Кто изобрел первый автоматический станок: Кто изобрел первый автоматический станок

Содержание

Кто изобрел первый автоматический станок

Введение.

Токарные станки были изобретены и применялись еще в глубокой древности. Они были очень просты по устройству, весьма несовершенны в работе и имели вначале ручной, а впоследствии ножной привод.

Целью моего доклада является изучение истории создания токарного станка.

Для достижения данной цели мне потребовалось решить ряд задач:

· найти информацию о создателе станка;

· изучить историю его создания.

Данная тема является актуальной в связи с тем, что токарный станок стал неотъемлемой частью машиностроения, которое является одной из основных отраслей современного мира.

Глава 1. Создание токарно-винторезного станка

1.1. История и краткое описание токарных станков

История относит изобретение токарного станка к 650 гг. до н. э. Станок представлял собой два установленных центра, между которыми зажималась заготовка из дерева, кости или рога. Раб или подмастерье вращал заготовку (один или несколько оборотов в одну сторону, затем в другую). Мастер держал резец в руках и, прижимая его в нужном месте к заготовке, снимал стружку, придавая заготовке требуемую форму. Позднее для приведения заготовки в движение применяли лук со слабо натянутой (провисающей) тетивой. Тетиву оборачивали вокруг цилиндрической части заготовки так, чтобы она образовала петлю вокруг заготовки. При движении лука то в одну, то в другую сторону, аналогично движению пилы при распиливании бревна, заготовка делала несколько оборотов вокруг своей оси сначала в одну, а затем в другую сторону.

В 14-15 веках были распространены токарные станки с ножным приводом. Ножной привод состоял из очепа – упругой жерди, консольно закрепленной над станком. К концу жерди крепилась бечевка, которая была обернута на один оборот вокруг заготовки и нижним концом крепилась к педали. При нажатии на педаль бечевка натягивалась, заставляя заготовку сделать один – два оборота, а жердь – согнуться. При отпускании педали жердь выпрямлялась, тянула вверх бечевку, и заготовка делала те же обороты в другую сторону.

Примерно к 1430 г. вместо очепа стали применять механизм, включающий педаль, шатун и кривошип, получив, таким образом, привод, аналогичный распространенному в 20 веке ножному приводу швейной машинки. С этого времени заготовка на токарном станке получила вместо колебательного движения вращение в одну сторону в течение всего процесса точения.

В 1500 г. токарный станок уже имел стальные центры и люнет, который мог быть укреплен в любом месте между центрами.

На таких станках обрабатывали довольно сложные детали, представляющие собой тела вращения, – вплоть до шара. Но привод существовавших тогда станков был слишком маломощным для обработки металла, а усилия руки, держащей резец, недостаточными, чтобы снимать большую стружку с заготовки.

В результате обработка металла оказывалась малоэффективной. Необходимо было заменить руку рабочего специальным механизмом, а мускульную силу, приводящую станок в движение, более мощным двигателем.

Появление водяного колеса привело к повышению производительности труда, оказав при этом мощное революционизирующее действие на развитие техники. А с середины 14 в. водяные приводы стали распространяться в металлообработке.

В середине 16 века Жак Бессон изобрел токарный станок для нарезки цилиндрических и конических винтов.

В 17 в. появились токарные станки, в которых обрабатываемое изделие приводилось в движение уже не мускульной силой токаря, а с помощью водяного колеса, но резец, как и раньше, держал в руке токарь. В начале 18 в. токарные станки все чаще использовали для резания металлов, а не дерева, и поэтому проблема жесткого крепления резца и перемещения его вдоль обрабатываемой поверхности стола весьма актуальной. И вот впервые проблема самоходного суппорта была успешно решена в копировальном станке А.К.Нартова в 1712 г. Он изобретает оригинальный токарно-копировальный и винторезный станок с механизированным суппортом и набором сменных зубчатых колес.

Глава 2. Создание токарно-винторезного станка с механизированным суппортом

Кто создал токарно-винторезный станок?

Генри Модсли-английский механик и промышленник, создал токарно-винторезный станок с механизированным суппортом (1797), механизировал производство винтов, гаек и др. Ранние годы провел в Вулвиче под Лондоном. В 12 лет стал работать набивальщиком патронов в Вулвичском арсенале, а в 18 лет он лучший кузнец арсенала и слесарь-механик, в мастерской Дж. Брама – лучшей мастерской Лондона. Позже открыл собственную мастерскую, потом завод в Ламбете. Создал «Лабораторию Модсли». Дизайнер. Машиностроитель. Создал механизированный суппорт токарного станка, собственной конструкции. Придумал оригинальный набор сменных зубчатых колес. Изобрел поперечно-строгальный станок с кривошипно-шатунным механизмом. Создал или усовершенствовал большое количество различных металлорежущих станков. Строил для России паровые корабельный машины. С начала XIX века начался постепенный переворот в машиностроении. На место старому токарному станку один за другим приходят новые высокоточные автоматические станки, оснащенные суппортами. Начало этой революции положил токарный винторезный станок английского механика Генри Модсли, позволявший автоматически вытачивать винты и болты с любой нарезкой.

Предыстория появления первых станков начинается с древнейших исторических периодов, когда наши предки, обладавшие примитивными орудиями-инструментами (главным образом из камня), просверливали отверстия, например, для насаживания молота или топора на палку. И уже тогда возникло устройство, которое сооружалось примерно следующим незамысловатым образом. Из прочного дерева вырезался стержень, один конец которого заострялся. Этим заостренным концом стержень упирался в углубление в камне, наполненное мелкозернистым песком. Вокруг стержня спирально закручивалась тетива лука. При приведении лука в движение стержень начинал вращаться (как сверло), что обеспечивало шлифование углубления с помощью песка. В результате в камне просверливалось отверстие.

В древние века в Греции и Риме также существовали приспособления для обработки керамики и дерева. По утверждению историка Плиния, некий Феодор, житель острова Самоса (в Эгейском море), за 400 лет до нашей эры с успехом применял устройство, на котором обтачивались механически вращавшиеся (от ножного привода) изделия из металла. Сохранились до нашего времени свидетельствующие об этом древние украшения.

Трудно судить, в какой мере Плиний правдиво описал достижения Феодора, отнеся на его счет изобретение механического приспособления для вращения укрепленной между двумя бабками металлической детали, подвергаемой точению. Однако и другие исторические памятники подтверждают факт применения таких устройств в древнем мире. Наиболее древними и наиболее распространенными являлись устройства и станки для токарной обработки и процессов сверления. Все остальные группы и виды станков являлись как бы производными от этих двух основных видов орудий обработки.

Так, еще в древнем Египте применялся токарный «станок» с лучковым ручным приводом. На этом устройстве обтачивались каменные и деревянные изделия. В этом далеком прообразе современных станков уже фигурировали в зародыше такие основные конструктивные элементы станка, как станина, бабки, подставки для резцов и др. В работе «станка» активное участие принимали обе руки рабочего. Возвратное вращение изделия, подача резца требовали приложения больших физических усилий человека. Эти «станки» с небольшими модификациями в течение многих веков применялись в разных странах мира.

В дальнейшем устройство для точения претерпело ряд конструктивных изменений. Оно приводилось в движение уже ногой человека и привязывалось бичевой к двум соседним деревьям. Обрабатываемое изделие крепилось между двумя, привязанными к стволам деревьев, отточенными колами.

Вращение изделия осуществлялось веревкой, верхний конец которой был привязан к пружинящей ветке дерева, посередине веревка обвивала изделие, а нижний конец веревки заканчивался петлей. Человек вставлял ногу в петлю, и, нажимая и отпуская веревку, приводил изделие во вращательное движение. Это токарное устройство применялось очень долго в самых разнообразных модификациях.

В начале XV века основание токарного станка представляло собой деревянную скамейку. На скамейке-станине находилось две бабки, соединенные бруском, служившим опорой для резца. Это избавляло токаря от необходимости держать резец на весу. Детали станка изготовлялись из дерева. Над станком свешивалась укрепленная на столбе гибкая жердь. К концу жерди прикреплялась веревка. Веревка обвивалась вокруг вала, спускалась вниз и привязывалась к деревянной педали. Нажимая на педаль, токарь приводил во вращение деталь. Когда токарь отпускал педаль, гибкая жердь тянула веревку назад. При этом заготовка вращалась в обратную сторону, так что токарю приходилось, как и в лучковых станках, попеременно то прижимать, то отодвигать резец.

До нашего времени сохранился токарный станок XVI века императора Максимилиана I. Станок в основном был изготовлен также из дерева, но центры для установки изделия у него были металлические. Этот станок (изготовленный в 1518 г.) уже имел люнет с рамкой для направления изделия. Подвижная рамка регулировалась винтом. Люнет станка был изготовлен из бронзы. Ножной веревочный привод с пружинящей жердью ничем не отличался от описанного выше.

В сохранившихся записях Леонардо да Винчи имеется ряд чертежей токарных станков, хотя все эти станки построены не были.

В 70-х годах XVI века французским королем Карлом IV была выдана мастеру Жаку Бессону привилегия на токарный станок для нарезания резьбы. В этом станке имелись три бабки. Две малые бабки давали направление коробке с ходовым винтом. Сама коробка, проходя через третью (левую на рисунке) бабку, держала вертикальную стойку с резцом. Изделие устанавливалось между левой стойкой станка и большой бабкой. Средняя бабка являлась гайкой ходового винта. На рисунке видна подвеска вертикального стержня с резцом на продольной бабке, подвешенной через две системы блоков на грузах. На холостом ходу нижняя бабка опускалась и резец отходил от изделия. При одновременном вращении рабочими ветвями веревок ходового винта и изделия резец нарезал резьбу на последнем. По мере нарезания резьбы ставились резцы с постепенно увеличивающимися коленами.

Результат работы на таких станках всецело зависел от умения и глазомера токаря.

В начале XVII века начинают применяться станки с непрерывным канатным ручным приводом от маховика, расположенного за станком. На следующем рисунке показан токарный станок, описанный в книге Соломона де Ко, изданной во Франции в 1615 г. На этом станке обрабатывались торцы изделия, причем опора каретки прижималась к копиру грузами.

На следующем рисунке изображен другой станок, также относящийся к XVII веку. Этот станок, описанный в книге Шерюбена (издана во Франции в 1671 г.), имел ряд конструктивных улучшений. Привод у станка был ножной, с тетивой, но вращение передавалось уже через коленчатый вал. В этом станке был применен ступенчато-шкивный привод.

СТОЛ ЗАКАЗОВ:

БОНУСЫ:

ДОБАВИТЬ В ЗАКЛАДКИ

Дизайн и поддержка:
Александр Кузнецов

Техническое обеспечение: Михаил Булах

Программирование: Данил Мончукин

Маркетинг: Татьяна Анастасьева

Перевод: Наталья Кузнецова

При использовании материалов сайта обязательна ссылка на http://www.diagram.com.ua

сделано в Украине

История техники, технологии, предметов вокруг нас

Восемнадцатый и девятнадцатый века ознаменовались невиданным прежде техническим подъемом. В продолжение полутораста лет было сделано множество блестящих изобретений, созданы новые виды двигателей, освоены новые средства связи и транспорта, придуманы самые разнообразные станки и машины. В большинстве отраслей производства ручной труд был почти полностью вытеснен машинным. Скорость, качество обработки и производительность труда выросли в несколько десятков раз. В развитых европейских странах появились тысячи крупных промышленных предприятий, сложились новые общественные классы – буржуазия и пролетариат.

Прядильная машина на ручной тяге

Промышленный подъем сопровождался крупнейшими социальными сдвигами. В результате Европа, да и весь мир, к концу XIX века неузнаваемо изменилась; жизнь людей уже совсем не походила на ту, что была в начале XVIII столетия. Быть может, впервые в истории технический переворот так зримо и явственно сказался на всех сторонах человеческой жизни.

Между тем начало этой великой машинной революции связано с созданием прядильного автоматического станка – самой первой машины, получившей широкое распространение в производстве. Можно сказать, что прядильная машина оказалась прообразом всех последующих станков и механизмов, и поэтому изобретение ее по своему значению далеко выходило за узкие рамки текстильного и прядильного дела. В каком-то смысле ее появление символизировало собой рождение современного мира.

Ножная прялка в стиле барокко

Прядение в том виде, в каком оно было описано выше, – с помощью ручного веретена и прялки – существовало на протяжении нескольких тысячелетий и оставалось во все это время достаточно сложным и трудоемким занятием. Рука прядильщицы при совершении однообразных движений по вытягиванию, скручиванию и наматыванию нити быстро уставала, производительность труда была низкой. Поэтому значительный шаг в развитии прядения произошел с изобретением ручной прялки, которая появилась впервые в Древнем Риме.

В этом незамысловатом приспособлении колесо a при своем вращении приводило во вращение при помощи бесконечного шнура колесо меньших размеров d, на ось которого было надето веретено b. Процесс прядения на ручной прялке заключался в следующем: правая рука при помощи ручки приводила во вращение большое колесо a, в то время как левая, вытянув прядь из пучка волокон, направляла нить либо наклонно к веретену (тогда она ссучивалась и закручивалась), либо под прямым углом (тогда она сама собой, будучи готова, наматывалась на веретено).

Ручная прялка

Следующим крупным событием в истории прядения стало появление самопрялки (около 1530 г.), изобретателем которой называют каменотеса Юргенса из Брауншвейга. Его прялка приводилась в движение ногами и освобождала для работы обе руки работницы.

Работа на самопрялке проходила следующим образом. Веретено 1 было соединено наглухо с рогулькой 2 и получало движение от нижнего большого колеса 4. Последнее было соединено с блоком, неподвижно укрепленным на веретене. Катушка 3, на одном конце которой был укреплен блок меньшего диаметра, свободно надевалась на веретено. Оба блока получали движение от одного и того же колеса 4, но веретено и рогулька, соединенные с большим блоком, вращались медленнее, чем катушка, соединенная с меньшим блоком. Вследствие того, что катушка вращалась быстрее, происходило наматывание на нее нити, причем скорость наматывающейся нити была равна разности скоростей веретена и катушки. Прядильщица вытягивала рукой волокна из пряслицы и частично закручивала их пальцами. Нить до вступления в рогульку двигалась по оси веретена. При этом она вращалась, то есть закручивалась, и делала полностью то же число оборотов, что и веретено. Пройдя через рогульку 2, нить меняла направление и шла на катушку уже под прямым углом к оси веретена. Таким образом, по сравнению с обычной прялкой, самопрялка позволяла одновременно вытягивать, скручивать и наматывать нить.

Самопрялка Юргенса, 1530 г.. Общий вид и схема работы ее частей

Самопрялка на три нити Леонардо да Винчи

Из процесса прядения здесь уже были механизированы две операции: скручивание нити и наматывание ее на катушку, но вытяжка волокон из пряслицы и частичное закручивание их происходили вручную. Это сильно замедляло всю работу. Между тем в первой трети XVIII века был создан усовершенствованный ткацкий станок Кея, позволявший заметно повысить скорость тканья. На новом станке проворный ткач был в состоянии выткать столько пряжи, сколько поставляли шесть опытных прядильщиков. В результате возникла диспропорция между прядением и ткачеством. Ткачи стали ощущать нехватку пряжи, так как прядильщицы не успевали приготовлять ее в нужном количестве. Пряжа не только сильно вздорожала, но часто ее вообще нельзя было достать ни за какую цену. А рынки требовали все большего количества тканей.

Несколько поколений механиков тщетно ломали голову над тем, как усовершенствовать прялку. На протяжении XVII и первой половины XVIII веков было сделано несколько попыток снабдить самопрялку двумя веретенами, чтобы повысить ее эффективность. Но работать на такой прялке было слишком тяжело, поэтому идея эта не получила распространения. Было ясно, что прясть сразу на нескольких веретенах можно будет лишь тогда, когда будет механизирована сама операция вытягивания волокон.

Эта сложная задача была отчасти разрешена английским механиком Джоном Уайтом, который придумал в 1735 году специальный вытяжной прибор. По словам Маркса, именно эта часть машины определила начало промышленной революции. Не имея средств, Уайт продал права на свое замечательное изобретение предпринимателю Льюису Паулю, который в 1738 году взял на него патент. В машине Пауля и Уайта человеческие пальцы впервые были заменены парой «вытяжных» валиков, вращающихся с разной скоростью. Один валик имел гладкую поверхность, а другой был шероховатый с рифленой поверхностью или обит паклей. Однако прежде чем поступить на валики машины, волокна хлопка должны были пройти предварительную обработку – их необходимо было уложить параллельно друг другу и вытянуть. (Это называлось «расчесыванием» хлопка, или кардованием.)

Кардный цилиндр Пауля для расчесывания пряжи, 1738 г.

Пауль и Уайт постарались механизировать этот процесс и создали специальную чесальную машину. Принцип ее действия заключался в следующем. Цилиндр, снабженный по всей поверхности крючками, вращался в желобе, который на своей внутренней стороне был снабжен зубьями. Волокна хлопка пропускались между цилиндром и желобом и таким образом расчесывались.

Прядильная машина Пауля

После этого пряжа в виде тонкой ленты подавалась в прядильную машину и здесь сначала вытягивалась в вытяжных валиках, а потом поступала на веретено, вращавшееся быстрее валиков, и закручивалась в нить. Первая такая прялка была построена Паулем в 1741 году. Это была первая в истории прядильная машина.

Усовершенствуя свою машину, Пауль и Уайт стали пропускать пряжу через несколько валиков. Вращаясь с разной скоростью, они вытягивали ее в более тонкую нитку. С последней пары валиков нитка поступала на веретено. В 1742 году Уайт соорудил машину, которая пряла сразу на 50 веретенах и приводилась в движение двумя ослами. Как показали дальнейшие события, придуманные им вытяжные валики оказались чрезвычайно удачным нововведением. Но вообще его машина не получила широкого распространения. Она была слишком дорогим и громоздким устройством для ремесленника-одиночки. Острая нехватка пряжи продолжала ощущаться и в последующие годы. Эта проблема была отчасти решена только после создания прядильной машины Харгривса.

Харгривс был ткач. Пряжу для него изготовляла жена, и того, что она успевала напрясть за день, было для него недостаточно. Поэтому он много думал над тем, каким образом можно было бы ускорить работу прядильщиц. Случай пришел ему на помощь. Однажды дочь Харгривса, Дженни, нечаянно опрокинула прялку, однако колесо ее продолжало вертеться, а веретено продолжало прясть пряжу, хотя находилось в вертикальном, а не горизонтальном положении. Харгривс немедленно использовал это наблюдение и построил в 1764 году машину с восемью вертикальными веретенами и одним колесом. Машину он назвал «Дженни» по имени своей дочери. Она не принесла своему создателю ни денег, ни счастья. Напротив, изобретение Харгривса вызвало бурю негодования у прядильщиков – они предвидели, что машина лишит их работы. Ватага возбужденных людей ворвалась однажды в дом Харгривса и разрушила машину. Сам изобретатель и его жена едва успели избежать расправы. Но это, конечно, не могло остановить распространения машинного прядения – буквально через несколько лет «Дженни» пользовались тысячи мастеров.

Прядильная машина Харгривса «Дженни»

Как и машина Уайта, «Дженни» требовала предварительной подготовки хлопковых волокон. Выделка нити происходила здесь из ленточки расчесанного хлопка. Початки с ровницей были помещены на наклонной раме (наклон служил для облегчения сматывания ровницы). Вместо вытяжных валиков Уайта Харгривс применил особый пресс, состоявший из двух брусков дерева. Нитки ровницы с початков проходили через вытяжной пресс и прикреплялись к веретенам. Веретена, на которые наматывалась готовая нить, находились на неподвижной раме с левой стороны станка. В нижней части каждого веретена имелся блок, вокруг которого шел приводной шнур, переброшенный через барабан. Этот барабан расположен был впереди всех блоков и веретен и приводился в движение от большого колеса, вращаемого рукой. Таким образом, большое колесо приводило во вращение все веретена.

Прядильщик одной рукой двигал каретку вытяжного пресса, а другой вращал колесо, приводившее в движение веретена. Работа машины состояла из следующих процессов: пресс закрывался и отводился назад от веретен – в результате происходило вытягивание нити. Одновременно прядильщик вращал колесо, оно приводило в движение веретена, а они закручивали нить. В конце отхода каретка останавливалась, а веретена продолжали вращаться, производя докрутку. После этого каретка подавалась обратно к веретенам, все нити несколько пригибались особой проволокой для того, чтобы они попали в положение наматывания. Во время обратного хода каретки с открытым прессом нити наматывались на веретена вследствие вращения последних.

Вытяжной пресс Харгривса, по существу, заменил руку рабочего. Вся работа свелась в основном к трем движениям: к вращению приводного колеса, к прямолинейному движению каретки взад и вперед и к нагибанию проволоки. Другими словами, человек играл только роль двигательной силы, и поэтому в дальнейшем стало возможным заменить рабочего другими, более постоянными и мощными источниками энергии. Замечательное значение изобретения Харгривса заключалось в том, что оно сделало возможным обслуживание нескольких веретен одним рабочим. В самой первой его машине было всего восемь веретен. Затем он увеличил их количество до 16. Но еще при жизни Харгривса появились машины «Дженни» с 80 веретенами. Эти машины уже не под силу было приводить в действие рабочему, и их стали соединять с водяным двигателем. Благодаря простоте конструкции и дешевизне, а также возможности использовать ручной привод «Дженни» получила широчайшее распространение. К 90-м годам XVIII века в Англии насчитывалось уже более 20 тысяч самопрялок «Дженни». В большинстве своем они принадлежали ткачам-одиночкам. Самые небольшие из них выполняли работу шести или восьми рабочих. Это была первая в истории машина, получившая массовое распространение.

Машина Харгривса отчасти помогла преодолеть прядильный голод и способствовала мощному подъему производства в Англии, однако это было все-таки не совсем то, что требовалось. Вытяжное приспособление «Дженни» оказалось несовершенным. Из-за недостаточной вытяжки пряжа получалась хоть тонкая, но слабая. Для большей прочности полотна ткачам приходилось добавлять в пряжу льняную нитку.

Более удачная машина была создана вскоре Аркрайтом. Она представляла собой соединение вытяжного механизма Уайта с крутильно-наматывающим аппаратом самопрялки Юргенса. По профессии Аркрайт был цирюльником в городе Болтоне в Англии. Большинство его клиентов были мелкие прядильщики и ткачи. Однажды Аркрайт стал свидетелем разговора ткачей, говоривших о том, что полотно ткется из нитей льна вперемежку с нитями хлопка, так как машина Харгривса не в состоянии поставлять много пряжи и нитки ее не обладают достаточной прочностью. Вскоре после этого Аркрайт раздобыл себе машину «Дженни», изучил ее и пришел к убеждению, что сможет построить другую, которая будет прясть скорее и тоньше. Он взялся за дело, и действительно, ему удалось построить прялку, которая совершенно автоматически исполняла все процессы. Прядильщику приходилось лишь следить за тем, чтобы в машину поступало достаточно материала, и соединять порвавшиеся нити.

Прядильная машина Аркрайта, 1769 г.

Работа на машине Аркрайта происходила следующим образом Приводное колесо приводило во вращение веретена с рогульками. Предварительно приготовленная из хлопка ровница находилась на початках, которые помещались на горизонтальном валу в верхней части станка. Ровничная ленточка хлопковых волокон поступала в находящиеся перед початками вытяжные валики. В каждой паре нижний валик был деревянный, рифленый, а верхний – обтянут кожей. Каждая последующая пара валиков вращалась быстрее, чем предыдущая. Верхние валики прижимались грузами к нижним. Вытянутая нить выходила из последней пары валиков, проходила через крючки рогульки и наматывалась на веретено. Для того чтобы получить отставание сидящих на веретенах катушек от рогулек, катушки несколько задерживались шнуром, проходившем через желобки шкивов в нижней части каждой катушки. В результате получались нити такой крепости, что отныне можно было делать ткани из чистого хлопка, без примеси льна. В описываемой машине был полностью осуществлен принцип непрерывности работы, поэтому ее стали называть ватермашиной.

Аркрайт оказался не только удачливым изобретателем, но и ловким дельцом. В сообществе с двумя коммерсантами он построил свою прядильную фабрику, а в 1771 году открыл вторую фабрику в Кромфорде, где все машины приводились в движение водяным колесом. Вскоре фабрика разрослась до размеров крупного предприятия. В 1779 году на ней было несколько тысяч веретен и работало 300 рабочих. Не останавливаясь на этом, Аркрайт основал еще несколько фабрик в разных концах Англии. В 1782 году на него работало уже 5000 рабочих, а его капитал оценивался в 200 тысяч фунтов стерлингов.

Аркрайт продолжал работать над созданием новых машин, которые позволили бы механизировать весь процесс обработки пряжи. В 1775 году он получил патент сразу на несколько вспомогательных механизмов. Главными из них были: кардная машина, подвижной гребень, ровничная машина и питающий прибор. Кардная машина состояла из трех барабанов и служила для расчесывания хлопка. (Это была усовершенствованная машина Уайта.) Подвижный гребень использовался как дополнение к кардной машине – им снимали прочесанный хлопок с барабанов. Ровничная машина превращала расчесанный хлопок в цилиндрическую ровницу, готовую для переработки на прядильной машине. Питающий прибор представлял собой подвижное полотно, которое доставляло кардной машине хлопок для обработки.

В последующие годы слава Аркрайта была омрачена обвинениями в воровстве чужих изобретений. Целый ряд судебных процессов показал, что все запатентованные им машины не были в действительности изобретены им. Так, оказалось, что прядильную ватермашину изобрел часовщик Джон Кэй, кардную машину – Даниэль Борн, питающий прибор – Джон Лис. В 1785 году все патенты Аркрайта были аннулированы, но к этому времени он уже стал одним из самых богатых английских фабрикантов.

В 1772 г. механик Вуд создает машину, где вытяжной прибор неподвижен, а передвигаются веретена, т. е. происходит процесс, обратный тому, который имеет место в машине Харгривса. Здесь лента, являющаяся предметом труда, занимает пассивное положение, а веретено (рабочий инструмент) в значительной мере активизируется. Вытяжной пресс, оставаясь неподвижным, закрывается и открывается, а веретена не только вращаются, но и перемещаются.

Машина Вуда «Билли» (середина XVIII в.)

Последнюю точку в создании универсальной прядильной машины поставил ткач Самуэль Кромптон, который создал так называемую мюль-машину. В ней были соединены принципы работы «Дженни» и ватермашины Аркрайта.

Мюль-машина Кромптона 1774-1779 гг.: 1 – ведущий шкив; 2, 3 – ведомые шкивы; 4 – каретка; 5 – система капотов и блоков; 6 – барабан; 7 – веретена; 8 – валик; 9 – рычаг; 10 – катушки; 11 – нить

Вместо пресса Харгривса Кромптон применил вытяжные валики. Кроме того, введена была каретка, двигавшаяся взад и вперед. На каретке помещались веретена. Когда каретка с веретенами отходила от валиков, веретена еще сильнее вытягивали и скручивали нитку. Когда каретка приближалась к валикам, нитка закручивалась и наматывалась на веретено. Тогда как ватермашина делала крепкую, но грубую пряжу, а «Дженни» – тонкую, но некрепкую, мюль-машина Кромптона давала крепкую и вместе с тем тонкую пряжу.

Смотрите другие статьи раздела История техники, технологии, предметов вокруг нас.

Читайте и пишите полезные комментарии к этой статье.

Рекомендуем скачать в нашей Бесплатной технической библиотеке:

Первый ткацкий станок кто изобрел. История возникновения ткацкого станка. Появление ткацких станков

История создания ткацкого станка уходит в глубокую древность. Прежде чем научиться ткать, люди научились плести из веток и камыша простые циновки. И лишь освоив технику плетения, они задумались о возможности переплетать нити. Первые ткани из шерсти и льна начали изготавливать в эпоху неолита, более пяти тысяч лет назад до нашей эры. Согласно историческим сведениям в Египте и Месопотамии ткань изготавливалась на простых ткацких рамах. Рама представляла из себя два деревянных шеста, хорошо закрепленных в земле параллельно друг другу. На шестах натягивались нити, с помощью прута ткач приподнимал каждую вторую нить, тут же протягивал уток. Позже, около трех тысяч лет до н. э., у рам появился поперечный брус (навой), с которого свисали нити основы почти до земли. Внизу к ним крепились подвесы, чтобы нити не спутывались.

В 1550 году до нашей эры изобрели вертикальный ткацкий станок. Ткач пропускал уток с привязанной ниткой через основу так, чтобы одна висящая нить была по одну сторону утка, а следующая — по другую. Таким образом, сверху поперечной нити оказывались нечетные нити основы, а снизу — четные или наоборот. Такой способ полностью повторял технику плетения и занимал очень много сил и времени.

Вскоре древние мастера пришли к выводу, что найдя способ одновременного поднятия четных или нечетных рядов основы, можно было бы сразу протянуть уток через всю основу, а не через каждую нить в отдельности. Так был придуман ремез — приспособление для разделения нитей. Это был деревянный стержень, к которому крепились четные или нечетные нижние концы нитей основы. Потянув ремез, мастер отделял четные нити от нечетных и пропускал уток через всю основу. Правда, обратно следовало пройти каждую четную нить в отдельности. Чтобы решить эту проблему, к грузикам на концах нитей привязывали шнурки. Другой конец шнурка прикрепляли к ремезам. К одному ремезу крепили концы четных нитей, ко второму — нечетных. Теперь мастер мог отделять нечетные и четные нити, потянув за один или второй ремез. Теперь он делал лишь одно движение, перебрасывая уток через основу. Благодаря техническому прогрессу в ткацком станке была изобретена ножная педаль, но до XVIII в. мастер по-прежнему проводил уток через основу вручную.

Лишь в 1733 году суконщик из Англии Джон Кей изобрел механический челнок для ткацкого станка, что стало революционным прорывом в истории развития текстильной промышленности. Пропала необходимость перебрасывать челнок вручную, появилась возможность выпускать широкие ткани. Ведь раньше ширина полотна была ограничена длиной руки мастера. В 1785 году Эдмунд Картрайт запатентовал свой механический ткацкий станок, оснащенный ножным приводом. Несовершенство первых механических станков Картрайта до начала XIX века не представляло большой угрозы для ручного ткачества. Однако станок Картрайта стали улучшать и модифицировать и к 30-м годам XIX века число машин на фабриках увеличивалось, а число обслуживающих их работников стремительно уменьшалось.

В 1879 году Вернер фон Сименс создает электрическую ткацкую машину. В 1890 году англичанин Нортроп изобрел автоматический способ зарядки челнока, а в 1896 году его фирма представила первый автоматический станок. Конкурентом этому станку стала ткацкая машина без челнока. Современные ткацкие станки полностью автоматизированы.

mirnovogo.ru

История первых ткацких станков

Около 1550 г. до н.э. в Египте ткачи заметили, что все можно улучшить и сделать процесс прядения проще. Был придуман способ для разделения нитей – ремез. Ремез – это стержень из дерева, с привязанными к нему четными нитями основы, а нечетные нити свободно свисали. Работа тем самым стала быстрее в два раза, но все равно оставалась очень трудоемкой.

Поиск упрощения получения ткани продолжался, и около 1000 г. до н.э. был придуман атоский станок, где ремезы уже отделяли четные и нечетные нити основы. Работа пошла в десятки раз быстрее. На этом этапе это уже было не плетение, а именно ткачество, стало возможным получать самые разные переплетения нитей. Дальше в ткацкий станок вносились все новые изменения, например, движением ремеза управляли педалями, а руки ткача оставались свободными, но принципиальные изменения техники ткачества началась в 18 веке.

В 1580 году Антон Моллер усовершенствовал станок для ткачества- теперь на нем можно было получать несколько кусков материи. В 1678 году французский изобретатель де Женн создал новый станок, но особого распространения он не получил.

И в 1733 году англичанин Джон Кей создал первый механический челнок для ручного станка. Теперь не нужно было вручную перебрасывать челнок, и теперь можно было получать широкие полосы материи, станок уже обслуживался одним человеком.

В 1785 году Эдмунд Картрайт усовершенствовал станок с ножным приводом. В 1791 году станок Картрайта был улучшен Гортоном. Изобретатель ввел устройство для приостановке батана челнока в зеве. В 1796 году Роберт Миллер из Глазко создал приспособление для продвижения материала посредством храпового колеса. До конца 19 века это изобретение оставалось в станке для ткачества. А способ Миллера прокладки челнока работал более 60 лет.

Надо сказать, станок Картрайта вначале весьма несовершенен и не представлял угрозы для ручного ткачества.

В 1803 году Томас Джонсон из Стокпорта создал первую шлихтовальную машину, что полностью освободило мастеров от операции шлихтования на станке. Джон Тодд в это же время ввел в конструкцию станка ремезный ролик, упростивший процесс подъема нитей. И в этом же году Вильям Хоррокс получает патент на механический ткацкий станок. Хоррокс не тронул деревянную станину старого ручного станка.

В 1806 году Петер Марланд ввел замедленное движение батана при прокладке челнока. В 1879 году Вернер фон Сименс разработал электрический ткацкий станок. И только в 1890 году после того Нортроп создал автоматическую зарядку челнока и наступил реальный прорыв в фабричном ткачестве. В 1896 году этот же изобретатель вывел на рынок первый автоматический станок. Затем появился ткацкий станок без челнока, что многократно увеличило производительность труда. Сейчас станки продолжаются совершенствоваться в направлении компьютерных технологий и автоматического управления. Но все самое важное для развития ткачества было сделано гуманитарием и изобретателем Картрайтом.

www.ultratkan.ru

История ткацкого станка — Сельский портал

Ткацкий станок появившийся как метод совершенствования шитья одежды, сильно повлиял на образ жизни и внешность людей. Звериные шкуры, используемые раньше заменили изделиями из льна, шерсти и тканей из хлопка.

Простым изделием для выделки пряжи издревле являлась прялка, состоявшая из веретена, пряслицы и прялки, на ней работали вручную. Во время работы волокно, которое пряли, прикрепляли на стержень развилкой.

Далее человек тянул волокна из пучка материала, присоединял к специальному устройству скручивающему нити, состоявшее из веретена и пряслицы в виде круглого камешка с отверстием по центру, надевающийся на веретено. Веретено с нитью начинали раскручивать и резко отпускали, но вращение продолжалось, медленно вытягивая и скручивая нить.

Пряслица усиливала и продолжала движение вокруг. Нить постепенно удлинялась, достигнув определенной длины, наматывалась на веретено. Пряслица удерживала растущий клубок мешая ему выпасть. После все действия повторялись.

Пряслице — грузик в форме диска диаметром от 2 см

Готовая пряжа служила материалом для изготовления ткани.

Тканые станки сначала были вертикального вида. Это были два разделенных укрепленных внизу прочных стержня. На них поперечно крепили ось из дерева. Она, помещалось на высоте. К ней крепили нити, шедшие друг за другом. Это была так называемая основа. Нити одним концом свисали к низу.

Чтобы они не спутывались их натягивали специальным весом. Весь процесс состоял в чередовании последовательностей перпендикулярных друг к другу нитей. Горизонтальную нить пропускали либо по четным либо по нечетным вертикальным.

Данная методика копировала способ плетения, занимала длительное время.

Для облегчения данного труда придумали устройство, способное одновременно работать в необходимой последовательности с нитями основы — ремиз.

Оно представляло стержень из дерева, к нему крепились нижние концы нитей основы четные либо нечетные. Движением к себе ремиза, ткач в одно мгновение разделял четный ряд нитей от нечетных.

Процесс стал выполняться быстрее, но был весьма трудным. Необходим был способ попеременного отделения четных — нечетных нитей. Но введение второго ремиза, мешало бы первому. В результате были изобретены грузики, а снизу нитей привязывались шнурки.

Другие окончания цеплялись к ремизам. Он перестали мешать работе друг друга. Вытягивая по – очереди ремизы, мастер по-очередно брал необходимые нити, и перебрасывая уток через основу. Работа ускорилась во много раз. Выделка тканей из плетения преобразовалось в процесс под названием ткачество.

Через некоторое время в механизм добавляли прочие новшества.

Ремизы контролировались при помощи ног нажиманием на педали.

Полотна составляло полметра в ширину. Для более широкого материала нужно было сшивать несколько кусков.

История создания механического устройства берет свое начало в Англии.

Джон Кей, специалист по изготовлению сукна, в 1733 году собрал механизм для работы с челноком. Он предназначался для работы на ручном ткацком станке. Это отменило надобность в ручном подбрасывании челнока, сделало возможным ткать широкую материю, и обслуживалась всего одним ткачем, а не двумя как раньше.

Ткацкий станок XIX века

Эдмунд Картрайт в 1785 году пустил в производство механическое устройство для выделки ткани с ножным приводом. В1789 году изобрел гребнечесальную машину для шерсти. В1892-м было придумано устройство для выделки веревок и канатов.

Изобретение Картрайта постепенно улучшали, а добавляя множество технических решений.

Оставалась проблема связанная с трудностью работы с челноком и смены его. Эту задачу решил Нортроп.

В 1890-м он изобрел автоматическую зарядку челнока и ткачество сделало большой шаг вперед.

Позже изобрели автоматику без челнока. Она позволяла одному ткачу работать на более чем одном станке.

Сегодня станки для выделки тканей компьютеризируются приобретая новые автоматические функции.

Принцип, заложенный первым изобретателем в механизм остался неизменным: станок должен переплести две системы нитей, расположенных под прямым углом.

Современный ткацкий станок

Ткачество – увлекательное дело, которое может стать прибыльным. Кроме того – это способ выражения творческих идей. С изделиями подобного рода можно всегда быть современным, следовать моде или копировать стилистику прошлых лет.

Прялка и ткацкий станок (история изобретения)

Ткачество кардинальным образом изменило жизнь и облик человека. Вместо звериных шкур люди облачились в одежду, сшитую из льняных, шерстяных или хлопчатых тканей, которые с тех пор стали нашими неизменными спутниками.

Однако прежде чем наши предки научились ткать, они должны были в совершенстве освоить технику плетения. Только выучившись плести циновки из веток и камыша, люди могли приступить к «переплетению» нитей.

Процесс производства ткани распадается на две основные операции — получение пряжи (прядение) и получение холста (собственно ткачество). Наблюдая за свойствами растений, люди заметили, что многие из них имеют в своем составе упругие и гибкие волокна. К числу таких волокнистых растений, использовавшихся человеком уже в глубокой древности, относятся лен, конопля, крапива, ксанф, хлопчатник и другие. После приручения животных наши предки получили вместе с мясом и молоком большое количество шерсти, также используемой для производства тканей. Перед началом прядения надо было подготовить сырье. Исходным материалом для пряжи служит прядильное волокно.

Не вдаваясь в подробности, отметим, что мастеру надо немало потрудиться, прежде чем шерсть, лен или хлопок превратятся в прядильное волокно. Наиболее это касается льна: процесс извлечения волокон из стебля растений здесь особенно трудоемок; но даже шерсть, которая, по сути, является уже готовым волокном, требует целого ряда предварительных операций по очистке, обезжириванию, просушке и т.п. Но когда прядильное волокно получено, для мастера безразлично, шерсть это, лен или хлопок — процесс прядения и ткачества для всех видов волокон одинаковый.

Древнейшим и простейшим приспособлением для производства пряжи была ручная прялка, состоявшая из веретена, пряслицы и собственно прялки. Перед началом работы прядильное волокно прикрепляли на какой-нибудь воткнутый сук или палку с развилкой (позже этот сучок заменили доской, которая и получила название прялки).

Затем мастер вытягивал из клубка пучок волокон и присоединял к особому приспособлению для скручивания нити. Оно состояло из палочки (веретена) и пряслицы (в качестве которой служил круглый камешек с дырочкой посередине). Пряслица насаживалась на веретено. Веретено вместе с прикрученным к нему началом нити приводили в быстрое вращение и тотчас отпускали. Повиснув в воздухе, оно продолжало вращаться, постепенно вытягивая и скручивая нить.

Пряслица служила для того, чтобы усилить и сохранить вращение, которое иначе прекратилось бы через несколько мгновений. Когда нить становилась достаточно длинной, мастерица наматывала ее на веретено, а пряслица не давала растущему клубку соскользнуть. Затем вся операция повторялась. Несмотря на свою простоту, прялка была удивительным завоеванием человеческого ума.

Три операции — вытягивание, кручение и наматывание нити объединились в единый производственный процесс. Человек получил возможность быстро и легко превращать волокно в нить. Заметим, что в позднейшие времена в этот процесс не было внесено ничего принципиально нового; он только был переложен на машины.

После получения пряжи мастер приступал к тканью. Первые ткацкие станки были вертикальными. Они представляли собой два вилообразно расщепленных вставленных в землю бруска, на вилообразные концы, которых поперечно укладывался деревянный стержень. К этой поперечине, помещавшейся настолько высоко, чтоб можно было стоя доставать до нее, привязывали одну возле другой нити, составлявшие основу. Нижние концы этих нитей свободно свисали почти до земли.

Чтобы они не спутывались, их натягивали подвесами. Начиная работу, ткачиха брала в руку уток с привязанной к нему ниткой (в качестве утка могло служить веретено) и пропускала его сквозь основу таким образом, чтобы одна висящая нить оставалась по одну сторону утка, а другая — по другую. Поперечная нитка, например, могла проходить поверх первой, третьей, пятой и т.д. и под низом второй, четвертой, шестой и т.д. нитей основы, или наоборот.

Такой способ тканья буквально повторял технику плетения и требовал очень много времени для пропускания нити утка то поверх, то под низ соответствующей нити основы. Для каждой из этих нитей необходимо было особое движение. Если в основе было сто нитей, то нужно было сделать сто движений для продевания утка только в одном ряду. Вскоре древние мастера заметили, что технику тканья можно упростить.

Действительно, если бы можно было сразу поднимать все четные или нечетные нити основы, мастер был бы избавлен от необходимости подсовывать уток под каждую нить, а мог сразу протянуть ее через всю основу: сто движений были бы заменены одним! Примитивное устройство для разделения нитей — ремез было придумано уже в древности.

Поначалу ремезом служил простой деревянный стержень, к которому через один крепились нижние концы нитей основы (так, если четные привязывались к ремезу, то нечетные продолжали свободно висеть). Потянув на себя ремез, мастер сразу отделял все четные нити от нечетных и одним броском прокидывал уток через всю основу. Правда, при обратном движении утка вновь приходилось поодиночке проходить все четные нити.

Ткани и ткачество известны человечеству с незапамятных, окутанных древностью, времен. История возникновения ткани – это результат огромного труда человека
над усовершенствованием процесса производства: от ручного плетения до передовых технологий мировой текстильной промышленности. Изобретения древних народов заложили основу ткаческой традиции, которую широко применяют и в наше время.

История возникновения ткани: как все начиналось

В защите своего тела от холода и жары человечество нуждалось еще на заре своего существования. Первыми материалами для примитивной одежды были шкуры животных, побеги и листья растений
, которые древние жители сплетали вручную. Историкам известно, что уже в период VIII-III тысячелетий до нашей эры человечеству были известны практические свойства льна и хлопка.

  • В Древней Греции и Риме
    выращивали , из которого добывали волокна и плели первые грубые полотна.
  • В Древней Индии
    впервые начали производить , которые щедро украшали яркими набивными рисунками.
  • Шелковые ткани являются историческим достоянием Китая
    .
  • А первые шерстяные волокна и, соответственно, ткани из них, возникли во времена Древнего Вавилона
    , в IV тысячелетии до нашей эры.

История ткачества: машина времени

История ткачества берет свое начало в Азии и Древнем Египте, где произошло изобретение ткацкого станка. Этот аппарат представлял собой раму с несколькими рейками, на которых были натянуты нити основы. К ним приплетались вручную нити утка. Принципы работы первого станка
сохранились и в сегодняшней ткацкой промышленности. Однако сама конструкция пережила множество изменений.

Гораздо позже, в XI веке уже нашей эры был изобретен горизонтальный ткацкий станок
, на котором нити основы были натянуты горизонтально. Строение агрегата было более сложным. На большой деревянной раме станка были закреплены основные детали:

  • 3 валика;
  • 2 педали для ног;
  • вертикальные рамки «гребенки» бердо;
  • челнок с нитью.

К механизации станка наши предки приступили в XVI-XVIII столетии, а наибольшим успехом увенчалось изобретение в 1733 году так называемого самолетного станка Дж. Кея.
Через полстолетия британец Э. Картрайт изобрел механический ткацкий станок, в конструкцию которого вносились дальнейшие изменения и усовершенствования. К концу XIX столетия появились механические станки с автоматической заменой челноков.

И уже в XX веке изобрели бесчелночные станки, похожие на наши современные модели.

Виды ткацких станков

Как уже стало понятно из предыдущего раздела, ткацкие станки бывают челночные и бесчелночные
, более современные.

Виды ткацких станков бесчелночного типа распределяются в зависимости от принципа переплетения нити утка.

Если задать вопрос, какая вещь в повседневном быту современного человека имеет первостепенное значение, ответы будут разными. Возможно, назовут мыло, мебель, посуду… И всё-таки без столь полезных без спору вещей, можно как-то обойтись, хотя даже представить это нелегко. А вот если из обихода полностью исчезнет ткань, то мир вокруг нас, согласитесь, изменится неузнаваемо. Ведь именно из ткани шьют одежду, не говоря уж о многих других применениях этого материала.
Так что изобретение пряжи — нитей из шерсти или растительных волокон — и способа изготовления из пряжи ткани — невероятно значимые для человечества достижения. И вовсе не случайно, что едва ли не первыми производственными процессами, которые люди постарались механизировать, были как раз изготовления пряжи и ткани. Более того, технические достижения именно в этой области как бы подстёгивали изобретательскую мысль и в других направлениях. Может быть, не все знают, что промышленная революция XVIII века, которая привела к массовому появлению самых разных машин, началась именно с изобретения достаточно совершенного ткацкого станка.
Впрочем, о том, как человек становился ткачом, лучше, конечно, рассказать по порядку…
Древнейшим образцам ткани, дошедшим до наших дней, насчитывается несколько тысяч лет. Археологи не раз находили в древнеегипетских гробницах тонкие полотна изо льна, а также более плотный материал, расписанный цветными рисунками. Благодаря тому, что в Египте сухой климат и нет резких температурных перепадов, древняя ткань неплохо сохранилась.
По этим археологическим находкам можно судить, что работа древнеегипетских ткачей была весьма качественной, хотя они изготавливали ткань вручную. Под сильным увеличительным стеклом хорошо видно, что нити древних тканей переплетены очень аккуратно, лежат, что вдоль, что поперёк, ровными, прямыми линиями. Впрочем, чему удивляться: древние египтяне были далеко не первыми ткачами — искусству переплетать нити, чтобы получать из них ткани, люди стали учиться ещё за тысячи лет до египетской цивилизации. А натолкнул их на такую мысль ещё более древний навык — плетение корзин, подстилок, сетей, обуви из гибких веток, тростника, длинных побегов травы. Это уже умели и наши далёкие первобытные предки.
Однако для изготовления тканей ни один из этих материалов не годился. Но и тут на помощь первобытному человеку пришла сама природа. Пытливые предки заметили, что из многих растений, например, льна, хлопчатника, конопли и даже крапивы, можно извлечь упругие и прочные волокна.
Годилась для этого и шерсть домашних животных. Но, чтобы приготовить из волокон пряжу, приходилось изрядно потрудиться. Извлечь волокна из стеблей льна, например, особенно нелегко. А шерсть нужно сначала очистить, тщательно промыть, просушить. Из подготовленного сырья скручивали длинные прочные нити. Такой процесс называется прядением, а полученные нити — пряжей. И уже тысячи лет назад человек постарался хоть как-то рационализировать прядение, изобретя веретено — стержень из дерева или камня, на который наматывалась готовая нить. Скручивать её приходилось вручную, постепенно вытягивая из заготовленного сырья пучки волокон. Немного забегая вперёд, стоит сказать, что, в конце концов, человек изобрёл прялку. Теперь прядильщик рукой крутил колесо, соединённое с веретеном ременной передачей. Вращаясь, веретено само постепенно вытягивало пучки волокон, превращая их в нити пряжи. Ну а что касается процесса изготовления ткани, то он тоже постепенно рационализировался. Правда, на заре ткачества он был совсем прост.
Можно представить, с помощью каких нехитрых приспособлений работали первобытные ткачи. В землю вбивались две крепкие ветки с рогульками наверху. Они удерживали деревянный стержень. Примерно такое же устройство, только пониже, мастерят в туристском походе, чтобы подвесить над костром чайник. Древние ткачи привязывали к этому стержню, одну рядом с другой, нити пряжи, свисающие до земли. Чтобы они не спутывались, к их концам крепились грузики. Кстати, и по сей день эти продольные нити называются в текстильном производстве основой. Для превращения основы в ткань продольные нити надо переплести поперечными, которые называются утком.
Сам же этот процесс был несложным, хотя и трудоёмким. Ткач пропускал уток сквозь основу таким образом, чтобы он проходил, например, поверх чётных нитей и под низом нечётных, а в обратную сторону наоборот. Удобнее всего это было делать заострённой палочкой, на которую наматывалась нить утка. При этом надо было следить и за тем, чтобы нити ложились ровно и плотно одна к другой. Так постепенно нити превращались в ткань. Она могла быть разной — лёгкой из льняной пряжи, грубой и тёплой из шерстяной. Как бы то ни было, первобытный человек получил наконец возможность облачиться в одежды, пошитые из ткани. Шить-то он научился ещё раньше, мастеря одеяния из звериных шкур…

Постепенно ткацкое производство совершенствовалось. Сначала древние изобретатели сообразили: если поднимать разом все чётные или нечётные нити основы, то уток можно перекидывать под ними на другую сторону одним движением. Поэтому на концах нитей основы появились деревянные дощечки, называемые ремезами. К одной дощечке крепились чётные нити, к другой нечётные. Мастер, поднимая то один ремез, то другой, последовательно отделял нити друг от друга и перекидывал уток то справа налево, то слева направо. Процесс ткачества стал быстрее в десятки раз. Оставалось только догадаться, что с помощью дополнительных ремезов можно поднимать в каком-то определённом порядке и другие нитки основы, делая их переплетение с утком более сложным. Таким образом, на ткани можно было получить определённый рисунок. Ткачи широко пользовались подобными «хитростями» уже в античные времена.
Постепенно ткацкий станок становился именно станком. В Средние века, например, мастер управлял ремезами, нажимая ногами на педали, руки при этом оставались свободными. Уток можно было перекидывать то вправо, то влево гораздо быстрее, производительность труда выросла. Однако ткань получалась неширокой, как раз такой, насколько хватало длины руки ткача.

Но вот, наконец пришёл XVIII век, когда в текстильном производстве произошли важнейшие перемены. В этом заслуга английских изобретателей Джона Кея и Эдмунда Картрайта. Первый из них в 1733 году придумал конструкцию механического челнока для нити утка. Челнок двигался по направляющим, таща за собой нить, подгоняемый ударами специальных деревянных молоточков, укреплённых по обеим сторонам рамы станка. После каждого движения челнока основа, намотанная на валик, продвигалась вперёд на один «шаг», освобождая место для нового «стежка». Челнок Джона Кея назвали «самолётным».
Как раз с этого изобретения, можно считать, и началась промышленная революция. Дело в том, что ткацкие станки с челноком-самолётом позволили производить гораздо больше тканей, чем раньше. Ткацким предприятиям стало не хватать пряжи, которую по-прежнему вырабатывали вручную. Пришлось изобретать прядильную машину, что и сделал в 1765 году другой английский изобретатель — Джеймс Харгривс. Через несколько лет в Англии появились прядильные фабрики, машины которых работали с помощью водяных двигателей.
Наконец, в середине 80-х годов Эдмунд Картрайт изобрёл ткацкий станок, где все операции были механизированы. Как раз к тому времени ещё один англичанин, Джеймс Уатт, завершил работу над своим паровым двигателем. И Картрайт построил ткацкую фабрику с двадцатью станками, установив для их привода машину Уатта. Так что первое широкое применение паровой двигатель нашёл именно в ткацком производстве.
Конечно, в дальнейшем ткацкий станок непрерывно совершенствовался. Особо стоит отметить французского изобретателя Жозефа Мари Жаккара. В 1801 году он создал… программируемый ткацкий станок. Для этого служили перфокарты — картонные таблички с пробитыми на них в определённом порядке отверстиями. Перфокарты были соединены в ленту, помещавшуюся наверху станка. Каждая перфокарта определённым образом управляла движениями нитей основы, «задавая» станку программу для создания того или иного узора на ткани. Нажимая педаль, мастер мог передвинуть ленту перфокарт и поменять программу. Позже с помощью перфокарт стали задавать программы металлорежущим станкам, но первым-то был ткацкий!
Ну а современные ткацкие станки — сложные, хорошо продуманные агрегаты. Конструкции у них разные — есть многочелночные, а есть станки без челноков — нить утка перебрасывает сжатый воздух. Зато сам главный принцип изготовления тканей переплетением основы и утка остался тот же самый, что придумал ещё первобытный человек.

Игорев, В. Как с ткацкого станка… началась промышленная революция /В. Игорев //А почему?. – 2008. — № 10. – С. 24-26.

Внедрение последних технологий в промышленные отрасли в первую очередь затрагивает оборудование. Примеры различных производств демонстрируют преимущества технического развития, что проявляется в повышении качества изделий. При этом есть сферы, где по-прежнему актуальны и традиционные способы организации технологических процессов. В частности, ткацкий станок по сей день сохраняет концепцию тесной взаимосвязи ручного труда и машинной функции. Конечно, в некоторых направлениях производства можно отметить и появление электронных систем с автоматикой. Однако, по совокупности достоинств двух подходов преимущество все же остается за ручными и механическими агрегатами.

Общие сведения о ткацких станках

Несмотря на консервативный подход к текстильному производству, участники данного сегмента используют множество вариаций данной машины. При этом все модели служат одной цели – формированию ткани. В результате взаимного переплетения нескольких нитей с определенной конфигурацией расположения относительно друг друга создается текстильное изделие с заданной структурой. В целом концепция несложная, поэтому ее истоки уходят в историю довольно глубоко. Например, первые находки, свидетельствующие об изготовлении тканей путем переплетения, насчитывают порядка 6 тыс. лет. Если же говорить о машинах, приближенных к современным техническим средствам, то первые ткацкие станки появились в 1785 году. Именно в это время был запатентован механический агрегат такого типа. В то же время нельзя сказать, что устройство было чем-то невиданным и революционным. К этому моменту ручные механизмы были весьма распространены в Европе почти сто лет.

Основные характеристики

Особое место в технических параметрах занимают размеры станков. Наиболее компактными габаритами располагают традиционные ручные машинки, которые легко размещаются даже в небольшой квартире. Их можно сравнить со стиральной машиной, но важно учитывать и необходимость организации рабочего места. Одной из важнейших характеристик является ширина полотна, которая в среднем варьируется от 50 до 100 см. Разумеется, ткацкий станок для промышленных нужд может располагать и двухметровой шириной полотна, что позволяет изготавливать ковры. Также следует учитывать размеры установки, с точки зрения размещения на полу. Как правило, модели из младших и средних линеек занимают участки не больше 100х100 см. При этом высота установки может достигать 1,5 м.

Устройство станка

Классическая конструкция ручного станка в первую очередь предусматривает наличие двух поперечных планок для товарного валика и навоя. Как правило, эти элементы входят в основную комплектацию. Не обходится машина и без держателя нитей. В процессе снования именно за эту часть фиксируются окончания нитей. Для продевания петель пряжи в соответствующие зубцы предназначен проборный крючок. Эту деталь называют и проборкой в бердо. Помимо этого, устройство ткацкого станка предусматривает наличие закладных планок. При помощи этих элементов пользователь может сохранять основу ровной и гладкой. Планки обычно укладывают на основу по мере навивания. Когда начинается формирование основы на станок, необходима функция держателя ремизок – ее выполняет специальный фиксатор, входящий в комплект. В качестве опции приобретаются и комплекты с проволочными шпильками, которые крепят ремизки после их установки для работы.

Разновидности

Производители предлагают ручные, механические, полумеханические, а также автоматизированные устройства. Также модели подразделяются на гидравлические и пневматические машины в зависимости от принципа работы. С точки зрения конструкционного исполнения, можно выделить круглые и плоские станки. К слову, первый вариант применяется исключительно для выработки тканей с особыми качествами.

К примеру, это может быть рукавный материал. Для бытового использования чаще используют небольшие узкие модели, а для крупных производств подходят ткацкие станки промышленные, у которых достаточно мощности для работы с крупными объемами текстильного материала. Существует и разделение станков по способностям формирования разных тканей. Так, эксцентриковые модели применяются для создания простых переплетений, а мелкоузорчатые полотна можно выполнить на кареточной машине.

Классификация по способу прокладки нити

По этому признаку и выделяют пневматические и гидравлические устройства. Правда, существует и третья разновидность – рапирные машины. Что касается пневматических моделей, то они прокладывают нить в зеве при помощи воздушного потока. Для этого предназначено основное сопло, вмонтированное в конструкцию бедра. Важно отметить, что данная часть фиксируется к магистральной емкости, распределяющей сжатый воздух. Также распространены гидравлические и рапирные виды ткацких станков, которые задействуют в процессе прокладки воду и специальные подающие элементы. В первом случае нить проводится летящей водяной каплей. В целом устройство таких станков соответствует пневматическим аналогам, только вместо воздуха используется струя воды. Рапирные механизмы вводят нить в зев двумя металлическими стержнями, один из которых выполняет подающую функцию, а второй – принимающую.

Нюансы техобслуживания

Перечень мероприятий, выполняемых в процессе техобслуживания, зависит от конкретной конструкции. Например, содержание ручных моделей предполагает тщательные осмотры конструкции, которая чаще всего изготавливается из древесины. Правильная настройка компонентов, планок и зажимов – основная часть работы мастера. Более сложные конструкции механических и автоматических агрегатов требуют дополнительных мер. Например, может потребоваться заправка ткацкого станка водой, если речь идет о гидравлических устройствах. Пневматическое оборудование также предполагает отдельное содержание приспособлений, обеспечивающих подачу воздуха. Здесь же требуется проверка соединяющих шлангов и насадок, распределяющих потоки.

Производители ткацких станков

Лидирующие позиции занимают европейские компании, среди которых бельгийские производители, итальянские и немецкие. В частности, пневматические модели на рынке предлагают фирмы Dornier, Picanol и Promatech. Также станки высокого качества производят японские компании, среди которых Tsudakoma и Toyota. Под этими же брендами выходят и гидравлические модели. Примечательно, что российских предприятий в этом сегменте не представлено. Зато отечественный ткацкий станок можно найти в категории рапирных моделей. Свою продукцию в этой нише предлагают заводы «Текстильмаш» и «СТБ».

Заключение

Несмотря на расширение производственных мощностей, лучшая текстильная продукция выпускается небольшими предприятиями, ориентирующимися на ручной труд. У такого подхода есть множество преимуществ, которые обеспечивают качественные изделия. Например, ткацкий станок с ручным принципом работы позволяет своевременно выполнить коррекцию формирования ткани, а также внести необходимые поправки в настройку подающих элементов. Кроме того, существует множество операций, которые не способны выполнить автоматизированные машины. В таких случаях, опять же, лучше всего справляются руки опытных ткачей.

4 апреля 1785 года англичанин Картрайт получил патент на механический ткацкий станок. Имя изобретателя первого ткацкого станка неизвестно. Однако принцип, заложенный этим человеком, жив до сих пор: ткань состоит из двух систем нитей, расположенных взаимно перпендикулярно, и задача станка – их переплести.
Первые ткани, изготовленные больше шести тысяч лет назад, в эпоху неолита, до нас не дошли. Однако свидетельства их существования – детали ткацкого станка – увидеть можно.

Сначала нити переплетали с помощью ручной силы. Даже Леонардо да Винчи, сколько ни пытался, так и не смог изобрести механический ткацкий станок.

Вплоть до XVIII века эта задача казалась неразрешимой. И лишь в 1733 году молодой английский суконщик Джон Кей сделал первый механический (он же самолетный) челнок для ручного ткацкого станка. Изобретение исключило необходимости вручную пробрасывать челнок и позволило вырабатывать широкие ткани на машине, обслуживаемой одним человеком (раньше требовались два).

Дело Кея продолжил самый успешный реформатор ткачества Эдмунд Картрайт.

Любопытно, что он был по образованию чистым гуманитарием, выпускником Оксфорда со степенью магистра гуманитарных наук. В 1785 году Картрайт получил патент на механический ткацкий станок с ножным приводом и построил в Йоркшире прядильно-ткацкую фабрику на 20 таких устройств. Но на этом не остановился: в 1789 году запатентовал гребнечесальную машину для шерсти, а в 92-м — станок для витья веревок и канатов.
Механический станок Картрайта в своей первоначальной форме был еще настолько несовершенным, что никакой серьезной угрозы для ручного ткачества не представлял.

Поэтому до первых лет XIX века положение ткачей было несравненно лучше, чем прядильщиков, их доходы обнаруживали лишь едва заметную тенденцию к понижению. Еще в 1793 году «тканье кисеи было ремеслом джентльмена. Ткачи всем своим видом походили на офицеров в высшем чине: в модных сапожках, гофрированной рубашке и с тросточкой в руке они отправлялись за своей работой и иногда привозили ее домой в карете».

В 1807 году британский парламент направил в правительство меморандум, где утверждалось, что изобретения магистра гуманитарных наук способствовали повышению благосостояния страны (и это чистая правда, Англия не зря слыла тогда «мастерской мира»).

В 1809-м палата общин выделила Картрайту 10 тысяч фунтов стерлингов – совершенно немыслимые по тем временам деньги. После чего изобретатель удалился от дел и поселился на небольшой ферме, где занимался усовершенствованием сельскохозяйственных машин.
Станок Картрайта почти сразу же принялись улучшать и модифицировать. И немудрено, ведь прибыль ткацкие фабрики давали нешуточную, и не только в Англии. В Российской империи, например, Лодзь благодаря развитию ткачества за XIX век из маленького поселка превратился в громадный по тогдашним меркам город с населением в несколько сотен тысяч человек. Миллионные состояния в империи часто наживались именно на фабриках этой отрасли – достаточно вспомнить Прохоровых или Морозовых.
Уже к 30-м годам в картрайтовский станок добавили массу технических усовершенствований. В итоге таких машин на фабриках становилось все больше, а обслуживало их все меньшее число работников.
На пути неуклонного повышения производительности труда стояли новые препятствия. Наиболее трудоемкими при работе на механических станках были смена и зарядка челнока. Например, при изготовлении самого простого ситца на станке фирмы Platt ткач тратил на эти операции до 30% времени. Более того, он должен был постоянно следить за обрывом основной нити и останавливать машину для устранения недостатков. При таком положении вещей расширить зону обслуживания не удавалось.

Только после того как в 1890-м англичанин Нортроп придумал способ автоматической зарядки челнока, фабричное ткачество совершило настоящий прорыв. Уже в 96-м фирма Northrop разработала и вывела на рынок первый автоматический ткацкий станок. Это в дальнейшем позволило рачительным фабрикантам изрядно сэкономить на зарплатах. Следом появился и серьезный конкурент станку-автомату – ткацкая машина вообще без челнока, которая многократно увеличивала возможность обслуживания одним человеком нескольких устройств. Современные ткацкие станки развиваются в привычном для многих технологий компьютерном и автоматическом направлениях. Но главное сделал еще два с лишним века назад любознательный Картрайт.

История первых ткацких станков | Полезные статьи

История первых ткацких станков

Около 1550 г. до н.э. в Египте ткачи заметили, что все можно улучшить и сделать процесс прядения проще. Был придуман способ для разделения нитей – ремез. Ремез – это стержень из дерева, с привязанными к нему четными нитями основы, а нечетные нити свободно свисали. Работа тем самым стала быстрее в два раза, но все равно оставалась очень трудоемкой.

Поиск упрощения получения ткани продолжался, и около 1000 г. до н.э. был придуман атоский станок, где ремезы уже отделяли четные и нечетные нити основы. Работа пошла в десятки раз быстрее. На этом этапе это уже было не плетение, а именно ткачество, стало возможным получать самые разные переплетения нитей. Дальше в ткацкий станок вносились все новые изменения, например, движением ремеза управляли педалями, а руки ткача оставались свободными, но принципиальные изменения техники ткачества началась в 18 веке.

В 1580 году Антон Моллер усовершенствовал станок для ткачества- теперь на нем можно было получать несколько кусков материи. В 1678 году французский изобретатель де Женн создал новый станок, но особого распространения он не получил.

И в 1733 году англичанин Джон Кей создал первый механический челнок для ручного станка. Теперь не нужно было вручную перебрасывать челнок, и теперь можно было получать широкие полосы материи, станок уже обслуживался одним человеком.

В 1785 году Эдмунд Картрайт усовершенствовал станок с ножным приводом. В 1791 году станок Картрайта был улучшен Гортоном. Изобретатель ввел устройство для приостановке батана челнока в зеве. В 1796 году Роберт Миллер из Глазко создал приспособление для продвижения материала посредством храпового колеса. До конца 19 века это изобретение оставалось в станке для ткачества. А способ Миллера прокладки челнока работал более 60 лет.

Надо сказать, станок Картрайта вначале весьма несовершенен и не представлял угрозы для ручного ткачества.

В 1803 году Томас Джонсон из Стокпорта создал первую шлихтовальную машину, что полностью освободило мастеров от операции шлихтования на станке. Джон Тодд в это же время ввел в конструкцию станка ремезный ролик, упростивший процесс подъема нитей. И в этом же году Вильям Хоррокс получает патент на механический ткацкий станок. Хоррокс не тронул деревянную станину старого ручного станка.

В 1806 году Петер Марланд ввел замедленное движение батана при прокладке челнока. В 1879 году Вернер фон Сименс разработал электрический ткацкий станок. И только в 1890 году после того Нортроп создал автоматическую зарядку челнока и наступил реальный прорыв в фабричном ткачестве. В 1896 году этот же изобретатель вывел на рынок первый автоматический станок. Затем появился ткацкий станок без челнока, что многократно увеличило производительность труда. Сейчас станки продолжаются совершенствоваться в направлении компьютерных технологий и автоматического управления. Но все самое важное для развития ткачества было сделано гуманитарием и изобретателем Картрайтом.

История изобретения ткацкого станка | Великие открытия человечества

История создания ткацкого станка уходит в глубокую древность. Прежде чем научиться ткать, люди научились плести из веток и камыша простые циновки. И лишь освоив технику плетения, они задумались о возможности переплетать нити. Первые ткани из шерсти и льна начали изготавливать в эпоху неолита, более пяти тысяч лет назад до нашей эры. Согласно историческим сведениям в Египте и Месопотамии ткань изготавливалась на простых ткацких рамах. Рама представляла из себя два деревянных шеста, хорошо закрепленных в земле параллельно друг другу. На шестах натягивались нити, с помощью прута ткач приподнимал каждую вторую нить, тут же протягивал уток. Позже, около трех тысяч лет до н. э., у рам появился поперечный брус (навой), с которого свисали нити основы почти до земли. Внизу к ним крепились подвесы, чтобы нити не спутывались.

В 1550 году до нашей эры изобрели вертикальный ткацкий станок. Ткач пропускал уток с привязанной ниткой через основу так, чтобы одна висящая нить была по одну сторону утка, а следующая — по другую. Таким образом, сверху поперечной нити оказывались нечетные нити основы, а снизу — четные или наоборот. Такой способ полностью повторял технику плетения и занимал очень много сил и времени.

Ручной ткацкий станок

Вскоре древние мастера пришли к выводу, что найдя способ одновременного поднятия четных или нечетных рядов основы, можно было бы сразу протянуть уток через всю основу, а не через каждую нить в отдельности. Так был придуман ремез — приспособление для разделения нитей. Это был деревянный стержень, к которому крепились четные или нечетные нижние концы нитей основы. Потянув ремез, мастер отделял четные нити от нечетных и пропускал уток через всю основу. Правда, обратно следовало пройти каждую четную нить в отдельности. Чтобы решить эту проблему, к грузикам на концах нитей привязывали шнурки. Другой конец шнурка прикрепляли к ремезам. К одному ремезу крепили концы четных нитей, ко второму — нечетных. Теперь мастер мог отделять нечетные и четные нити, потянув за один или второй ремез. Теперь он делал лишь одно движение, перебрасывая уток через основу. Благодаря техническому прогрессу в ткацком станке была изобретена ножная педаль, но до XVIII в. мастер по-прежнему проводил уток через основу вручную.

Механический ткацкий станок Эдмунда Картрайта

Лишь в 1733 году суконщик из Англии Джон Кей изобрел механический челнок для ткацкого станка, что стало революционным прорывом в истории развития текстильной промышленности. Пропала необходимость перебрасывать челнок вручную, появилась возможность выпускать широкие ткани. Ведь раньше ширина полотна была ограничена длиной руки мастера. В 1785 году Эдмунд Картрайт запатентовал свой механический ткацкий станок, оснащенный ножным приводом. Несовершенство первых механических станков Картрайта до начала XIX века не представляло большой угрозы для ручного ткачества. Однако станок Картрайта стали улучшать и модифицировать и к 30-м годам XIX века число машин на фабриках увеличивалось, а число обслуживающих их работников стремительно уменьшалось.

В 1879 году Вернер фон Сименс создает электрическую ткацкую машину. В 1890 году англичанин Нортроп изобрел автоматический способ зарядки челнока, а в 1896 году его фирма представила первый автоматический станок. Конкурентом этому станку стала ткацкая машина без челнока. Современные ткацкие станки полностью автоматизированы.

История ткацкого станка | Маркетинговое агентство ТОМ СОЙЕР. Системный маркетинг с Ириной Пищук

4 апреля 1785 года англичанин Картрайт получил патент на механический ткацкий станок. Имя изобретателя первого ткацкого станка неизвестно. Однако принцип, заложенный этим человеком, жив до сих пор: ткань состоит из двух систем нитей, расположенных взаимно перпендикулярно, и задача станка – их переплести.

Первые ткани, изготовленные больше шести тысяч лет назад, в эпоху неолита, до нас не дошли. Однако свидетельства их существования – детали ткацкого станка – увидеть можно.
Сначала нити переплетали с помощью ручной силы. Даже Леонардо да Винчи, сколько ни пытался, так и не смог изобрести механический ткацкий станок. Вплоть до XVIII века эта задача казалась неразрешимой. И лишь в 1733 году молодой английский суконщик Джон Кей сделал первый механический (он же самолетный) челнок для ручного ткацкого станка. Изобретение исключило необходимости вручную пробрасывать челнок и позволило вырабатывать широкие ткани на машине, обслуживаемой одним человеком (раньше требовались два).
Дело Кея продолжил самый успешный реформатор ткачества Эдмунд Картрайт. Любопытно, что он был по образованию чистым гуманитарием, выпускником Оксфорда со степенью магистра гуманитарных наук. В 1785 году Картрайт получил патент на механический ткацкий станок с ножным приводом и построил в Йоркшире прядильно-ткацкую фабрику на 20 таких устройств. Но на этом не остановился: в 1789 году запатентовал гребнечесальную машину для шерсти, а в 92-м — станок для витья веревок и канатов.
Механический станок Картрайта в своей первоначальной форме был еще настолько несовершенным, что никакой серьезной угрозы для ручного ткачества не представлял. Поэтому до первых лет XIX века положение ткачей было несравненно лучше, чем прядильщиков, их доходы обнаруживали лишь едва заметную тенденцию к понижению. Еще в 1793 году «тканье кисеи было ремеслом джентльмена. Ткачи всем своим видом походили на офицеров в высшем чине: в модных сапожках, гофрированной рубашке и с тросточкой в руке они отправлялись за своей работой и иногда привозили ее домой в карете».
В 1807 году британский парламент направил в правительство меморандум, где утверждалось, что изобретения магистра гуманитарных наук способствовали повышению благосостояния страны (и это чистая правда, Англия не зря слыла тогда «мастерской мира»). В 1809-м палата общин выделила Картрайту 10 тысяч фунтов стерлингов – совершенно немыслимые по тем временам деньги. После чего изобретатель удалился от дел и поселился на небольшой ферме, где занимался усовершенствованием сельскохозяйственных машин.

Станок Картрайта почти сразу же принялись улучшать и модифицировать. И немудрено, ведь прибыль ткацкие фабрики давали нешуточную, и не только в Англии. В Российской империи, например, Лодзь благодаря развитию ткачества за XIX век из маленького поселка превратился в громадный по тогдашним меркам город с населением в несколько сотен тысяч человек. Миллионные состояния в империи часто наживались именно на фабриках этой отрасли – достаточно вспомнить Прохоровых или Морозовых.
Уже к 30-м годам в картрайтовский станок добавили массу технических усовершенствований. В итоге таких машин на фабриках становилось все больше, а обслуживало их все меньшее число работников.
На пути неуклонного повышения производительности труда стояли новые препятствия. Наиболее трудоемкими при работе на механических станках были смена и зарядка челнока. Например, при изготовлении самого простого ситца на станке фирмы Platt ткач тратил на эти операции до 30% времени. Более того, он должен был постоянно следить за обрывом основной нити и останавливать машину для устранения недостатков. При таком положении вещей расширить зону обслуживания не удавалось. Только после того как в 1890-м англичанин Нортроп придумал способ автоматической зарядки челнока, фабричное ткачество совершило настоящий прорыв. Уже в 96-м фирма Northrop разработала и вывела на рынок первый автоматический ткацкий станок. Это в дальнейшем позволило рачительным фабрикантам изрядно сэкономить на зарплатах. Следом появился и серьезный конкурент станку-автомату – ткацкая машина вообще без челнока, которая многократно увеличивала возможность обслуживания одним человеком нескольких устройств. Современные ткацкие станки развиваются в привычном для многих технологий компьютерном и автоматическом направлениях. Но главное сделал еще два с лишним века назад любознательный Картрайт.

Источник: http://4textile.ru/iz-istorii/history-of-weaver-loom.html

Кто изобрел первый автоматический станок?

Кто изобрел первый автоматический станок?

4. ПРЕДПОСЫЛКИ СОЗДАНИЯ АВТОМАТИЧЕСКОГО ОБОРУДОВАНИЯ

Автоматический токарный станок был создан в США, где развитие техники обработки металла началось позже, чем европейской. Первые металлорежущие станки, изготовленные в этой стране, были весьма несовершенными по сравнению со станками Г. Модели и его учеников.

В первой половине XIX в. станины американских станков были деревянными, с укрепленными па них железными направляющими. Отсутствие опытных станкостроителей и необходимость использования металлорежущих станков на предприятиях, выпускающих продукцию с взаимозаменяемыми деталями (прежде всего на оружейных заводах), приводили к внедрению простых станков и приспособлений, предназначавшихся специально для выполнения отдельной конкретной операции.

Первые наиболее совершенные станки, которые по своим характеристикам приближались к европейским образцам, были построены с использованием опыта английских машиностроителей. Так, токарный станок, изготовленный в 1853 г. в Нью-Йорке и обладавший хорошими техническими характеристиками, построен А. М. Фриландом, являвшимся последователем Витворта и использовавшим его опыт [6].

Качество американских станков во второй половине XIX в. было уже достаточно высоким. Станки выпускались серийно, причем вводилась полная взаимозаменяемость деталей и блоков станков одной фирмы. Движущиеся части подгонялись не одна к одной, а к специальным шаблонам, обеспечивавшим их идентичность. При поломке деталей достаточно было выписать с завода аналогичную и заменить ее без малейшей подгонки. Чтобы сократить ручной труд (при невозможности ликвидировать его совсем), детали предварительно обрабатывали на станках. Например, на заводах «Пратт энд Винти» плоскости для суппорта токарных станков сначала фрезеровали, затем строгали и потом «прискабливали» к шаблонам.

Ввиду того что кузнечные работы тогда плохо механизировались и автоматизировались, американские станкостроители предпочитали литые детали. Все ручки управления по возможности выносили на фартук станка. Включение прямого и обратного хода от ременной передачи обеспечивалось простым передвижением фрикционной муфты, входившей в зацепление с одним из вращающихся в противоположных направлениях барабанов. Для переключения подачи на противоположную служил обычный трензель с сателлитной шестерней.

Револьверный станок 1850 г. (США)

Во второй половине XIX в. были введены элементы, обеспечивавшие полную механизацию обработки — блок автоматической подачи по обеим координатам, совершенную систему крепления резца и детали. Режимы резания и подач изменялись быстро и без значительных усилий. В токарных станках имелись элементы автоматики — автоматический останов станка при достижении определенного размера, система автоматического регулирования скорости лобового точения и т. д.

Однако основной причиной ускорения прогресса американского станкостроения было не развитие традиционного токарного станка, который вообще принципиально улучшен быть уже не мог, а создание его модификации — револьверного станка.

Потребность в создании такого станка была связана с переходом в конце первой половины XIX в. от кремневых ружей к ударному капсюльному оружию. Для него требовалось большое количество винтов, и для их производства С. Фитч, взявший у правительства контракт на выпуск 30 тыс. пистолетов, спроектировал и построил в 1845 г. револьверный станок с 8 режущими инструментами в револьверной головке. В 1858 г. Г. Стоун предложил другую схему револьверного станка. Отметим, что это оборудование позволяло обходиться небольшим числом опытных наладчиков и использовать неквалифицированную рабочую силу при сохранении высокой производительности.

Основным преимуществом револьверных станков явилось резкое уменьшение времени, необходимого для смены режущего инструмента. Револьверные станки XIX в. имели обычно два суппорта — один отрезной, имевший одну только поперечную подачу, а второй — проходной, имевший только продольную подачу. На втором крепился револьверный патрон, несущий (в то время) до 10 инструментов. После одной операции резания и отвода резца в исходное положение патрон необходимо было повернуть для ввода в действие нового резца. В общем случае в функцию рабочего входит поворот резцового патрона, подача и крепление материала и режущего инструмента. Передвижение продольного суппорта обычно ограничивалось упорами и поэтому не требовало высокой квалификации рабочего. Все технологические операции здесь несложны и легко могли быть заменены автоматизированными узлами. Следовательно, револьверный станок относительно легко мог быть превращен в станок-автомат.

Передняя бабка револьверного станка американского производства второй половины XIX в. не представляет интереса, за исключением шпинделя и патрона, почти всегда сверленых (для подачи пруткового материала). Патрон оснащен механизмом зажима заготовки, которую можно зажимать и разжимать, не останавливая станок. Работа этих механизмов блокировалась с механизмом автоматической подачи обрабатываемого изделия. В 1871 г. Э. Пархурст запатентовал цанговый патрон и зажимной механизм подобного рода. Прототипом этого цангового патрона была цанга Витворта. Впоследствии были применены различные модели патронов с кулачками, зажимавшими и отпускавшими пруток во время работы станка (без его останова). Подача материала обеспечивалась вначале (с 1861 г.) просто грузом, который через блок крепился к прутку и продвигал его до упора, укрепленного в револьверном патроне, в момент разжимания кулачков. При большой массе прутка, однако, происходил сильный удар, что расстраивало станок. Для того, чтобы избежать такого удара, применялся тормоз типа дросселя или другое приспособление.

В США в револьверных станках чаще всего использовалась храповая рейка. При диаметре заготовки большем, чем 2-3 дюйма, на мощных станках использовали методы подачи специальными механизмами. Поворот револьверной головки при окончании операции и необходимости смены инструмента тоже был автоматизирован (с 1861 г.).

Следовательно, на различных револьверных и токарных станках можно было автоматически, без останова станка, осуществить продвижение заготовки и ее зажим, обработку (при механической продольной и поперечной подаче), удаление готовой детали и последующее повторение цикла. Однако до 70-х годов XIX в. использовались только некоторые из этих устройств, т. е. автоматизировались отдельные технологические операции, выполняемые на станках.

Тенденции автоматизации металлорежущего оборудования в США стимулировались рядом факторов. Среди них экономические факторы занимали главенствующее место. Простота управления этими станками позволяла использовать неквалифицированную и дешевую рабочую силу — женщин и подростков, которые могли обслуживать несколько станков одновременно. Немаловажным было также то, что в период гражданской войны 1861-1865 гг. возрос спрос на огнестрельное оружие, а нехватка квалифицированных рабочих сдерживала рост его производства. Выходом из этого положения было создание станков-автоматов. Успехи автоматизации отдельных элементов металлообрабатывающих токарных и револьверных станков позволяли надеяться на успешное решение этой проблемы, особенно если учесть, что в 40-х годах XIX в. были спроектированы и успешно применялись деревообрабатывающие автоматы (К. Виппль, 1842 г.; Т. Слоан, 1846 г.).

Первый универсальный токарный автомат был изобретен Хр. Спенсером в 1873 г. Он был конструктивно прост, главной его особенностью был кулачковый вал. X. Спенсер — автор еще нескольких более совершенных типов автоматов.

Изобретение и серийный выпуск токарных автоматов различных типов означал, что станкостроение достигло высокого уровня развития и что можно было ожидать выпуска автоматов других технологических типов металлорежущего оборудования. Таким образом, станкостроение вступало в новый этап своего развития — этап совершенствования автоматических металлорежущих станков.

История создания станков

История фрезерных станков, как и любого другого производственного механизма, длинная и многогранная. Ученные и изобретатели разных поколений, начиная с Леонардо Да Винчи, трудились и открывали новые принципы взаимодействия механизмов, получив устройство, которое облегчило тяжелый труд обработки различных материалов. С давних времен человечество не стояло на месте, изобретало и усовершенствовало приспособления, делая их более автоматизированными, с минимальным участием человека в истории создания

Итальянский ученый, писатель, художник и изобретатель Леонардо Да Винчи первым описал принцип фрезерования в 16 веке. Эскиз ученного представлял собой вращающийся круглый напильник. Позже в 1668 году в Китае принцип фрезерования был применен для обработки плоскости крупной детали астрономического прибора. Он был изобретен Фердинанндом Фербистом. Император Китая для изготовления астрономического прибора потребовал создать бронзовое кольцо. Для его создания Фердинанд положил отлитую заготовку на твердый фундамент

Пару фрез были прикреплены к брусу, который имел возможность вращаться вокруг центральной точки, совпадавшей с центральной точкой детали, которая подвергалась обработки. На режущий инструмент для регулирования глубины реза укладывали груз. Весь механизм приводился в движение животным — мулом.

Позднее, к половине XVIII века в 1725 году русским ученым Андреем Константиновичем Нартовым в рукописи «Театрум Махинарум» был описал фрезерный станок для обработки углублений на изделиях из кости.

Только в 19 веке американец Эли Уитни использовал принцип обработки материала с помощью фрезы для производственных нужд. Уитни первым внедрил фрезерный аппарат для создания канавок, обработки материалов, что заменяло строгание и другие виды обработки материалов.
Продолжаем историю создания.
История указывает, что молодой изобретатель Эли Уитни 1805 году получил заказ на изготовление 10 000 ружей. Для такого объема необходимо было усовершенствовать аппарат. Детали оружий обрабатывались по лекалу с помощью метода обката фрезой. Данная система требовала людей с высокой квалификацией и знанием дела. Для каждой операции с деталями был оборудовал отдельный аппарат. Только в 1811 года заказ был выполнен, но не полностью. Несмотря на это, Уитни был дан еще один заказ, но уже на 15 000 оружий, который был сделан за 2 года.

Станок Эли Уитни являлся консольным, имел автоматическую подачу через червячную (так называют механическую передачу, которая реализуется при помощи зацепления резьбы ведущего вала и связанного с ним зубчатого колеса). Он состоял из рабочего стола, передаточного вала червяка, 1 шпинделя, червячного колеса, ручки для подачи. Созданный в 1818 году он использовался на оружейном заводе в Уитнивилле около Нью-Хевена в Америке.

История создания фрезерного станка

Устройство фрезерного аппарата Эли Уитни. Основание было сделано из деревянного бруса, который опирался на железные подножки. Шпиндель диаметром 62 мм поддерживали два подшипника из металла. Между последними располагался двухступенчатый шкив из дерева, приводившиеся в движение ремнем. К нижней части бруса был прикреплен еще один брус, который представлял собой опору для кронштейна, поддерживающего валик механизма подачи. На валике находился деревянный шкив, который приводил его в движение и бронзовый червяк. Червячный вал расположен в зацеплении с зубчатым колесом, который был посажен на винт, осуществлявший механическую подачу стола лучшую в истории создании станков

Данный аппарат на половину был создан из дерева и имел грубый, кустарный вид. К тому времени на большинстве оружейных заводах уже отказались от механизмов из древесины. Тем не менее, с точки зрения конструкторской мысли, он отвечал всем требованиям совершенства и новаторства, так как в нем было немало автоматизированных частей, которые используются и по сей день.

Изобретатель не остановился на достигнутом и в 1921 году усовершенствовал его, добавив автоматическую подачу и вертикальную автоматическую подачу шпинделя.

Как показано на рисунке выше, ствол ружья располагался между двух зажимов или «лисичек», которые, в свою очередь, были соединены стержнем с зубчатой рейкой. Рукоятка и зубчатое колесо располагались на одном валу. С помощью данной рукоятки ствол вместе с «лисичками» передвигался к фрезе, расположенной с торца аппарата. Фреза была закреплена на шпинделе при помощи штыкового соединения (быстрого соединения посредством перемещения и поворота по осевой одной детали относительно другой). Этот принцип давал возможность включать и выключать фрезу при помощи рукоятки самой маленькой в истории создании чпу

Данный аппарат являлся первым из более автоматизированных, со времени фрезерного устройства Эли Уитни и был использован на Тульском оружейном заводе для обработки казенной части ствола.

Американская фирма «Gay, Silver and Co» сделала большой шаг к современным фрезерным станкам в 1835 году. Аппарат данной фирмы был расположен на колоде, на которой держалась вся конструкция. На волу со шкифов (колесо, которое приводит в движение приводной ремень) располагалось зубчатое колесо, находившееся в сцепке с еще один колесом, которое имело такое количество зубьев, как и первое. Последнее было помещено на оправу. На указанной оправе находилась фреза. На колоде располагалось приспособление для фиксирования обрабатывающей поверхности. Также на нем было расположено устройство для вертикального перемещения фрезы.

Более усовершенствованный аппарат, который первым был использован для производства невоенного характера – станок Жд. Ренни. Данный горизонтально-фрезерный станок был создан для обработки граней гаек. Последний отличался от своих предшественников тем, что в нем отсутствовала необходимость в соответствии главного движения и движения подачи. Движение подачи было обеспечено гибкой связью и храповым механизмом (представляет собой зубчатый механизм, в котором храповик позволяет вращаться только в одном направление и блокирует вращение в противоположном). Современным, по мерках того времени, в фрезерном станке Дж. Ренни являлось поворотное приспособление для установки и закрепления обрабатываемой детали. Данный механизм давал возможность объединить несколько мелких деталей (гаек) на одной оправке для того чтобы обрабатывать больше количество деталей за одно и тоже время. Данные отличительные характеристики используются в современных металлорежущих станках. Фрезерный станок Дж. Ренни мог быть использован не только как специализированный, но и как обычный горизонтально-фрезерный это интересное решение в истории создания

История создания первого токарного станка в мире и его развитие

Прообразом вращения детали на токарном станке послужило простое устройство для добычи огня и просверливания с помощью песка, деревянной палочкой в камне дырочки под рукоятку. За XXVII веков эти примитивные механизмы дошли до уровня станков с ЧПУ.

История создания первого станка в мире

История появления и развития токарного станка берет свое начало в 650 г до н. э. Это документально подтверждает гравюра, найденная археологами. На ней изображены люди в хитонах, наблюдающие за работой мастера Федора на ножном токарном станке. Деталь закреплялась между 2 центрами и приводилась в движение рычагом.

Заготовка в таком станке вращалась попеременно на несколько оборотов к инструменту, затем обратно, от него. Резец держали в руках. Усилие при резании было слабым, точность низкая. На таком станке могли обрабатывать:

  • дерево;
  • рог;
  • кость;
  • цветные металлы;
  • бронзу.

Историки нашли украшения, сделанные на аналогичном оборудовании.

Первые упоминания

Первые изображения токарных станков нашли в древнем Египте. На фресках хорошо видно лучковый механизм привода. Тетиву обвивали вокруг зажатой в центре детали с одного конца, и натягивали на лук. Раб двигал приспособление вперед и назад, вращая деревянную заготовку то в одну, то в другую сторону. Мастер сидит на полу и направляет инструмент.

Со временем на египетских лучковых токарных станках появилась продольная линейка. Она имела деления и на нее опирался резец при работе. Теперь можно было создавать относительно одинаковые детали, например ножки для столов, колонны.

Со временем появились токарные станки с ножным приводом. Они работали, как и лучковые, но можно было обойтись без раба. Использовалась сила упругости живой ветки дерева. Один конец веревки, обмотанной вокруг детали, висел петлей внизу, второй привязывался к ветке на дереве. Мастер вставлял ногу в петлю, нажимал вниз. Деталь делала несколько оборотов в одну сторону. Затем он отпускал веревку, ветка выпрямлялась и вращала конструкцию в обратном направлении.

На рисунке 1400 года деревянный станок установлен в помещении и имеет подвижные бабки для работы с заготовками разной длины. В 1518 году был изготовлен станок императора Максимилиана. Он имел металлические центры и подвижный люнет, перемещающиеся по направляющим. Все корпусные детали были покрыты узорами, имитирующими старинные башни, замки. Ручки сделаны в виде воинов.

Ученые изобретатели, кто изобрел?

До нашего времени сохранились чертежи токарных станков и отдельных узлов, разработанные Леонардо да Винчи. Но ни один агрегат не был построен по ним. Примерно в 1570 году Карл IV, будучи французским королем, поручил Жаку Бессону создать токарный станок для нарезания резьбы. Он установил третью бабку, которая держала резец и отводила его при обратном вращении.

К ученым-изобретателям токарного станка относятся:

  • Андрей Константинович Нартов, механик Петра 1, механизировал нарезку резьбы.
  • Алексей Супонини и Павел Захава – тульские механики усовершенствовали конструкцию суппорта.
  • Француз Ж Вокансон создал прообраз универсального станка на мощной станине с металлическими узлами.
  • Англичанин Д Рамедон спроектировал 2 вида станков, нарезающих резьбы.
  • Французский механик Сено создал оборудование для нарезки винтов.
  • Мондсли построил универсальный токарный станок, ставший со временем базовой моделью.
  • Д Клемент установил ходовой винт в передней части станины и протянул его через фартук.
  • Д Виворт автор автоматической поперечной подачи.
  • Американец Фитч разработал и построил револьверный станок.
  • К Випиль и Т Слоан создали деревообрабатывающие автоматы.
  • Хр Спенсер построил первый универсальный автомат.

Генри Мондсли усовершенствовал суппорт, автоматизировал нарезку резьбы, и первым поднял вопрос об унификации некоторых деталей. Он разработал основные типоразмеры и стандартизировал резьбы.

Идею Мондсли подхватили американцы, и вскоре стали изготавливать стандартизированные детали. Это позволило им запустить конвейеры, в разы повысить производительность труда, сократив большую часть рабочих.

Устройство первых моделей

Первыми моделями, которые можно с уверенностью назвать токарными станками, были конструкции с канатно-ручным приводом и станок, описанный в 1671 году Шерюбеном. Он имел ножной привод и коленвал, благодаря которому вращение было в одну сторону. Ступенчато-шкивный привод позволял изменять частоту вращения детали.

С появлением водяного колеса станки перевели на механический привод. Через цех тянулся длинный вал с большим количеством шкивов. Каждый станок соединялся с ведущим валом ременной передачей.

Управление

После внедрения в 1712 году изобретения Нартова – самоходного суппорта, была решена проблема крепления и перемещения инструмента. Теперь вращение детали включалось и регулировалось перекидывание ремня на шкив нужного диаметра.

Продольное перемещение суппорта осуществлялось от винта, связанного с приводом. Шаг подачи регулировался копировальным пальцем. Он регулировал соотношение шага и подачи суппорта. Затем было изобретение Вокансона и суппорт получил механическую поперечную передачу и одновременно мог управляться вручную.

Начиная с 1800 года, токарные станки имеют все узлы современного оборудования и блоки управления. Крутящий момент передается от привода через ременную передачу. Жесткую зависимость продольных и поперечных подач от скорости вращения обеспечивают зубчатые зацепления. На суппорте появились рукоятки для переключения на разные режимы резания.

Металлические детали

Первые металлические детали на токарном станке появились на модели императора Максимилиана в 1518 году. Это были вращающиеся центра, в которых зажималась заготовка. Нартов в 1712 году создал станок для нарезания резьбы. В нем крутящий момент передавался через зубчатые шестерни и винтовой вал. Все детали были железными.

Первый полностью металлический станок был изготовлен Вокансоном в 1751 году. Французский механик относился к своему изобретению как к инструменту и убрал все декоративные украшения, оставив только функциональные узлы и детали. Его станок выглядел просто, имел массивную чугунную станину и мог выдерживать большие нагрузки при обработке металла.

Начиная с этого времени на станинах появились направляющие для суппорта и задней бабки. Станки стали изготавливать из стальных и чугунных деталей. Модели имели все узлы современного токарного оборудования.

Датчики положения

Первыми датчиками положения были копировальные пальцы. Они скользили по винту и задавали продольное и поперечное перемещение. Возможность переместить заднюю бабку позволила устанавливать детали разной длины и даже обрабатывать широкие заготовки с торца.

Когда перемещение суппорта и задней бабки стало происходить по направляющим, появились линейки с делениями, определяющими положение резца. Изготовление точных резьбы дало начало созданию лимбов. Теперь можно было уверено сказать, насколько сместится суппорт и резцедержка за полный оборот, и на какой угол следует повернуть ручку для смещения на 1 мм.

Приводные механизмы

Привод токарного станка прошел несколько этапов эволюции:

  • ручной и ножной с возвратным вращением;
  • ручное вращение в одну сторону;
  • движение от водяного колеса;
  • паровой привод;
  • электродвигатель.

С 1837 по 1842 год Роберт Дэвидсон конструировал электроприводы, в том числе и для токарных станков. Асинхронный трехфазны двигатель был изобретен Доливо-Добровольским в 1891 году. Но только после революции 1917 года его стали устанавливать на токарные станки и другое оборудование.

Габариты и вес

На первых станках обрабатывались детали диаметром до 200 мм и длиной до 1200 мм. Вес деревянного оборудования составлял 50–100 кг. Простейшие токарные настольные станки весят в сборе 70–120 кг. На них обрабатываются металлические заготовки весом 12–35 кг. Промышленное токарное оборудование весит от 1,2 тонны. На него устанавливают металлические детали от 200 мм диаметром и длиной 800–3000 мм.

Какие особенности были у ранних моделей?

Ранние модели имели общий для всех привод. Вращение передавалось через ременные передачи. Количество оборотов заготовки невозможно было выставить точно. Продольное и поперечное перемещение суппорта зависело от числа оборотов вала и регулировалось перестановкой шестерен в коробке подач. Скорость вращения шпинделя выставлялась перебрасыванием ремня на шкив нужного диаметра.

Точность поперечной и продольной подачи инструмента составляла 0,1 мм – погрешность ручного перемещения по лимбу. Невозможно было автоматизировать процесс обработки на ранних моделях и изготавливать большие партии деталей с высокой точностью соответствия.

Токарный станок имеет многовековую историю. Она отражает технический уровень развития народов, их стремление к упрощению изготовления деталей и создание красивых вещей правильной формы.

Интересные статьи

Ткацкий станок: от создания, до наших дней.

4 апреля 1785 года англичанин Картрайт получил патент на механический ткацкий станок. Имя изобретателя первого ткацкого станка неизвестно. Однако принцип, заложенный этим человеком, жив до сих пор: ткань состоит из двух систем нитей, расположенных взаимно перпендикулярно, и задача станка – их переплести.
Первые ткани, изготовленные больше шести тысяч лет назад, в эпоху неолита, до нас не дошли. Однако свидетельства их существования – детали ткацкого станка – увидеть можно.

Сначала нити переплетали с помощью ручной силы. Даже Леонардо да Винчи, сколько ни пытался, так и не смог изобрести механический ткацкий станок.

Вплоть до XVIII века эта задача казалась неразрешимой. И лишь в 1733 году молодой английский суконщик Джон Кей сделал первый механический (он же самолетный) челнок для ручного ткацкого станка. Изобретение исключило необходимости вручную пробрасывать челнок и позволило вырабатывать широкие ткани на машине, обслуживаемой одним человеком (раньше требовались два).

Дело Кея продолжил самый успешный реформатор ткачества Эдмунд Картрайт.

Любопытно, что он был по образованию чистым гуманитарием, выпускником Оксфорда со степенью магистра гуманитарных наук. В 1785 году Картрайт получил патент на механический ткацкий станок с ножным приводом и построил в Йоркшире прядильно-ткацкую фабрику на 20 таких устройств. Но на этом не остановился: в 1789 году запатентовал гребнечесальную машину для шерсти, а в 92-м — станок для витья веревок и канатов.
Механический станок Картрайта в своей первоначальной форме был еще настолько несовершенным, что никакой серьезной угрозы для ручного ткачества не представлял.

Поэтому до первых лет XIX века положение ткачей было несравненно лучше, чем прядильщиков, их доходы обнаруживали лишь едва заметную тенденцию к понижению. Еще в 1793 году «тканье кисеи было ремеслом джентльмена. Ткачи всем своим видом походили на офицеров в высшем чине: в модных сапожках, гофрированной рубашке и с тросточкой в руке они отправлялись за своей работой и иногда привозили ее домой в карете».

В 1807 году британский парламент направил в правительство меморандум, где утверждалось, что изобретения магистра гуманитарных наук способствовали повышению благосостояния страны (и это чистая правда, Англия не зря слыла тогда «мастерской мира»).

В 1809-м палата общин выделила Картрайту 10 тысяч фунтов стерлингов – совершенно немыслимые по тем временам деньги. После чего изобретатель удалился от дел и поселился на небольшой ферме, где занимался усовершенствованием сельскохозяйственных машин.
Станок Картрайта почти сразу же принялись улучшать и модифицировать. И немудрено, ведь прибыль ткацкие фабрики давали нешуточную, и не только в Англии. В Российской империи, например, Лодзь благодаря развитию ткачества за XIX век из маленького поселка превратился в громадный по тогдашним меркам город с населением в несколько сотен тысяч человек. Миллионные состояния в империи часто наживались именно на фабриках этой отрасли – достаточно вспомнить Прохоровых или Морозовых.
Уже к 30-м годам в картрайтовский станок добавили массу технических усовершенствований. В итоге таких машин на фабриках становилось все больше, а обслуживало их все меньшее число работников.
На пути неуклонного повышения производительности труда стояли новые препятствия. Наиболее трудоемкими при работе на механических станках были смена и зарядка челнока. Например, при изготовлении самого простого ситца на станке фирмы Platt ткач тратил на эти операции до 30% времени. Более того, он должен был постоянно следить за обрывом основной нити и останавливать машину для устранения недостатков. При таком положении вещей расширить зону обслуживания не удавалось.

Только после того как в 1890-м англичанин Нортроп придумал способ автоматической зарядки челнока, фабричное ткачество совершило настоящий прорыв. Уже в 96-м фирма Northrop разработала и вывела на рынок первый автоматический ткацкий станок. Это в дальнейшем позволило рачительным фабрикантам изрядно сэкономить на зарплатах. Следом появился и серьезный конкурент станку-автомату – ткацкая машина вообще без челнока, которая многократно увеличивала возможность обслуживания одним человеком нескольких устройств.

Современные ткацкие станки развиваются в привычном для многих технологий компьютерном и автоматическом направлениях. Но главное сделал еще два с лишним века назад любознательный Картрайт.

Когда появился первый ЧПУ станок

Первый станок с ЧПУ (Числовое программное управление) (англ. Numerical Control, NC) был изобретен сыном владельца компании Parsons Inc, Джоном Пэрсонсом.

Первый станок с ЧПУ (Числовое программное управление) (англ. Numerical Control, NC) был изобретен сыном владельца компании Parsons Inc, Джоном Пэрсонсом, который работал в инженерном отделе компании, принадлежавшей его отцу. Эта компания специализировалась на производстве пропеллеров, лопастей и сопутствующих частей для вертолетов.

Персонс младший был первым, кто запатентовал идею использования станка, обрабатывающего материалы для пропеллеров и других деталей при помощи программы, которая выполнялась в следствии считывания нужной информации с перфокарт.

Пэрсонс и его первый станок ЧПУ

Немного цифр

История была такая:

  • В начале 1949 года ВВС Соединенных Штатов начали финансирование компании Parsons Inc для разработки и дальнейшего производства станка, который смог бы фрезеровать по контуру запчасти сложной формы, производимые для вертолетов, самолетов и прочей авиационной техники. Но, вопреки ожиданиям ВВС, Parsons Inc были вынуждены попросить помощи у Массачусетского технического института, а именно у его лаборатории, специализирующейся на сервомеханике.
  • Компания Парсонса работала с MIT вплоть до 50 года прошлого столетия. В этом же году Массачусетский институт купил себе фирму, занимающуюся производством фрезерного оборудования марки HydroTel и перестал сотрудничать с компанией Parsons Inc. Сразу после разрыва контракта институт заключил контракт на разработку первого фрезерного станка, который управляется программой, с ВВС Соединенных Штатов.
  • Уже в сентябре 1952 года фрезерный станок компании HydroTel был показан людям на выставке, а немного позже весь мир узнал о нем благодаря статье из журнала Scientific American. Это и было первое автоматическое устройство, управление которым совершалось при помощи перфорированной ленты.

Первый станок с Числовым Программным Управлением был отличен от остальных, тем, что имел гораздо сложнее конструкцию и управление, и поэтому его использование в промышленности затруднялось, а иногда и вовсе было невозможно.

  • Самая первая установка ЧПУ была разработана и произведена корпорацией Bendix Corp. в 1954 году, а спустя всего год (в 1955 году) эти устройства массово начали применять в станкостроении и в доработке старого оборудования на производствах. Оборудование с ПУ медленно набирало свою популярность в мире, поскольку многие люди относились к данной новинке технологического прогресса довольно скептически и недоверчиво. Для того чтобы доказать обратное, Министерство обороны Соединенных Штатов изготовило 120 экземпляров станков с ЧПУ за свой счет. В дальнейшем эти станки были сданы в аренду частным и государственным фирмам, занимающимся обработкой различных материалов и выпуска продукции из них.
  • Спустя небольшой промежуток времени, в 1958 году был разработан первый язык символьного программирования, называющийся APT (Automatically Programmed Tools).

Внедрение станков ЧПУ в отечественное производство

Первыми станками с ЧПУ российского производства, а если точнее, то производства СССР, для использования в промышленности, были токарно-винторезный автомат 2К63ПУ, а так же токарно-карусельный автомат 1541n. Их разработали и начали массово выпускать в 60-х годах прошлого столетия.

Данные автоматы управлялись при помощи как систем ПРСЗК (работали совместно с ними), так и других систем управления промышленным оборудованием. Немного позже были изобретены и запущены в производство вертикально-фрезерные автоматы с ЧПУ, получившие название 6h23 и которые были укомплектованы системой «Контур-ЗП», при помощи которой и осуществлялось непосредственное управление станком.

К концу 70-х годов прошлого века на токарное оборудование с ЧПУ стали устанавливать системы 2P22 и Электроника НЦ-31, которые были выпущены также отечественными производителями.

Современные станки с ЧПУ

В наше время оборудование с ПУ это часть, без которой невозможно представить ни одно производство, занимающееся выпуском высококачественной продукции.

Главным преимуществом устройств с системами ЧПУ является не только то, что появляется возможность обрабатывать детали и заготовки сложной формы, но и то, что весь процесс производства становится с каждым днем все более автоматизированным.

В данный момент компании используют оборудование, выпущенное в разные периоды времени. По этой причине, системы числового программного управления имеют значительные отличия как по конструкции, так и по способу программирования и дальнейшей работы с ними. В основном, при наличии финансовой возможности, компании стараются заменять устаревшие системы ЧПУ на новые, современные, поэтому даже станки одной модели, выпущенные в одно и то же время, могут значительно отличаться в программной и электронной части, связанной с числовым управлением.

Ткацкий станок Жаккарда | Galanix

Жозеф Мари Жаккар (1752-1834) французский ткач, изобретатель автоматического ткацкого станка для узорчатых тканей, который управлялся с помощью перфокарт. После смерти родителей он в наследство получает небольшую ткацкую мастерскую, оборудованную двумя станками и небольшой участок земли. Заключив ряд сомнительных сделок, и потеряв значительную часть наследства, Жаккар увлекся усовершенствованием ткацкого станка, ему хотелось сделать пестротканое полотно, по качеству не уступающее ручному. В то время ткацкое производство бурно развивалось, но выпускались в основном ткани одноцветные или в полоску из-за ограниченных возможностей станков. Сложноузорчатые ткани удавалось ткать только лучшим мастерам, весь процесс был медленным и тяжким. Рабочий-подмастерье забирался внутрь станка и вручную опускал и поднимал определенные многочисленные нити основы по команде мастера. При этом необходимо было иметь высокую квалификацию, проявить максимум внимания, чтобы не допустить ошибку, иначе рисунок собьется. Жозеф Мари Жаккар задался целью модернизировать ткацкий станок для промышленного производства узорчатых тканей. Первую попытку усовершенствовать станок он предпринял в 1790 году, она оказалась не совсем удачной. 1801 году Жаккар сконструировал станок для механического плетения сетей и отправился с ним на выставку в Париж. Там он впервые увидел автоматический ткацкий станок Жака де Вокансона, талантливого механика и изобретателя, который еще в 1745 году использовал перфорированный рулон бумаги для управления переплетением нитей.

Жаккар понимал, что механизм ткацкого станка должен отображать последовательность действий подмастерье и ткача по установленной технологии, и иметь запоминающее устройство, чтобы сохранить очередность команд для изготовления сложных рисунков. Автоматический контроль над нитью Жаккард осуществил с помощью особых карточек с продырявленными отверстиями в определенных местах. Информация от перфокарты поступала в виде наличия или отсутствия отверстий в определенных местах. Прообразы перфокарт уже применялись на ткацких станках Базиля Бушона, Жана-Батиста Фалькона и Жака де Вокансона. Жаккар учел все недостатки, взял все самое ценное, что имелось у предшественников и полумеханизированный станок, превратился в рабочее устройство. Он создает перфокарты с большим количеством просверленных отверстий в нужных местах, (в зависимости от сложности узора, который должен наносится на ткань), для того чтобы машина могла работать с сотнями нитей. Длинной замкнутой лентой перфокарты автоматически перемещались в считывающее устройство станка. С их помощью осуществлялась последовательность направления нитей для создания определенного узора. Каждая карта отвечала за один проход челнока. Сотни нитей использовались для образования запутанных узоров на станке. На жаккардовом станке каждая нить перемещается с помощью цепляющего её стержня с кольцом, поэтому на тканевом полотне можно выткать сложные узоры, даже картину. Считывающий механизм станка состоял из набора щупов, которые были соединены со стержнями, ответственными за движение нитей. При движении карты проволочные щупы притискивались к ней и оставались неподвижными. Когда на их пути встречались отверстия, при каждом проходе челнока, щупы погружались в отверстия и тянули вверх надлежащие нити основы, формируя верхнюю часть зева, то есть основные перекрытия в ткани. Опускались нити основы под воздействие силы тяжести грузиков. Опущенные нити основы создавали нижнюю часть зева, то есть уточные переплетения. В конечном итоге формировался запрограммированный на перфокартах рисунок. 

В 1838 году в Лионе фирмой Didier Petit & Co был соткан портрет Жозефа Мари Жаккара (изобретателя жаккардовой технологии) по картине кисти художника Клода Боннефона, директора городской школы изящных искусств. Для изготовления портрета потребовалось 24000 перфокарт. Было соткано несколько портретов, один из них находится на хранении в Лондоне в Музее науки. Ткацкий станок мог производить ткань, которая отображает картины, которые можно принять за гравюры. В начале 1840 года у Чарльза Бэббиджа, изобретателя первой аналитической вычислительной машины, дома находился такой сотканный портрет, и гости его не догадывались о том, как он был сделан.

В музее художественных тканей при Московской текстильной академии хранится текстильная картина, выполненная на ткани, которая была соткана на жаккардовом ткацком станке.

На ней представлены Жозеф Мари Жаккар и рабочие возле ткацкого станка.

В 1804 году впервые Жаккар представил свой станок на выставке в Париже и был удостоен золотой медали. Работу над усовершенствованием промышленного варианта ткацкого станка Жаккар завершает в 1808 году, что позволило массово изготавливать ткани со сложными узорами. По декрету правительства 1805 года Жаккар получает за свое изобретение право на отчисление премии 50 франков с каждого установленного и работающего во Франции станка его конструкции. Станки с 1806 года начали устанавливать на мелких предприятиях Лиона. Не смотря на то, что его изобретение принесло славу и популярность, массовая установка ткацких машин многих соотечественников лишало работы, оставляла на меже выживания. Массовое распространение жаккардовых станков во Франции значительно понизило заработную плату узорчатых ткачей, что вызывало недовольство людей. В 1825 году было установлено более 10000 жаккардовых станков только в Лионе. Станок Жаккара стал первым промышленным изобретением, использующим в своей работе перфокарту, работающим по разработанной программе. До настоящего времени остался принцип формирования жаккардовой ткани, за исключением того, что современный станок координируется компьютером. Программирование механизмов при помощи перфокарт, заложенное в основу ткацкого станка Жаккара подталкивало и последующих изобретателей применять этот принцип в своих разработках, в дальнейшем использовался для обработки информации с помощью компьютеров.

 

 

Первый в мире автоматический пулемет

В статье, опубликованной в журнале Nature в 1885 году, известный научный журнал опубликовал описание нового типа оружия, разработанного известным американским изобретателем Хайрамом Стивенсом Максимом.

«Этот пистолет — совершенно новая разработка», — говорится в статье. «Он извлекает патроны из коробки, в которой они были первоначально упакованы, помещает их в ствол, стреляет и выбрасывает пустые патроны, используя для этой цели энергию, полученную от отдачи ствола.Конечно, первый патрон нужно вставлять в ствол вручную. Однако когда это будет сделано и будет нажат спусковой крючок, пистолет будет продолжать стрелять до тех пор, пока в коробке есть патроны ».

Вариант пистолета Максим в Лодзи, Польша. Фото: Zorro2212 / Wikimedia Commons

Хирам Максим изобрел первый в мире полностью автоматический пулемет Максима и произвел революцию в войне.

Максим родился в 1840 году в штате Мэн.Он стал учеником кузовщика в возрасте 14 лет, а десять лет спустя устроился на станочный завод своего дяди в Фитчбург, штат Массачусетс. Максим рано увлекся изобретательством. Он разработал мышеловку, которая автоматически перезагружается, и помог владельцам мельниц избавиться от грызунов. Когда сгорела большая мебельная фабрика, Максим изобрел первый автоматический пожарный спринклер, который также оповестил пожарную часть по телеграфу. В 26 лет он получил свой первый патент на щипцы для завивки волос.За свою долгую и выдающуюся карьеру Хирам зарегистрировал 271 патент. Сюда входили аппарат для размагничивания часов, магнитоэлектрические машины, устройства для предотвращения качения кораблей, проушины и клепальные машины, авиационная артиллерия, воздушная торпедная пушка, заменители кофе, а также различные масляные, паровые и газовые двигатели. Максим разработал и установил первое электрическое освещение в здании Нью-Йорка. Он также утверждал, что изобрел лампочку и участвовал в нескольких длительных патентных спорах с Томасом Эдисоном по этому поводу.

В 1882 году, находясь в Вене, Максим встретил американца, который сказал ему: «Повесьте химию и электричество! Если вы хотите заработать кучу денег, придумайте что-нибудь, что позволит этим европейцам с большей легкостью перерезать друг другу глотки ».

Хирам Максим

Максим серьезно отнесся к совету и открыл мастерскую в Лондон, и в течение трех лет построил первый в мире практический пулемет. Ранние пулеметы, такие как пулемет Гатлинга, требовали проворачивания вручную для достижения высокой скорости стрельбы.Нововведение Максима состояло в том, чтобы использовать силу отдачи каждой пули для перезарядки следующей пули, что позволило добиться гораздо более высокой скорости стрельбы, чем это было возможно при использовании более ранних конструкций — до 600 выстрелов в минуту из одного ствола. Maxim также представил другие инновации, такие как использование водяного охлаждения через водяную рубашку вокруг ствола, что дало ему возможность сохранять свою скорострельность намного дольше, чем у ружей с воздушным охлаждением. Чтобы максимизировать эффективность орудия, Максим также разработал собственный бездымный порох.

Когда Максим представил свое изобретение своему другу Фрэнсису Пратту, инженеру-механику и соучредителю производителя оружия Pratt & Whitney, Пратт заметил:

Если бы кто-нибудь сказал мне, что можно было бы сделать пистолет, который подтянул бы ленту с патронами, вытащил из нее заряженный патрон, переместил его перед стволом, воткнул в ствол, закрывал затвор надлежащим образом, взвел курок, нажал на спусковой крючок, выстрелил из патрона , извлеките пустую гильзу и выбросьте ее из механизма, вставьте новый картридж на место и сделайте все это за десятые доли секунды, я бы не поверил… Но теперь я видел это своими глазами.

Хирам Максим и пистолет Максима, а также Луи Кассье и Дж. Бакнолл Смит. Фото: Cassier’s Magazine

При финансовой поддержке сталелитейного предпринимателя Эдварда Виккерса Максим основал компанию Maxim Gun Company для производства своего пулемета в Крейфорде, графство Кент. В 1897 году компания Максима была поглощена Vickers Corporation и превратилась в Vickers, Son & Maxim.

Пулеметы оказались катастрофическими на войне.Во время Первой войны Матабеле в 1893-94 годах в Родезии 700 солдат отбили 5000 воинов Матабеле всего с пятью орудиями Максима. В Первую мировую войну пулеметы широко применялись с обеих сторон. Усовершенствованный вариант конструкции пистолета Максима, пулемет Виккерс был стандартным британским пулеметом во время войны и в течение многих лет.

Британский пулеметный расчет «Виккерс» во время битвы на Сомме, июль 1916 года. Фото: Wikimedia Commons

Одним из последних изобретений Максима стал эффективный бронхиальный ингалятор.Давний больной бронхитом, Максим изобрел карманный ингалятор с ментолом и паровой ингалятор большего размера, использующий пар сосны, которые, как он утверждал, могут облегчить астму, шум в ушах, сенную лихорадку и катар. Но его знакомый раскритиковал его за то, что он применил свои таланты к шарлатанству, на что он ответил:

Это действительно очень любопытный мир. Я был первым человеком в мире, который сделал автоматический пистолет. Удивительно, насколько быстро это изобретение привело меня к вершине славы. Если бы это было что-то еще, кроме машины для убийства, о нем было бы сказано очень мало.

Из вышеизложенного видно, что изобретение машины для убийства — дело очень достойное, а изобретение устройства для предотвращения человеческих страданий — не что иное, как позор.

ИСТОРИЯ СТИРАЛЬНОЙ МАШИНЫ |

Общественные прачечные: их происхождение, роль и история

Стиральная машина вместе с холодильником является самым распространенным бытовым прибором, который можно найти в домашних хозяйствах по всему миру. История стиральной машины восходит к самым ранним цивилизациям, когда люди пытались найти лучшие способы стирки своей одежды сначала в струях проточной воды, а затем во все более сложных прачечных и резервуарах.

Стиральная машина удовлетворяет основную потребность: стирать одежду и домашнее белье. И именно эта повседневная необходимость, с связанным с ней желанием сделать процесс стирки менее трудоемким и более гигиеничным, привела к появлению впечатляющего множества изобретений, с которыми мы знакомы в настоящее время.

Первые прачечные

Ручная стирка белья — одна из самых кропотливых работ по дому. Прачки стирали белье с мылом на берегу ручья или реки, а также в фонтане или прачечной .Тканью натирали камни или деревянные доски, при необходимости добавляя песок, чтобы удалить пятна и налетевшую грязь. Затем они крутили его, прежде чем ударять деревянным молотком, чтобы удалить как можно больше воды.

До прачечных

С годами прачки усовершенствовали свою технику, используя различные натуральные моющие средства. Галлы использовали березовые золы для лучшей очистки материала — процесс, который восходит к 2800 годам до нашей эры. Зола, использовавшаяся в первых стиральных порошках, была заменена намного позже кристаллами соды.

Римляне, с другой стороны, построили общественные прачечные ( fullonicae на латыни, т. Е. Валяльные фабрики). Трава Фуллера, импортированная из Сирии, была слишком дорогой, поэтому римляне использовали ферментированную человеческую мочу для отбеливания льна с высоким содержанием аммиака. Мочу выливали в резервуар, и более полная женщина (или более полная женщина) заботилась о наполнении ткани: наступала на простыни и одежду, чтобы очистить их.

Император Веспасиан до сих пор известен тем, что ввел налог на сбор мочи.Когда его сын, Тит, пожаловался ему на это, Веспасиан сунул первые квитанции от этого налога Титу под нос и спросил его, плохо ли они пахнут. Тит ответил, что нет, и из этого разговора родилась пословица Pecunia non olet : «Деньги не пахнут». Спустя столетия самые первые общественные туалеты были названы Веспасианами.

И еще в 1909 году в Эльбефе (76) собирали человеческую мочу для прядения шерсти для армейских простыней.

Среди рабочих профессий, возникших в девятнадцатом веке, вы также можете найти стиральных машин, прачок, прессовщиков и даже трибун.Эти женщины работали в прачечных или работали самостоятельно.

Роль прачечных

До появления прачечных и других участков, отведенных для мытья, сельчанам приходилось набирать грязную воду, которая была источником инфекции. Распространение прачечных сыграло важную роль с точки зрения общественного здравоохранения и гигиены , в то время, когда холера, оспа и брюшной тиф опустошали население.

Государственные субсидии частично профинансировали строительство общественных туалетов, и даже тогда правительства были сделаны заявления относительно основных принципов гигиены.

Умывальники были оборудованы крытыми площадками для облегчения работы прачечных. Такие заведения были даже признаком богатства, а по количеству общественных прачечных можно было судить об уровне благосостояния села.

Умывальники также играли важную социальную роль : женщины со всего села собирались там не реже одного раза в неделю (кроме очень пожилых) и обменивались местными новостями. Прачечная превратилась в «говорящий дом», и было обычным делом слышать пение женщин, чтобы облегчить их повседневные дела и скоротать время.

Умывальники постепенно исчезли по мере того, как в дома была введена проточная вода. Что касается методов работы прачок, они послужили источником вдохновения для первых прототипов стиральных машин.

Изобретение стиральной машины

Изобретением стиральной машины мы обязаны Якобу Кристиану Шефферу (1767). 30 лет спустя американец Натаниэль Бриггс получил первый патент на стиральную машину. Это включало в себя заливку горячей воды в резервуар, поворот рычага для стирки одежды и затем ее скручивание между двумя роликами.Затем резервуар слили с помощью крана.

210 лет спустя была изобретена электрическая стиральная машина.

Современные стиральные машины

В 1905 году появились первые стиральные машины барабанного типа . Они по-прежнему приводились в действие вручную, но стальной резервуар позволял установить угольную горелку.

К 1920 году появились первые электрические машины : только механизм поворота был электрическим. Остальные элементы управления оставались ручными.

Появление автоматов

Только в 1930 году стали автоматами . Реле давления, термостаты и таймеры были включены в новые модели. С 1980-х годов достижения в области электроники означали, что стиральные машины стали реактивными и экологичными:

  • Регулировка параметров с помощью датчиков: уровень воды, скорость, отжим…
  • Датчик веса
  • Различные циклы: цвет, белый, шерсть , синтетика…
  • Экономия энергии и воды

В 1990 году британский изобретатель Джеймс Дайсон создал стиральную машину с двумя цилиндрами, вращающимися в противоположных направлениях, что сократило время стирки и дало лучшие результаты.

Современные стиральные машины

В настоящее время стиральные машины подключены к Интернету и могут иметь интегрированный Wi-Fi для отложенного запуска программ стирки, например, в непиковое время, когда затраты на электроэнергию самые низкие. Некоторые модели работают без моющего средства , благодаря электролизу, который разделяет положительные и отрицательные ионы. Некоторые машины скоро будут оснащены сенсорными экранами по примеру моделей, представленных американским лидером в этой области Speed ​​Queen.

Хронология революционного изобретения с момента его создания до наших дней

До 18 века мытье производилось в муниципальной прачечной с помощью насадки и щетки, небольшого количества мыла и небольшого количества золы. . Во многих случаях приходилось время от времени стирать белье в соседней деревне. Стирка была сложной задачей и роскошью. Но это изменилось благодаря инициативе нескольких выдающихся изобретателей и предпринимателей. Оглядываясь назад на невероятный путь устройства, которое теперь стало частью нашей повседневной жизни.

Механические стиральные машины

1767

Якоб Кристиан Шеффер

Стиральную машину изобрел немец, Якоб Кристиан Шеффер, . Этот ученый был мастером на все руки.

Обладатель ученых степеней в области философии и теологии, член многих научных обществ, включая Академию наук в Париже, Якоб Кристиан Шеффер подготовил руководство по ботанике для фармацевтов и врачей, разработал новые методы орнитологической классификации и провел важную работу в области микологии. и энтомология, а также эксперименты с оптикой и электричеством.В 1786 году Гете лично посетил кабинет любопытства этого великого ученого.

1797

31 марта этого года американец Натаниэль Бриггс подал первый патент на стиральную машину.

1830

Самые первые механические стиральные машины появились в Англии.

1843

Американец, Джон Э. Тернбул, изобрел роликовую стиральную машину.

1851

Джеймс Кинг подал патент на первую драм-машину.Однако эта модель все еще была механической, и двигатель приводился в действие кривошипом. При этом уменьшились физические нагрузки.

1861

Машина Джеймса Кинга, , включала отжим , что облегчает стирку.

1870

Француз Франсуа Пруст создал прототип, более гигиеничный, пароварку: пар стерилизовал белье. Но не все материалы выдержали такую ​​обработку.

1898

Французский производитель Flandria выпустил на рынок «Barboteuse.Благодаря этим ручным стиральным машинам домашнее белье можно было стирать дома в гораздо более комфортных условиях, чем в прачечных.

Сначала белье нужно было кипятить в стиральной машине. Белье часто предварительно обрабатывали древесной золой (естественно, богатой калием, они действовали как моющее средство и скрывали запахи). Затем белье загружали в машину, затем вращали колесо: возвратно-поступательное движение перемешивало белье в обоих направлениях, затем грязная вода сливалась через выступ в желобе

Электрические стиральные машины

1901

Американский инженер, Альва Джон Фишер, , обычно считается изобретателем первой электрической машины .Но до него был подан по крайней мере один патент на модель электрической машины. Однако личность изобретателя до сих пор остается неизвестной. Деревянные баки заменили на металлические.

1907

Компания Hurley Electric Laundry Equipment Company выпустила на рынок первую электрическую стиральную машину Thor, основанную на прототипе Alva J. Fisher (запатентовано в 1910 году): барабан приводился в движение электрическим приводом. мотор. На ранних моделях этот двигатель не был водонепроницаемым, и часто происходили короткие замыкания, поэтому машина была потенциально опасной.Кроме того, машина не отжимала белье.

1908

Джо Барлоу и Джон Силинг основали компанию Barlow & Seeling Manufacturing , позже Speed ​​Queen, сегодня мирового лидера в области промышленных прачечных и прачечных, признанного за удивительную долговечность своих профессиональных стиральных машин.

1911

Barlow & Seeling Manufacturing улучшила электрическую стиральную машину, сделав ее более безопасной и эффективной, а затем начала продавать свою собственную модель.

1915

Speed ​​Queen представила на рынке первый разнонаправленный отжиматель.

1920

Электродвигатели стали водонепроницаемыми и двухскоростными: медленная для стирки, более высокая для отжима. Представленная на выставке на Парижской ярмарке, эта стиральная машина вызвала большой интерес.

1927

Так родилась первая машина со встроенной функцией отжима. Вскоре продажи электрических стиральных машин в США достигли 913000 единиц.

1929

Первые стиральные машины появились на французском рынке: в них была встроена функция отжима.

1937

Работая в Bendix Aviation Corporation, американец Джон Чемберлен изобрел многофункциональную машину, которая могла стирать, полоскать и отжимать за один цикл. В том же году был подан патент на эту модель, которая считается первой стиральной машиной-автоматом .

1940

Из 25000000 домов в США, подключенных к электросети, 60% имели электрические стиральные машины, а в большинстве этих домохозяйств также были электрические отжимные машины.

1941

Чтобы поддержать военные действия, Speed ​​Queen прекратила производство профессиональных стиральных машин. Однако США разрешили производителям продолжить свои исследования и разработки в области автоматизации машин.

Распространение автоматической стиральной машины

Автоматические стиральные машины выполняют все операции стирки без какого-либо ручного вмешательства:

  • Программатор запускает машину
  • Реле давления и электромагнитный клапан отключают подачу воды, когда бак заполнен.
  • Термостат контролирует температуру
  • Таймер контролирует время работы.

Но автоматические стиральные машины, все еще являвшиеся нововведением в начале 50-х годов, были дорогими и, прежде всего, использовались в основном только в прачечных. Очень немногие семьи могли их себе позволить. Число прачечных самообслуживания росло во всех крупных городах США и Европы в 50-х и 60-х годах.

Модели продолжали совершенствоваться, интегрируя центробежную силу для отжима белья и включая запрограммированные циклы стирки (программа стирки для каждого типа белья; цикл для шерсти появился только в 1997 году).

1960-е годы

Разные марки стиральных машин начали рекламировать свою продукцию. В 1967 году 44% французских семей имели стиральную машину. 10 лет спустя он был у 74% французских семей.

1980-е годы

Начиная с 80-х годов, машины содержали миниатюрные, электронные компоненты, (микропроцессоры, RAM…) и потребляли все меньше воды и электроэнергии в попытке сохранить окружающую среду.

Стиральные машины сегодня

Сегодня стиральные машины предлагают десятков циклов стирки и уровней воды, программируемых до или во время стирки.Профессиональные стиральные машины Speed ​​Queen — для промышленных прачечных (отели, больницы, общественные дома…) и прачечных — находятся на переднем крае с точки зрения производительности.

Эти машины сокращают ежедневное потребление воды и энергии, сохраняют качество белья, которое они стирают в рекордно короткие сроки, благодаря скорости принудительного отжима G.

2020

Speed ​​Queen с Quantum Touch

Отрасль прачечных меняется, поскольку клиенты все больше ожидают по-настоящему премиального опыта.С введением элементов управления Quantum® Touch Speed ​​Queen® изменила представление о стирке. От расширенных функций до чистого полноцветного дисплея с пошаговыми инструкциями.

Элементы управления Quantum Touch безупречно работают с Speed ​​Queen Insights и приложением Speed ​​Queen , обеспечивая первоклассное обслуживание клиентов.

Приложение Speed ​​Queen предлагает вашим клиентам возможность оплачивать циклы со своего телефона, а также держать их в курсе, когда циклы завершены.

Speed ​​Queen Insights обеспечивает быстрый и легкий доступ ко всем данным, необходимым для принятия решений, которые повысят вашу прибыльность.

Откройте для себя лучший бизнес прачечной

Пулемет | Международная энциклопедия Первой мировой войны (WW1)

Изобретение тридцатилетней давности ↑

Пулемет — продукт «второй промышленной революции». Его разработка была инициирована изобретением в 1883 году первого автоматического огнестрельного оружия американцем Хирамом Максимом (1840-1916).Используя энергию, выделяемую при выстреле патрона, Максим создал оружие, способное выпускать несколько пуль простым нажатием на спусковой крючок. Его новаторство побудило к более широкому развитию автоматического огнестрельного оружия. С конца 1880-х годов их военный потенциал значительно увеличился благодаря появлению малокалиберных бездымных патронов.

К 1914 году все основные воюющие стороны снабдили свои армии пулеметами аналогичного масштаба. Россия, Германия и Великобритания использовали ружья на базе системы Maxim, а Франция и Австро-Венгрия использовали отечественные разработки — модели 1907 г. «Сент-Этьен» и «Шварцлозе» соответственно.

Прямая огневая мощь ↑

Немецкая армия поздно использовала пулеметный потенциал, но ее тактическое применение в 1914 году оказалось лучше, чем у ее врагов. Немецкие пулеметчики использовали дальнобойную точность оружия, а тот факт, что орудия были полковыми (а не батальонными), позволял сгруппировать их для достижения максимального эффекта. Эта эффективность породила миф о том, что Германия в 1914 году применила гораздо больше пулеметов, чем ее противники.

После начала позиционной войны пулеметы получили известность как высокоэффективное оружие прямой наводки. Теоретически они могли стрелять более 500 выстрелов в минуту (об / мин), но это было ненормально в бою, где «скорострельная стрельба» обычно состояла из повторяющихся очередей со скоростью 250 об / мин. Эффективность этих очередей от десяти до пятидесяти пуль была увеличена за счет использования баллистики и точности, обеспечиваемой стрельбой с регулируемых креплений. На дальности 600 метров или меньше пулеметы могли создавать постоянные линии огня, которые никогда не поднимались бы выше головы человека, что приводило к смертельным результатам для тех, кто пытался пересечь их.Или пистолет можно было перемещать между очередями, чтобы получить то, что французы назвали feu fauchant (косящий огонь). На большем расстоянии их пули падали в эллиптическую «зону поражения», что давало им возможность вести огонь по площади.

Группы орудий могли блокировать огонь. При благоприятных обстоятельствах, например, в Лоосе 26 сентября 1915 года или на Сомме 1 июля 1916 года, это могло оказаться разрушительным. Но хотя именно так сейчас вспоминают о пулеметах, с 1915 года были разработаны новые способы их использования.

В октябре 1915 года британская армия передала все свои пулеметы «Виккерс» под контроль недавно созданного пулеметного корпуса (разработка была воспроизведена в контингентах Доминиона на Западном фронте). Этот радикальный и противоречивый шаг был предпринят для упорядочения того, что стало тактической необходимостью: группировки пулеметов в бою. Но когда все армейские специалисты по пулеметам в одном корпусе, это также стимулировало инновации.

Косвенная огневая мощь ↑

Самым заметным результатом стал пулеметный огонь.Группы орудий с централизованным управлением использовались для стрельбы по заранее обозначенным целям. Используя изогнутую траекторию, по которой следуют их пули, пулеметы могли вести огонь косвенно, как миниатюрные артиллерийские орудия, даже над головами дружественных войск. Эти методы требовали точных карт и твердой основы математических расчетов. Важно отметить, что, учитывая, что стратегические императивы Западного фронта вынудили британцев перейти в наступление, они означали, что для поддержки атак можно было использовать пулеметы.

Пулеметный огонь использовался для «сгущения» тщательно спланированных артиллерийских заграждений, которые предшествовали атакам Британии и Доминиона, таких как атаки на хребты Вими и Мессин в апреле и июне 1917 года. Еще более важным в тактическом плане были «SOS-заграждения», произведенные в ответ на осветительные ракеты, выпущенные пехотой, отражающей контратаки противника. Заграждения SOS использовали «зону поражения» дальним пулеметным огнем для насыщения заранее зарегистрированных районов, по которым могли наступать контратакующие силы.

Другие армии начали применять эту «научную» форму пулеметной стрельбы, как французская армия, так и специализированные отряды пулеметных стрелков немецкой армии начали использовать огонь с закрытых позиций и над головой в конце 1917 года. Американские экспедиционные войска также использовали его в 1918 году.

Производство ↑

Все армии были объединены желанием вооружить свои войска как можно большим количеством пулеметов. Это было достигнуто не без усилий. Британии и России мешала неадекватная производственная база, которую удалось преодолеть только первой.Франция смогла усовершенствовать и в конечном итоге заменить свою пушку M1907 гораздо более совершенным оружием, произведенным Хотчкиссом из Парижа. Германия начинала с лучшей производственной инфраструктуры и дальше всего сделала пулемет основным поставщиком огневой мощи пехоты. К 1917 году некоторые немецкие формирования сообщали, что пулеметы потребляли до 90 процентов боеприпасов их стрелкового оружия. [1] Менее развитые в промышленном отношении державы были вынуждены покупать пулеметы у своих союзников; только Италия имела ограниченные производственные мощности.

Портативная огневая мощь ↑

Технология автоматического оружия легла в основу одного из самых прочных доктринальных нововведений Первой мировой войны — автоматического огня для небольших подразделений. Армии быстро определили потребность в портативном автоматическом оружии, которое можно было использовать в атаке для подавления оборонительного огня противника. Британии посчастливилось иметь именно такое оружие — пистолет Льюиса — поступившее в коммерческое производство в начале войны. Франция запустила в производство довоенную экспериментальную автоматическую винтовку CSRG.К 1916 году обе армии начали использовать это оружие на уровне взвода.

Германия потратила больше времени на разработку ручного пулемета. Требования военной экономики означали, что оружие должно было быть основано на существующем пулемете MG08. Результатом стал MG08 / 15, появившийся в начале 1917 года. Он был более громоздким, чем его союзные аналоги, но потенциально мог обеспечить большую огневую мощь. Он стал самым распространенным немецким пулеметом, что привело к росту использования пулеметов в немецкой армии.На Марне в 1914 году немцы выставили 3,5 пулемета на километр фронта; в том же районе в 1918 году показатель на километр составлял 31,5. [2] Осенью 1918 года пулеметы составляли основу каждой оборонительной операции Германии.

Тактика малых подразделений кардинально изменилась, поскольку ручные гранаты и гранатометы заняли свое место среди ручных гранат и автоматов наряду с традиционной винтовкой и штыком. Их присутствие позволяло взводам действовать самостоятельно, что способствовало выработке более гибкой тактики пехоты.Эти успехи начались на Западном фронте, но за ними последовали и в других местах. Россия пыталась наладить производство датского ручного пулемета Madsen; Австро-Венгрия производила легкие установки для своего орудия Шварцлозе; а Италия приняла на вооружение любопытный пистолет-пулемет Вильяр-Пероза. Последний был предшественником того, что мы теперь называем пистолетом-пулеметом — более совершенные образцы которого в конце 1918 года не использовались в итальянских и немецких руках.

Американские экспедиционные силы переняли оружие и тактику союзников, но в США также разрабатывались местные вооружения.Пулемет и автоматическая винтовка — оба были разработаны Джоном М. Браунингом (1855-1926) — пошли на вооружение в течение последних нескольких недель войны.

Нет данных о количестве «огнестрельных ранений», нанесенных пулеметами, но их определение в качестве главного вектора огневой мощи пехоты предполагает, что эта пропорция была значительно выше, чем от огнестрельного оружия. Во время Первой мировой войны пулемет стал оружием на поле боя. В более поздних войнах он окажется под угрозой и вытеснен другими системами вооружения, в частности минометом.Однако разработка портативного автоматического оружия для пехоты должна была иметь прочное наследие, составляя основу тактики небольших подразделений вплоть до наших дней.

Пол Корниш, Имперский военный музей, Лондон

Редактор раздела: Марк Джонс

Столетие Первой мировой войны: пулеметы

1 июля 1916 года в британских окопах у реки Сомма на Западном фронте раздался свист.

Это был знак для людей в окопах: «Переступить через вершину».Солдаты карабкались по импровизированным стенам, пинали футбольные мячи и несли трости, уверенные, что их артиллерия заставила немецкие линии подчиниться.

Немецкие пулеметные посты подстерегали.

В конце первого часа около 50% «первой волны» британской атаки были убиты или ранены. К концу дня более 20 000 британских солдат были убиты на поле боя во время, которое военный историк Джеймс Уилбенкс назвал «самым черным днем ​​в британской военной истории».«

Один немецкий пулеметчик сказал, что даже не было необходимости прицеливаться, — сказал г-н Уилбенкс.

Способность пулемета уничтожать врагов быстро и в большом количестве навсегда изменила облик современной войны.

Оружие было изобретено в 1800-х годах, а его ранние версии использовались во время Гражданской войны в США. Но только во время Первой мировой войны это оружие вступило в силу, поскольку механизированная бойня имела масштабы, о которых раньше даже не догадывались.

Ранние пулеметы были ручными, а не автоматическими, но они служили воротами для того, что должно было доминировать на полях сражений 20-го века.К Первой мировой войне пулеметы были полностью автоматическим оружием, которое стреляло быстро, до 450-600 выстрелов в минуту.

Хирам Максим, американский изобретатель, в 1884 году доставил первый автоматический портативный пулемет, став образцом для оружия, опустошившего британцев на Сомме. Г-н Максим впервые предложил оружие Великобритании, которая отвергла его раннюю версию.

Германия, однако, приняла другую версию технологии, выпустив пистолет под названием Maschinengewehr 08.К 1914 году у немецких войск было 12000 пулеметов по сравнению с несколькими сотнями у французов и британцев.

В следующем столетии новые конструкции сделали пулеметы неотъемлемой частью войны. В виде легких переносных версий, которые несет пехота, или тяжелых орудий, установленных на кораблях и самолетах, пулемет стал обычным оружием на поле боя.

Отец и сын, которые изобрели пулемет и глушитель

1 ноября 1914 года сэр Хайрам Стивенс Максим установил рекорд в статье для The New York Times под названием «Как я изобрел пистолет Максима» — Хирам Максим.Начало мировой войны побуждает американского изобретателя-ветерана описать для The Times свою эпохальную идею ».

Максим, которому на момент публикации статьи было 74 года, умер всего два года спустя. Несмотря на то, что он нажил состояние на своей машине для убийства, он считал свое изобретение, которое впоследствии изменило историю войны, было ошибкой. Его наследие, переданное его сыном Хайрамом Перси Максимом, предопределило судьбу семьи Максим как одного из самых значительных дуэтов отца и сына, когда-либо входивших в индустрию огнестрельного оружия.

Отец изобрел современный пулемет. Сын заставил это замолчать.

Вырезка из газеты 1914 года. Снимок экрана любезно предоставлен The NY Times TimesMachine.

Максим старший был плодовитым изобретателем, родился в сельской местности штата Мэн в 1840 году и вырос в районе Новой Англии. Механик, старший сын фермера, получил множество патентов на свои изобретательские идеи. Первый был для щипцов для завивки волос. Затем появился автоматический разбрызгиватель, который телеграммой оповестил местную пожарную охрану о срабатывании пожара.Хронический мастер сконструировал усовершенствованную мышеловку и даже экспериментировал с летательным аппаратом за десять лет до того, как братья Райт взлетели.

Именно демонстрация электрического регулятора давления на первой Международной выставке электроэнергии, проходившей в Париже, Франция, в 1881 году, впервые принесла Максиму известность. Французское правительство назначило его кавалером почетного легиона за его работу. Следующей зимой он встретил в Вене «умного американца», которого Максим, по словам Максима, вдохновил его на создание первого в мире портативного полностью автоматического пулемета.Американец заметил, что электрические машины Максима не сделают его богатым, а новое оружие принесет не только славу, но и богатство.

«Позже я приехал в Лондон, основал небольшую мастерскую и сделал ружье, которое заряжалось и стреляло само по себе за счет энергии отдачи», — писал Максим в The New York Times. «Это было настоящее чудо за девять дней: все примечательные, от H.R.H. принц Уэльский пришел ко мне и выстрелил из моего ружья ».

Это было не похоже ни на что, что кто-либо когда-либо видел.Его предшественник, пистолет Гатлинга, был пистолетом с ручным приводом и кривошипно-шатунным механизмом, имевшим шесть или десять стволов, в то время как у пистолета Максима был только один ствол.

«Когда меня попросили выстрелить перед правительственными чиновниками в Энфилде, я произвел 333 выстрела за полминуты и ленту из 2000 патронов чуть более чем за три минуты», — написал он в The New York Times . «Затем британское правительство сделало мне крупный заказ, который позволил мне организовать компанию и оборудовать большие мастерские.”

Бизнес процветал, и всего за шесть лет после основания Maxim Gun Co. в 1884 году компания Maxim заключила лицензионные соглашения с британской, австрийской, немецкой, итальянской, швейцарской и русской армиями. После десятка лет работы его компания была приобретена Vickers Ltd., которая затем использовала свою собственность для производства пулеметов Vickers, которые стали стандартным огнестрельным оружием для британской армии во время Первой мировой войны. Эти пулеметчики убили миллионы людей. В результате Первая мировая война получила прозвище «пулеметная война».”

Максим также разработал свой собственный бездымный порох, названный кордитом, для повышения его эффективности. Примечательно, что Максим даже написал, как его брат по имени Исаак сменил имя на Хадсон в попытке зацепиться за свой успех.

Мужчина позирует с автоматом на борту авианосца «Индиана» в 1895 и 1901 годах. Фотография любезно предоставлена ​​Библиотекой Конгресса.

«Но позже произошли определенные события, в которых« Х. Максим », который должен был быть Хирамом Максимом, стал Хадсоном Максимом, и именно так Хадсон Максим стал« изобретателем бездымного пороха »в Штатах», — писал он в The New York Times в 1914 году.

В то время как брат Максима пытался добиться успеха, используя фамилию, сын Максима, Хайрам Перси Максим, построил собственную империю. «Я подозреваю, что у меня был один из самых необычных отцов, которые когда-либо были», — писал он в своей книге Гений в семье , согласно Hartford Courant.

Уроженец Бруклина ходил в школу в районе Бостона и в 1886 году окончил Массачусетский технологический институт в возрасте 17 лет. Как и его отец, он обладал эксцентричным умом и любопытством к инновациям.Он взял бензиновый двигатель, пристроил его к трехколесному велосипеду и попытался проехать на нем из Хартфорда, штат Коннектикут, в Спрингфилд, штат Массачусетс. Хотя его первые две попытки не увенчались успехом, он вспомнил успешную третью попытку: «В тот момент я не поменял бы свое положение ни на какое другое место на Земле».

Maxim Silencer был первым коммерчески доступным подавителем, и Теодор Рузвельт был одним из первых его сторонников. Фото любезно предоставлено NRA.

В 1890-х годах он работал в Columbia Automobile Co., где он сконструировал один из первых в мире серийных автомобилей с бензиновым двигателем. У этих автомобилей были громкие выхлопные системы, и младший Максим разработал глушители, чтобы ограничить их звук. Вскоре он понял, что эти устройства могут быть применены к другим машинам, и использовал аналогичную технологию для производства первого коммерчески доступного глушителя огнестрельного оружия в 1902 году. Семь лет спустя он запатентовал свою патентованную трубку, которая прикреплялась к стволу огнестрельного оружия, как и она. бы глушитель автомобиля, чтобы уменьшить шум и дульное пламя.

В то время как семья, создавшая пулемет и глушитель, внесла значительный вклад в общество и войну, старший Максим в конечном итоге считал, что его величайшим изобретением было устройство для спасения жизни, известное как медицинский ингалятор. Идея возникла, когда он страдал от серьезного бронхита в 1900 году. Хотя оно лечило его недуги и многие другие, его друзья в оружейной промышленности разрушили его репутацию, заявив, что он «проституировал свои таланты шарлатанскими ноздрями».”

«Из вышесказанного видно, что изобретение машины для убийства — это большая заслуга, и не что иное, как позор изобретать устройство для предотвращения человеческих страданий», — писал Максим в своей автобиографии Моя жизнь. «Полагаю, мне придется вынести позор, который, как говорят, достаточно велик, чтобы свести на нет всю заслугу, которую я мог бы иметь за изобретение машин для убийства».

Читать дальше: Вот как работают глушители огнестрельного оружия

«МАШИНА УБИЙСТВА» МАКСИМА «100 ЛЕТ»

Решением Максима и сердцем его конструкции был механизм переключения, сделанный по образцу человеческой ноги.В состоянии покоя «нога» лежала прямо и горизонтально, ее поворотная «ступня» прижималась к задней части затвора, плотно прижимая ее к казенной части ствола. Когда выстреливал патрон, ствол, затвор и «нога» отскакивали на короткое расстояние, оставаясь заблокированными до тех пор, пока пуля не вылетела из пистолета. Затем, когда механизм отдачи продолжит движение назад, коленный сустав ноги будет проходить под отключающим кулачком, заставляя колено сгибаться вниз и, таким образом, разблокировать затвор.

В этот момент ствол прекращал движение назад, но затвор летел назад еще быстрее, ускоряемый другим изобретением Максима, маленьким рычагом, называемым акселератором.Движение затвора выбрасывает использованную гильзу и извлекает свежий патрон из движущейся тканевой ленты. Приводимый вперед сжатой пружиной, затвор взведет ударник, зарядит новый патрон и выстрелит, повторяя цикл до бесконечности, пока спусковой крючок не будет отпущен или боеприпасы не будут исчерпаны.

Современные ружья с приводом от отдачи, в том числе крупнокалиберный пулемет М-2, работают практически так же, хотя сложный коленный рычажный замок был заменен более простым замком, стальным стержнем, который фиксируется вверх и вниз в вертикальный слот.

Успешная первоначальная демонстрация

«Маленькая маргаритка ружья» Максима, как он ее назвал, сразу же привлекла внимание герцога Кембриджского и британской королевской семьи. Во время одной из демонстраций пулемета Максим произвел впечатление на королевскую семью, выстрелив в цель буквами VR (Виктория Регина). Изобретатель поселился в Англии, стал подданным королевы и, наконец, был посвящен в рыцари за свои достижения. Его попросили баллотироваться в парламент, но он отказался из-за глухоты, проблема, возможно, вызванная 200 000 с лишним выстрелов, которые он произвел, демонстрируя свое оружие.

В начале Первой мировой войны все боевые армии были вооружены ружьем Максима.

Среди первых поклонников этого оружия были кайзер Германии и царь России, хотя Максим столкнулся с проблемами во время турне по продажам в Россию, которое он совершил примерно на рубеже веков. В то время российский закон запрещал атеистам въезд в страну, и Максим поссорился с секретной полицией, назвав себя атеистом.

Столкнувшись с арестом, он отрекся и объявил себя христианским протестантом.«Как Эдисон, — писал он позже, — мне никогда не была нужна религия», но в то время казалось целесообразным пройти временное обращение. Уловка сработала; «С того времени, — писал Максим, — русские закупили огромное количество пушек Максима, и это утверждали те, кто должен знать, что более половины японцев, погибших в конце войны (русско- Японская война 1904-05 гг.) Были убиты из маленького пистолета Максима. , забастовщики или враждебные толпы.Изначально использовавшееся для строительства колониальных империй, пушка Maxim провела свою первую крупномасштабную бойню в 1893 году, всего через восемь лет после изобретения пистолета. Пятьдесят британских охранников компании Rhodesian Charter Company в Африке направили четыре максима против зулусских племен, и менее чем за 90 минут орудия убили 3000 из 5000 атакующих зулусских сил.

Пулемет — разрушительное военное изобретение

Пулемет — это оружие, способное произвести более одного выстрела без перезарядки.Пулемет навсегда изменил поле боя. Это смертоносное изобретение изменило способ ведения войн и стало жизненно важным оружием для достижения военного превосходства.

Удар из пулемета

В современной истории было много достижений в вооружении, но лишь немногие виды оружия оказали такое ошеломляющее влияние на поле битвы, как пулемет. Сотни выстрелов в минуту для солдата создают армии, которые могут быть более смертоносными и более легкими в обучении. Качество меткости несколько сменилось общим количеством выстрелов, что привело к совершенно новому виду войны.

Концепция многозарядного оружия существует с 3 века до н. Э. Китай с их созданием Zhuge Nu , также известный как многозарядный арбалет. Только в середине девятнадцатого века был разработан первый успешный пулемет. Пистолет Гатлинга был реализован в 1862 году и считается первым успешным скорострельным ружьем, для которого солдат требовал использования рукоятки для стрельбы из оружия.

Первый автоматический пулемет, не требующий ручного управления, был изобретен в 1881 году Хирамом Максимом.Оружие Максима улучшило отдачу, перезарядку, точность и размер ружья Гатлинга и было принято во многих странах во время конфликтов, таких как война Чако, война махдистов, гражданская война в России и отдельные части Первой мировой войны.

Во время Первой мировой войны во всем мире были изобретены более эффективные и мощные пулеметы, которые улучшили конструкции пистолетов Гатлинга и Максима. В 1911 году полковник армии США Исаак Ньютон Льюис изобрел «пистолет Льюиса», который массово производился в Соединенном Королевстве и использовался во время обеих мировых войн.Пистолет Льюиса производил около 500-600 выстрелов в минуту и ​​весил примерно половину того количества, которое использовалось ранее. Во время Первой мировой войны Джон Т. Томпсон изобрел новаторское изобретение, которое стало известно как пистолет Томпсона или пистолет-пулемет. Пистолет-пулемет стал незаменимым оружием во время Второй мировой войны, так как боеприпасы были дешевле. В прежних пулеметах использовались дорогостоящие винтовочные боеприпасы, в то время как в этом новом пистолете-пулемете использовались пистолетные боеприпасы. Пистолет-пулемет обеспечивал большую мобильность и урон за счет меньшей дальности и точности.

Как мне это использовать?

Раскадровки энциклопедии изображений содержат легко усваиваемую информацию с наглядными изображениями, стимулирующими понимание и запоминание.
Storyboard That увлечен студенческим агентством, и мы хотим, чтобы все были рассказчиками. Раскадровки — отличное средство для демонстрации того, что студенты узнали, и для обучения других.

Используйте эти энциклопедии как трамплин для индивидуальных и общеклассовых проектов!

  • Назначьте семестр / человек / событие каждому учащемуся, чтобы заполнить свою собственную раскадровку
  • Создайте свою собственную энциклопедию изображений по изучаемой теме
  • Создайте энциклопедию картинок для учеников вашего класса или школы
  • Размещайте раскадровки в социальных сетях класса и школы
  • Скопируйте и отредактируйте эти раскадровки и используйте в качестве ссылок или визуальных элементов

Узнайте больше об изобретениях и открытиях, которые изменили мир, в нашей Картинной энциклопедии инноваций!

Просмотреть все ресурсы для учителей

https: // www.

Оставьте комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *