвоение количества транзисторов на единицу площади происходит за три года, тогда как NAND-флеш показывала удвоение за два года. В 2012 году 19 нм техпроцесс был освоен совместным предприятием Toshiba и SanDisk. В ноябре 2012 года Samsung также начала производство по техпроцессу 19 нм (активно используя в маркетинговых материалах фразу «10нм-класс», обозначавшую какой-то процесс из диапазона 10—19 нм).

ITRS или компании 2010 2011 2012 2013 2014 2015* 2016*
ITRS Flash Roadmap 2011 32 нм 22 нм 20 нм 18 нм 16 нм
ITRS Flash Roadmap 2013 17 нм 15 нм 14 нм
Samsung 35-32 нм 27 нм 21 нм (MLC, TLC) 19 nm 19-16 нм
V-NAND (24L)
12 нм
V-NAND (32L)
12 нм
Micron, Intel 34-25 нм 25 нм 20 нм (MLC + HKMG) 20 нм (TLC) 16 нм 12 нм
3D-NAND
3D-NAND Gen2
Toshiba, Sandisk 43-32 нм 24 нм 19 нм (MLC, TLC) A-19 нм 15 нм 3D NAND BiCS 3D NAND BiCS
SK Hynix 46-35 нм 26 нм 20 нм (MLC) 20 нм 16 нм 3D V1 12 нм

Уменьшение техпроцесса позволяло быстро наращивать объёмы чипов памяти NAND-флеш. В 2000 году флеш-память по технологии 180 нм имела объём данных в 512 Мбит на кристалл, в 2005 — 2 Гбит при 90 нм. Затем произошёл переход на MLC, и в 2008 чипы имели объём 8 Гбит (65 нм). На 2010 год около 35 %—25 % чипов имели размер 16 Гбит, 55 % — 32 Гбит. В 2012—2014 годах в новых продуктах широко использовались кристаллы объёмом 64 Гбит, и начиналось внедрение 128 Гбит модулей (10 % на начало 2014 года), изготовленных по техпроцессам 24—19 нм.

По мере уменьшения техпроцесса и его приближению к физическим пределам текущих технологий изготовления, в частности, фотолитографии, дальнейшее увеличение плотности данных может быть обеспечено переходом на большее количество бит в ячейке (например, переход с 2-битной MLC на 3-битную TLC), заменой FG-технологии ячеек на CTF технологию или переходом на трёхмерную компоновку ячеек на пластине (3D NAND, V-NAND; однако при этом увеличивается шаг техпроцесса). Например, приблизительно в 2011—2012 годах всеми производителями были внедрены воздушные промежутки между управляющими линиями, позволившие продолжить масштабирование далее 24—26 нм, а Samsung с 2013—2014 года начала массовый выпуск 24- и 32-слойной 3D NAND на базе CTF технологии, в том числе, в варианте с 3-х битными (TLC) ячейками. Проявляющееся с уменьшением техпроцесса уменьшение износостойкости (ресурса стираний), а также увеличение темпа битовых ошибок потребовало применение более сложных механизмов коррекции ошибок и снижения гарантированных объёмов записи и гарантийных сроков. Однако, несмотря на принимаемые меры, вероятно, что возможности дальнейшего масштабирования NAND-памяти будут экономически не оправданы или физически невозможны. Исследуется множество возможных замен технологии флеш-памяти, в частности, FeRAM, MRAM, PMC, PCM, ReRAM и т. п.

3D NAND

Схемотехника NAND оказалась удобна для построения вертикальной компоновки блока ячеек на кристалле. На кристалл послойно напыляют проводящие и изолирующие слои, которые образуют проводники затворов и сами затворы. Затем в этих слоях формируют множество отверстий на всю глубину слоев. На стенки отверстий наносят структуру полевых транзисторов — изоляторы и плавающие затворы. Таким образом формируют столбец кольцеобразных полевых транзисторов с плавающими затворами.

Такая вертикальная структура оказалась очень удачна и обеспечила качественный рывок плотности флеш-памяти. Некоторые компании продвигают технологию под своими торговыми марками, например V-NAND, BiCS. На 2016 год количество слоев топовых изделий достигло 64-х.[Источник 5].

Срок хранения данных

Изоляция кармана неидеальна, заряд постепенно изменяется. Срок хранения заряда, заявляемый большинством производителей для бытовых изделий, не превышает 10—20 лет, хотя гарантия на носители даётся не более чем на 5 лет. При этом память MLC имеет меньшие сроки, чем SLC.

Специфические внешние условия, например, повышенные температуры или радиационное облучение (гамма-радиация и частицы высоких энергий), могут катастрофически сократить срок хранения данных.

У современных микросхем NAND при чтении возможно повреждение данных на соседних страницах в пределах блока. Осуществление большого числа (сотни тысяч и более) операций чтения без перезаписи может ускорить возникновение ошибки.

По данным Dell, длительность хранения данных на SSD, отключенных от питания, сильно зависит от количества прошедших циклов перезаписи (P/E) и от типа флеш-памяти и в худших случаях может составлять 3—6 месяцев.

Иерархическая структура

Стирание, запись и чтение флеш-памяти всегда происходит относительно крупными блоками разного размера, при этом размер блока стирания всегда больше, чем блок записи, а размер блока записи не меньше, чем размер блока чтения. Собственно это — характерный отличительный признак флеш-памяти по отношению к классической памяти EEPROM.

Как следствие — все микросхемы флеш-памяти имеют ярко выраженную иерархическую структуру. Память разбивается на блоки, блоки состоят из секторов, секторы из страниц. В зависимости от назначения конкретной микросхемы глубина иерархии и размер элементов может меняться.

Например, NAND-микросхема может иметь размер стираемого блока в сотни кбайт, размер страницы записи и чтения — 4 кбайт. Для NOR-микросхем размер стираемого блока варьируется от единиц до сотен кбайт, размер сектора записи — до сотен байт, страницы чтения — единицы—десятки байт.

Источники

Флэш-память: технология хранилища информационных данных

Главная страница » Флэш-память: технология хранилища информационных данных

Флэш-память (также известная как флэш-хранилище данных) — тип энергонезависимой памяти, поддерживающей функции очистки данных единицами, составляющими блоки. Такой блок, сохранённый на микросхеме флэш-памяти, удаляется до того момента, когда данные записываются (программируются) на микросхему. Каким образом технология хранилища помогает сохранять данные на протяжении длительного периода времени, независимо от включения/выключения флэш-устройства? Рассмотрим концепцию подробно с целью лучшего понимания функциональности.

СОДЕРЖИМОЕ ПУБЛИКАЦИИ :

Ставший привычным потребительский спрос на Флэш-память

Частое применение флэш-памяти — использование в системах корпоративных серверов, хранилищах и сетевых технологиях, а также в широком спектре потребительских устройств. Давно привычными видятся, к примеру,

  • USB-накопители,
  • мобильные телефоны,
  • цифровые камеры,
  • планшетные компьютеры,
  • карты ПК в ноутбуках,
  • встроенные контроллеры.

Так, твердотельные накопители, выстроенные  на флэш-памяти типичного исполнения NAND, нередко используются для повышения производительности приложений, интенсивно использующих ввод-вывод. В свою очередь флэш-память типичного исполнения NOR традиционно используется для хранения управляющего кода, например, базовой системы ввода/вывода (BIOS) ПК.

Флэш-память активно используется для вычислений посредством оперативной памяти, что позволяет повысить производительность и масштабируемость систем, управляющих и анализирующих большие объёмы информации.

Изобретение технологии флэш-памяти

Впервые нечто подобное удалось изобрести учёному Фуджио Масуоке, который числился одним из ведущих сотрудников японской компании «Toshiba» в период 1980-х годов. Вместе с тем, соавтору изобретения Содзи Ариизуми приписывают появление термина «вспышка».  Содзи Ариизуми разработал процесс стирания данных с полупроводникового чипа, объяснив этот процесс на примере вспышки фотокамеры.

ФЛЭШ-ПАМЯТЬ

Флэш-память: типичное внедрение технологии в состав электроникиУстройство цифрового исполнения, выполненное с применением модулей памяти типа Flash. Типичный пример современного электронного устройства широкого назначения

По сути, флэш-память берёт начало из принципов стираемых программируемых устройств EPROM, а также электрически стираемых модулей EEPROM. Флэш технически рассматривается вариантом EEPROM, но отрасль резервирует термин EEPROM для стираемой памяти на уровне байтов и применяет термин флэш-память к большей стираемой памяти на уровне блоков.

Устройства, использующие флэш-память, стирают данные на уровне блоков и перезаписывают данные на уровне байтов – «NOR Flash», или на уровне многобайтовых страниц – «NAND Flash». Флэш-память широко используется для хранения и передачи данных:

Как работает флеш-память?

Архитектура флэш-памяти содержит массив, укомплектованный большим количеством флэш-ячеек. Базовая ячейка флэш-памяти имеет накопительный транзистор с двумя затворами:

  1. Управляющий.
  2. Плавающий.

Последний в списке затвор, изолированный от остальной части транзистора тонким диэлектрическим материалом (оксидным слоем), хранит электрический заряд и контролирует поток электрического тока.

Электроны наполняют или освобождают зону плавающего затвора, что приводит к изменению порога напряжения накопительного транзистора. Изменением напряжения определяется статус программирования ячейки (ноль или единица).

Процесс туннелирования Фаулера-Нордхайма

Процесс, именуемый туннелированием Фаулера-Нордхайма, освобождает от электронов зону плавающего затвора. Добавление и удержание электронов в зоне плавающего затвора осуществляется процессом туннелирования Фаулера-Нордхайма, либо явлением, именуемым канальная инжекция горячих электронов.

РЫБИЙ ГЛАЗ

Архитектура флэш-памяти на примере отдельной ячейкиРабочая архитектура ячейки с плавающим затвором: 1 – управляющий затвор; 2 – плавающий затвор; 3 – канал; 4 – подзатворная оксидная плёнка; 5 – надканальная оксидная плёнка; 6 – исток; 7 – сток; 8 – подложка (основание)

Туннелированием Фаулера-Нордхайма данные стираются через сильный отрицательный заряд, присутствующий на управляющем элементе. Это заставляет электроны транспортироваться через канал, где существует сильный положительный заряд.

Обратное явление происходит при использовании туннелирования Фаулера-Нордхайма для захвата электронов в зоне плавающего затвора. Электронам удаётся прорываться через тонкий оксидный слой к плавающему затвору в присутствии сильного электрического поля. Способствует этому сильный отрицательный заряд истока и стока транзистора, а также сильный положительный заряд управляющего затвора.

Канал инжекции «горячих» электронов (инжекция «горячих» носителей) позволяет электронам прорваться через оксид затвора и менять пороговое напряжение плавающего затвора. Этот прорыв происходит, когда электроны получают достаточное количество энергии по причине высокого тока канала и заряда управляющего затвора.

Электроны перетекают в зону плавающего затвора независимо от того, получает ли устройство, содержащее элемент флэш-памяти, питание в результате электрической изоляции, создаваемой оксидным слоем. Эта характеристика позволяет флэш-памяти обеспечивать постоянное хранение информации.

СМАРТ ГЛАЗ

Флэш-память и организация процесса туннелированияПроцесс туннелирования Фаулера-Нордхайма: 1 – строго негативный (отрицательный) потенциал; 2 – строго позитивный (положительный) потенциал; 3 – переход электронов через туннельный оксидный слой; 4 – строго негативный (отрицательный) потенциал

Ячейки EPROM и EEPROM работают аналогично флэш-памяти в плане записи (программирования) данными, но отличаются от флэш-памяти тем, как стираются записанные данные. EPROM стирается посредством ультрафиолетового излучения. ЭСППЗУ стирает данные в электронном виде на уровне байтов, тогда как флэш-память стирает электростатические данные на уровне блоков.

Флэш-память типа NOR и NAND

Существует два типа флэш-памяти:

  1. Типичное исполнение NOR.
  2. Типичное исполнение NAND.

Оба типа — NOR и NAND, отличаются архитектурой и конструктивными характеристиками. Тип исполнения NOR Flash не использует общие компоненты и поддерживает параллельное подключение отдельных ячеек памяти, обеспечивая произвольный доступ к данным. Ячейка флэш-памяти NAND более компактна, имеет меньше разрядных линий, соединяющих транзисторы с плавающим затвором, что приводит к увеличению плотности сохраняемых данных.

Типовое исполнение NAND лучше всего подходит для последовательного, но не произвольного доступа к данным. Геометрия процесса флэш-памяти NAND разрабатывалась в ответ на достижение планарной шкалой NAND своего практического предела масштабирования. При чтении данных флэш-память типа NOR работает быстрее, но при стирании и записи отмечается существенное замедление по сравнению с типом NAND.

МАКРО ГЛАЗ

Архитектура флэш-памяти и канал "горячих" инъекцийКанал «горячих» электронных инъекций (алгоритм построения): 1 – заряд высокого уровня; 2 – привлечение заряда; 3 – частичное «испарение» электронов и дрейф в зону затвора

Типовое исполнение NOR Flash программирует данные на уровне байтов. Типовое исполнение NAND Flash программирует данные страницами, которые по размеру больше байтов, но меньше блоков. Так, размер страницы обычно составляет 4 килобайта (КБ), тогда как размер блока варьируется от 128 до 256 КБ или мегабайт. Приложениями интенсивной записи вспышка NAND потребляет меньше энергии, чем вспышка NOR.

Флэш-память NOR более дорогая в производстве по сравнению с флэш-памятью NAND. Как правило, эта технология используется в основном на уровне бытовых встраиваемых устройств под загрузку, а также в приложениях только для чтения сохранённого кода. Между тем флэш-память NAND больше подходит для хранения данных на бытовых устройствах, а также на корпоративных серверах и в системах хранения, благодаря:

  • более низкой стоимости за бит сохранения данных,
  • большей плотности записи,
  • более высокой скорости программирования и стирания.

Бытовые современные устройства, например, телефоны с фотокамерой, поддерживают использование как NOR Flash, так и NAND Flash, в дополнение к другим технологиям памяти, чем обеспечивают лучшее выполнение кода и надёжное хранение данных.

Архитектура строения флэш-памяти

Традиционно флэш-память организована на кремниевой подложке (исполнение SSD). По сути, это твердотельные устройства, широко используемые, как в бытовой электронике, так и в корпоративных системах хранения данных. Существует три форм-фактора SSD, которые были определены Инициативой по твердотельному хранилищу:

  • устройства SSD, поддерживающие слоты традиционных электромеханических жёстких дисков (HDD).
  • устройства SSD, имеющие архитектуру, похожую на интегральную микросхему.
  • твердотельные карты на печатной плате под стандартный форм-фактор карты (Peripheral Component Interconnect Express).
  • твердотельные модули, которые помещаются в двойной встроенный модуль памяти (DIMM) или небольшой контурный двойной встроенный модуль памяти с использованием стандартного интерфейса жёсткого диска SATA.

УСТРОЙСТВО SSD

Флэш-память: интерфейс SSD под интерфейс HDDВзаимное соответствие интерфейсов стандартного жёсткого диска HDD и накопителя на основе Flash позволяет решать задачи оперативной перестановки оборудования

Дополнительной подкатегорией является гибридный жесткий диск, который сочетает в себе обычный жесткий диск с флэш-модулем NAND. Гибридный жесткий диск обычно рассматривается как способ преодоления разрыва между вращающимися носителями и флэш-памятью.

Массив All-Flash и гибридная флэш-память

Появление флэш-памяти способствовало появлению массивов, полностью организованных на флэш-памяти. Эти системы содержат исключительно твердотельные накопители.

Массивы All-Flash предлагают преимущества в производительности, обещают снижение эксплуатационных расходов по сравнению с дисковыми массивами хранения. Основное отличие All-Flash заключается в базовой физической архитектуре, используемой для записи данных на запоминающее устройство.

Массивы на основе жестких дисков имеют приводной рычаг, благодаря которому происходит запись данных определенного блока в определённом секторе на диске. Системы флэш-памяти не требуют движущихся частей для записи данных. Записи производятся непосредственно во флэш-память, а пользовательское программное обеспечение обрабатывает данные.

Гибридный флэш-массив объединяет диски и твердотельные накопители. Гибридные массивы используют устройства SSD в качестве кэша для ускорения доступа к часто запрашиваемым горячим данным, которые впоследствии перезаписываются на внутренний диск. Многие предприятия обычно архивируют данные с диска по мере старения накопителя, реплицируя эти данные во внешнюю библиотеку магнитных лент.

Лента Flash plus, также известная как Flape, описывает тип многоуровневого хранилища, в котором первичные данные во флэш-памяти одновременно записываются в линейную ленточную систему.

FLAPE

Организация систем хранилища при помощи массивов "All-Flash"Наглядный пример организации системного хранилища на основе оборудования класса «All-Flash». Низкие эксплуатационные расходы и высокая производительность

Помимо массивов флэш-памяти, возможность вставлять твердотельные накопители в серверы на базе x86 повышает популярность технологии. Эта схема называется флэш-памятью на стороне сервера и позволяет компаниям обходить ограничения поставщика, связанные с приобретением дорогих и интегрированных массивов флэш-памяти.

Недостаток размещения флэш-памяти на сервере заключается в том, что заказчикам необходимо создавать аппаратную систему внутри компании, включая покупку и установку стёка программного обеспечения для управления хранением у стороннего поставщика.

Плюсы и минусы технологии флэш-памяти

Flash является наименее дорогой формой полупроводниковой памяти. В отличие от динамического оперативного запоминающего устройства (DRAM) и статического ОЗУ (SRAM), флэш-память:

  • энергонезависимая,
  • обеспечивает более низкое энергопотребление,
  • допускает очистку большими блоками.

Кроме того, типовое исполнение NOR Flash, к примеру, поддерживает быстрое случайное чтение, в то время как NAND Flash обеспечивает быстрое последовательное чтение и запись.

SSD с чипами флэш-памяти NAND обеспечивает значительно более высокую производительность, чем традиционные магнитные носители — жёсткие диски и магнитная лента. Флэш-накопители также потребляют меньше энергии и выделяют меньше тепла, чем жёсткие диски. Корпоративные системы хранения, оснащённые флэш-накопителями, имеют низкую задержку (измеряется в микросекундах или миллисекундах).

Основными недостатками флэш-памяти являются механизм износа и межклеточные помехи по мере уменьшения размеров матриц. Проявляются дефекты бит, связанные с чрезмерно большим числом циклов программирования / стирания.

В конечном итоге разрушается оксидный слой, улавливающий электроны. Ухудшение структуры способно искажать установленное изготовителем пороговое значение, при котором определяется статус заряда (нуль или единица). Возможны блокирования электронов внутри оксидного изоляционного слоя, что также приводит к ошибкам.

Типовое исполнение флэш-памяти NAND

Производители полупроводниковых флэш-накопителей NAND разработали различные типы памяти, подходящие для широкого спектра случаев использования данных.

Следующая таблица представляет различные типы флэш-памяти NAND:

Типовое исполнение Обозначение Преимущества Недостатки Основное применение
Одноуровневая ячейка (SLC) Сохранение одного бита на ячейку + два уровня заряда. Более высокая производительность, выносливость и надежность, чем у других типов флэш-памяти NAND. Более высокая стоимость, чем у других типов NAND-памяти Корпоративные хранилища данных, критически важные приложения.
Многоуровневая ячейка (MLC) Способность хранить несколько бит на ячейку и несколько уровней заряда. Дешевле, чем SLC, при этом исполнение MLC (eMLC) обеспечивает высокую плотность данных. Пониженная выносливость, чем у SLC, плюс eMLC работает медленнее SLC. Устройства бытового назначения, корпоративные хранилища.
Корпоративные MLC (eMLC) Способность хранить два бита на ячейку и несколько уровней заряда. Дополняются специальными алгоритмами записи. Менее дорогая, чем SLC-flash, обладает лучшей выносливостью, чем MLC-flash Дороже, чем MLC, медленнее, чем SLC. Корпоративные приложения под высокую нагрузку записи.
Трёхуровневая ячейка (TLC) Хранит три бита на ячейку и несколько уровней заряда. Также упоминается как MLC-3, X3 или 3-битный MLC. Более низкая стоимость и более высокая плотность записи, чем у MLC и SLC. Более низкая производительность и выносливость, чем у MLC и SLC. USB-накопители, карты флэш-памяти, смартфоны и клиентские твердотельные накопители, а также твердотельные накопители для центров обработки данных для нагрузок с интенсивным чтением.
Вертикальная (3D NAND) Ячейки памяти расположены одна над другой, в трёх измерениях, по сравнению с традиционной плоской технологией NAND. Более высокая плотность, более высокая производительность записи и более низкая стоимость на бит по сравнению с плоской NAND. Более высокая стоимость изготовления, чем у плоской NAND. Сложность изготовления с использованием производственных плоских процессов NAND. Потенциально более низкий срок хранения данных. Пользовательские и корпоративные хранилища
Четырёхуровневая ячейка (QLC) Использует 64-уровневую архитектуру, которая считается следующей итерацией 3D NAND. Редкость по состоянию на ноябрь 2017 года. Хранит четыре бита данных на ячейку NAND, что потенциально повышает плотность SSD. Больше битов данных на ячейку негативно влияет на степень выносливости. Увеличенные затраты на разработку. Одноразовая запись, с последующим многоразовым чтением (WORM) – как основной пример использования.

 

Типичное исполнение флэш-памяти NOR

Два основных типа флэш-памяти NOR делятся на устройства, имеющие:

  1. Параллельный интерфейс.
  2. Последовательный интерфейс.

Типичное исполнение NOR Flash изначально предлагалось только с параллельным интерфейсом. Архитектура параллельных NOR модулей предлагает высокую производительность, безопасность и дополнительные функции. Основное использование таких устройств отмечается для нужд:

  • промышленности,
  • автомобильной сферы,
  • сетевых и телекоммуникационных систем,
  • различного оборудования.

Ячейки таких NOR Flash соединены параллельно для произвольного доступа. Конфигурация предназначена для случайного чтения, связанного с инструкциями микропроцессора, а также для выполнения кодов, используемых в портативных электронных устройствах, почти исключительно из потребительского разнообразия.

Флэш-память NOR Flash с последовательным интерфейсом имеет меньшее количество выводов и более компактную упаковку, что делает этот вариант менее дорогим, чем параллельный. Варианты использования для последовательной вариации NOR включают:

  • персональные и ультратонкие компьютеры,
  • серверы,
  • жёсткие диски,
  • принтеры,
  • цифровые камеры,
  • модемы и маршрутизаторы.
Будущее коммерческого рынка флэш-памяти

Рынок флэш-памяти продолжает рассматривать прогрессивные изменения форм-фактора и вариантов развёртывания. Поставщики массивов хранения добавляют поддержку интерфейса контроллера энергонезависимой памяти (NVMe). Речь идёт о протоколе, который ускоряет передачу данных между клиентскими системами и флэш-хранилищем. Хост-контроллер NVMe использует быстродействующую шину PCIe.

 

Использование шины PCIe позволяет приложению напрямую обмениваться данными с флэш-хранилищем, уменьшая скачки в сети, которые могут возникнуть с адаптерами и маршрутизаторами главной шины. Интерфейс PCIe обеспечивает появление дисков, основанных на спецификации NVMe, предоставляя альтернативу, которая, по мнению экспертов, может заменить форм-факторы 2,5 и 3,5 дюйма. Твердотельные накопители NVMe подключаются к незанятым слотам сервера на компьютере, что снижает стоимость и сложность транспортировки, связанные с кабельными сетями.


При помощи информации: SearchStorage.Techtarget

Обзор flash-памяти на технологии Intel StrataFlash

Часть 1

Введение

История показала, что цена на память неизменно понижается с увеличением емкости. И это, в свою очередь, ведет к неизменному росту требований к этой памяти. Цена на полупроводниковую память (DRAM, SRAM, ROM, Flash и другие виды) в большой степени определяется количеством кремния, необходимым для запоминания одного бита информации. Как и другие типы полупроводниковой памяти, flash-память, которая позволяет хранить данные даже при отсутствии питания, достигла больших плотностей и довольно низкой цены за счет развития технологии масштабирования, т. е. уменьшения характерного размера транзистора. В этой статье мы рассмотрим технологию, которая позволяет увеличить удельную емкость не только за счет уменьшения размеров, но и за счет возможности хранить на одном транзисторе несколько бит информации. В результате уменьшается цена, так как для хранения большего количества информации требуется та же площадь. Эта технология, названная MLC (Multi-Level-Cell), была представлена фирмой Intel под торговой маркой StrataFlash. Благодаря такой памяти, можно перейти к следующему поколению технологии изготовления, используя оборудование предыдущего. На рисунке 1 показано снижение цены за счет применения MLC.

Как работает обычная Flash память

Для того чтобы понять, как работает Intel StrataFlash, нужно сначала понять, как работает обычная flash-память, изготовленная по технологии ETOX. flash-память относится к классу энергонезависимых типов памяти, хранящих данные даже в отсутствие напряжения питания. Технология ETOX является доминирующей flash-технологией, занимающей около 70% всего рынка энергонезависимой памяти. Данные вводятся во flash-память побитно, побайтно или словами при помощи операции, которая называется программированием. Как только данные были введены, они остаются в памяти независимо от того, подведено питание или нет. Очистка памяти производится при помощи операции стирания. Количество стираемых за один раз данных определяется дизайном каждой конкретной реализации flash и обычно колеблется от 8 Kbit до 1 Mbit.

Элемент, хранящий информацию по технологии ETOX, показан на рисунке 2. Это один транзистор, у которого под затвором помещен еще так называемый плавающий затвор (из электрически изолированного поликремния), позволяющий хранить заряд в виде электронов. Количество заряда определяет работу этого транзистора. И это различие в поведении определяет состояние ячейки: Наличие заряда на транзисторе понимается как логический «0», а его отсутствие — как логическая «1». Использование только одного транзистора для хранения одного бита ведет к уменьшению площади памяти (и значит, к уменьшению цены), по сравнению с типами памяти хранящей на нескольких транзисторах (например SRAM).

Обзор развития технологии

Комбинация энергонезависимости, программируемости при помощи электричества и низкой цены стала на сегодняшний день очень привлекательной для портативных систем, не имеющих доступа к постоянным источникам питания, таким, какими являются батареи. Например, большинство продаваемых сегодня сотовых телефонов снабжены flash-устройствами. Эти устройства хранят программу, которую телефон использует для связи пользователя с сетью. Часто flash-память используют для хранения приходящих SMS-сообщений или в качестве автоответчика, сохраняющего запись голосового сообщения. И теперь при вытаскивании, замене или просто разряде батареи энергонезависимость обеспечит вам сохранение программы связи и всех пришедших сообщений.

Уникальные свойства flash-памяти расширили рынок таких устройств с $50 млн в 1987 году до $2,5 млрд в 1997 году. Устройства на flash-памяти сейчас встраиваются в 90% всех персональных компьютеров, более чем в 90% сотовых телефонов и в 50% всех модемов. Они также находят применение в черных ящиках самолетов, медицинском записывающем оборудовании, цифровых автоответчиках, детских игрушках, принтерах, сетевых роутерах и много где еще. Также flash-память является одной из составляющих в цифровой аудио- и видеотехнике, где она используется в качестве носителя аудио- и видеопотоков.

Расширение рынка flash-памяти происходит из-за непрерывного увеличения емкости носителей и уменьшения цены. Это позволяет внедрять память во все большее и большее количество устройств и таким образом поддерживать этот рынок. На рисунке 3 показано быстрое увеличение размера рынка за счет уменьшения цены на память. С уменьшением цены возникает спрос на flash-память в новых областях, в которых она раньше не использовалась. Некоторые области применения показаны на рисунке.

Обычно, уменьшение цены и увеличение плотности памяти связано с уменьшением размеров транзисторов при переходе от одной технологии производства к другой (это справедливо для любого типа полупроводниковой памяти, в т. ч. и DRAM, и SRAM). При этом на одинаковых по площади кремниевых пластинах может располагаться большее количество ячеек памяти, что влечет уменьшение цены за единицу объема (памяти). За последние 10 лет размер ячейки памяти уменьшился в 18 раз только из-за перехода на новые технологические процессы (рис. 4). Кроме того улучшается и процесс конструирования самой памяти, что вместе с технологическими улучшениями дало 100-кратный прирост плотности за последние 10 лет.

Ячейка flash-памяти состоит только из одного транзистора, где может храниться один бит информации. Для SRAM, к примеру, требуется 6 транзисторов (или 4 транзистора и 2 резистора), для DRAM — один транзистор и одна емкость, для EPROM — два транзистора. Один транзистор считался наименьшей единицей для хранения одного бита данных. В 1992 году группа инженеров компании Intel начала разработки с целью уменьшить удельную площадь кремниевой пластины, требуемой для хранения одного бита данных. Они решили использовать только часть транзистора для хранения бита, т. е. транзистор должен хранить не один, а несколько бит данных. Так появилась новая технология Intel StrataFlash, которая позволила хранить два бита на одном транзисторе — первая технология такого рода. Это и позволяет перейти к следующему поколению технологического процесса.

Новая технология Intel StrataFlash, позволяющая хранить на одном транзисторе 2 бита

Как уже говорилось ранее, flash-память — это транзистор с плавающим затвором, который позволяет хранить электроны. Поведение транзистора зависит от количества электронов. Операция программирования (заряд плавающего затвора) создает поток электронов между истоком и стоком транзистора. Часть этих электронов набирает достаточное количество энергии, чтобы преодолеть барьер Si-SiO2 и оказаться запертой на плавающем затворе. Если заряд плавающего затвора у однобитного транзистора меньше 5000 электронов, то это означает, что ячейка хранит логическую «1», а если заряд больше 30000 электронов, то — «0». Заряд ячейки вызывает изменение порогового напряжения транзистора, и при операции чтения измеряется величина этого порогового напряжения, а по нему определяется количество заряда на плавающем затворе. На рисунке 6 показано распределение пороговых напряжений для массива из полумиллиона ячеек. После выполнения операции стирания или программирования каждой ячейки этого массива было проведено измерение порогового напряжения с результатами, представленными в виде гистограммы на рисунке. Стертые ячейки (логическая «1») имели порог 3,1 В, в то время как запрограммированные (логический «0») имели пороговое напряжение более 5В.

Возможность сохранять заряд на ячейке дает возможность сохранять несколько бит на одной ячейке. Flash-ячейка является аналоговым запоминающим устройством, а не цифровым. Она хранит заряд (квантизованый с точностью до одного электрона), а не биты. Поэтому, используя контролируемый метод программирования, на плавающий затвор можно поместить точное количество заряда. Если получится устанавливать заряд в одно из четырех состояний, то можно запрограммировать два бита данных на одной ячейке. Каждое из четырех состояний соответствует одному из двухбитных наборов. На рисунке 7 показано распределение порогового напряжения для полумиллиона ячеек, способных хранить два бита данных. После стирания или точного программирования одного из трех состояний (трех, потому что одно состояние получается при стирании) были измерены величины пороговых напряжений и результаты помещены в виде гистограммы на рисунок. Заметим, что точное управление зарядом позволило двум средним состояниям сузить разброс напряжений до 0,3 В, что соответствует 3000 электронов.

Большие плотности битов на одну ячейку возможны только при более точном размещении заряда на плавающий затвор. Для трех бит на ячейку потребуется программирование 8-ми различных состояний заряда, для четырех — 16-ти состояний. В общем, количество состояний равно 2 в степени N, где N — требуемое количество бит.

Возможность размещения точного количества заряда, а потом его точного считывания требует новых знаний в области физических основ работы ячейки памяти, а также устройства всего массива памяти в целом.

История развития технологии StrataFlash

Хранение аналоговых данных на плавающем затворе у flash-памяти не является новым изобретением, оно использовалось еще в начале 1971 года для EPROM-устройств, которые применялись для построения нейронных сетей, записи голосовой информации и, позже, для электронных игрушек. Такое применение не требовало безошибочной работы, и поэтому не ставилось никаких жестких требований к точности сохранения каждого бита информации. Нейронные сети по своей природе терпимы к ошибкам, запись голоса и игрушки, способные воспроизводить речь, также не слишком восприимчивы к ошибкам, потому что потеря некоторого небольшого процента данных не сильно искажает аудиоинформацию в целом. В то же время, такого рода память не могла быть использована для передовых технологий в области хранения информации. Поэтому целью программы MLC стало создание ячейки двухбитовой памяти, способной долго и надежно хранить данные в отсутствие питания.

В начале 90-х flash-память рассматривалась как потенциальная замена жестких дисков малых объемов для применения в устройствах, требующих хранения небольшого количества данных и потребляющих мало энергии. Одной из проблем применения flash-памяти была ее высокая, по сравнению с магнитными носителями, цена. К надежности flash-памяти предьявлялись более высокие требования, чем к магнитным носителям, потому что в последних применялся механизм коррекции ошибок, да и скорость вращения диска была не велика для правильного чтения информации. Технология многобитной ячейки представляла собой идеальное решение для замены жесткого диска, причем с меньшей, чем для однобитной flash-памяти, ценой, но требовалось удовлетворить нескольким жестким требованиям, которые касались надежности такой памяти. Такой целью задалась фирма Intel, когда начала разработку программы MLC.

В лаборатории компании велись разработки методов размещения точного заряда и чтения и создавался тестовый 32Mb чип по данной технологии. Все это время решались три основные задачи:

  • Точное размещение заряда: программирование ячейки flash-памяти должно очень хорошо контролироваться (что требует детального изучения физики программирования). Это значит, что во время программирования нужно подводить к ячейке ток на строго определенное время.
  • Точное чтение количества заряда: операция чтения MLC-памяти — это, в основном, аналого-цифровое преобразование заряда, сохраненного в ячейке, в цифровые данные (новое решение для устройств памяти).
  • Надежное хранение заряда: для сохранения заряда на долгое время ставилась цель сделать его утечку меньше одного электрона за день.

Такой тестовый чип был сделан в 1994 году и доказал возможность сохранения нескольких бит информации в одной ячейке памяти.

Главной целью разработчики поставили для себя надежность этой памяти. Различия в состояниях зарядов составляют несколько тысяч электронов, и утечка даже одного электрона в день даст ошибку в бите уже за десять лет хранения. В этой области были проведены исследования, которые показали, что тестовый чип потерял очень малое количество электронов, и что при хранении при нормальной температуре ошибка в бите может возникнуть только приблизительно через 50 лет. Это позволило убрать дополнительные схемы коррекции ошибок для памяти и сэкономить оборудование. Эти данные сильно изменили ход программы в лучшую сторону и, начиная с 1995 года, Intel развернул большой проект по разработке и созданию такой памяти. Кроме того, этот 32Mbit чип показал стабильность и надежность методов, используемых для программирования и чтения данных, при том что регуляторы напряжения, необходимые для чтения, умудрились поместить внутрь чипа, избавившись от внешнего конвертера напряжения. Позже, в связи с ростом спроса на такую память, было решено делать 64Mbit чипы, и в сентябре 1997 года был создан первый такой чип. А в 1999 году был создан чип с напряжением питания 3В. Такое напряжение используется сейчас для большинства видов flash-памяти. Для сравнения обычной flash-памяти и Intel StrataFlash здесь приведена таблица:

  Однобитовая flash-память (Intel) 5В StrataFlash память 3В StrataFlash память
Размер (Mbit) 32 64 128
Размер одного блока (Kb) 64 128 128
Напряжение питания (В) 2.7 — 3.6 4.5 — 5.5 2.7 — 3.6
Время чтения (ns) 120 150 150
Время записи (ms) 11.3 12.6 13.6
Время стирания (s) 0.55 0.7 1.2
Рабочая температура (°C) От -40 до +85 От -20 до +70 От -20 до +70
Количество циклов записи 100000 100000 100000

Как видно из таблицы, скорость чтения одного блока для Strataflash-памяти превосходит скорость чтения для обычной памяти более чем в полтора раза. Это связано с тем, что из одной ячейки памяти читаются сразу два бита, а не один, но и прибавляется некоторое время задержки, связанное с расшифровкой значения битов. Это же относится и к записи, и к стиранию. Остальные параметры достаточно похожи для всех видов памяти.

Примеры применения Strataflash-памяти на сегодняшний день

Сегодня эта память находит применение в различных областях техники, где требуется большая емкость при низкой цене. Одно из применений — это сотовые телефоны, в большинстве которых стоит именно эта память, служащая для хранения программ связи, телефонных номеров и другой запоминаемой информации. Другое применение — это портативные компьютеры, оснащенные операционной системой Windows CE, где Strataflash-память используется для хранения программ и данных вместо винчестеров. В будущем фирма Intel собирается делать память, которая хранила бы 4 бита в одной ячейке. Такая память, по планам, должна появиться уже в 2003 году.

Заключение

Представленная технология позволяет значительно продвинуть производство flash-памяти вследствие своей низкой стоимости. Видно, что она имеет большое будущее, так как позволяет использовать оборудование для изготовления памяти предыдущего поколения. Кроме того, производители обычной памяти начали задумываться над тем, что и для нее можно использовать похожую технологию и хранить на одном конденсаторе несколько бит информации, уменьшая удельную площадь памяти. Таким образом, можно сказать, что появление этой технологии задало новый стандарт всей индустрии памяти.

[ Продолжение следует… ]

Оставьте комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *