Космический двигатель: Ядерная энергодвигательная установка мегаваттного класса — Википедия – Какие двигатели человечество использует для полётов в дальний космос

Содержание

Какие двигатели человечество использует для полётов в дальний космос

Через десять лет после удачного штурма космоса несколько стран затеяли чрезвычайно амбициозные проекты по его дальнейшему освоению. В 1971 году США запустили программу Space Shuttle, через пять лет СССР начал разработку системы «Энергия — Буран», а еще через шесть лет к гонке подключилась Великобритания с проектом HOTOL (Horizontal Take-Off and Landing).

Многие специалисты считают именно английский проект самым революционным: если США и СССР развивали традиционные ракетные технологии, заложенные еще Вернером фон Брауном, то Великобритания решила создать принципиально новый воздушно-космический самолет. Самим аппаратом занималась British Aerospace, а уникальный воздушно-реактивный двигатель должна была разработать компания Rolls-Royce. Планировалось, что HOTOL будет взлетать с разгонной аэродромной тележки, двигатель начнет работать в воздушно-реактивном режиме (до высоты около 28 км), используя в качестве окислителя забортный воздух, после чего перейдет в режим классического ракетного жидкостного двигателя. Создание такого двигателя и сейчас задача почти фантастическая, что же говорить о восьмидесятых годах. Довольно скоро Rolls-Royce столкнулась с рядом трудностей, повлекших незапланированный рост затрат на исследовательские работы. В итоге British Aerospace решила отказаться от революционного двигателя и вступить в кооперацию с СССР, переименовав проект в Interim HOTOL. Аппарат планировали оснастить советскими ЖРД и запускать с модифицированного самолета Ан-225. Сотрудничество началось в 1991-м, однако в этом же году Советский Союз закончил свое существование, похоронив под своими обломками и совместный проект.

HOTOL
HOTOL Беспилотный аппарат был предназначен для доставки полезной нагрузки массой около 7−8 т на низкую орбиту высотой 300 км. Он должен был взлетать с взлетно-посадочной полосы, размещаясь на фюзеляже большого самолета-носителя с ракетными ускорителями, которые должны были помочь разогнать аппарат до скоростей, оптимальных для работы его двигателей. Двигатели должны были переключаться с воздушно-реактивного на ракетный режим работы при достижении аппаратом скорости в 5−7 М.

Три в одном

Не все были согласны с таким положением дел. После сворачивания работ над RB545 в 1989 году ведущий конструктор двигателя Алан Бонд забрал с собой двух инженеров Rolls-Royce и основал собственную компанию — Reaction Engines. Она сосредоточилась на создании гибридного двигателя SABRE (Synergistic Air-Breathing Rocket Engine) и разработке других технологий для воплощения проекта космоплана Skylon. Многие эксперты считают, что проект SABRE способен перевернуть современную космонавтику и сделать возможным создание одноступенчатого космического аппарата. Он может работать на первом этапе полета как турбореактивный двигатель, в качестве окислителя забирая забортный воздух. На втором этапе — как прямоточный двигатель, а на третьем — как обычный ракетный двигатель, используя внутренний бортовой окислитель.

Идея одноступенчатого многоразового воздушно-космического аппарата (SSTO, Single Stage to Orbit) далеко не нова, но на пути ее воплощения стоит ряд препятствий — низкий уровень весовой отдачи конструкции и недостаточный удельный импульс существующих ракетных двигателей. Это взаимосвязанные параметры: повысив удельный импульс (который показывает, сколько секунд данный двигатель сможет создавать тягу в 1 Н, истратив при этом 1 кг топлива), вы можете получить ту же тягу с меньшим расходом топлива и окислителя, что позволяет сделать конструкцию большей массы. Однако существующие жидкостные ракетные двигатели имеют удельный импульс в вакууме порядка 400 с (рекорд для кислород-водородных КВД1 и RL-10 составляет 462 с, двигатели на экзотических компонентах — например, использующие водород-литий-фтор — позволяют получить на сотню больше, однако с ними столько проблем, что игра не стоит свеч).

Сравнительные размеры многоразовых кораблей
Сравнительные размеры многоразовых кораблей Проекты кораблей с двигателями SABRE на фоне существующих челноков смотрятся как звездолеты из «Звездных войн». Это действительно принципиально другие космические аппараты.

Не ракета, не самолет

В то же время двигатели современных авиалайнеров имеют удельный импульс на порядок выше, приближаясь к цифре 6000 с, и даже «прожорливый» двигатель сверхзвукового Concorde имел удельный импульс всего в два раза ниже — 3000 с (почти в десять раз экономичней космической ракеты). Такая радикальная разница из-за иного принципа работы: воздушно-реактивный двигатель на каждую часть топлива использует 14 частей воздуха (если топливо — водород, то 30), а ракетному приходится черпать из баков все, что потом улетит в сопло.

Почему корабль Boeing не долетел до МКС и насколько это плохо

Можно, конечно, использовать воздушно-реактивный двигатель на части траектории выведения, которая проходит сквозь плотные слои атмосферы, с его экономичностью и отсутствием необходимости в окислителе. Но не все так просто. Космическая ракета стремится пройти плотные слои атмосферы быстро, проткнув их на вертикальном участке траектории, а уже потом заваливая траекторию горизонтально. Аппарат с ВРД не может позволить себе такой роскоши — он должен максимально использовать бесплатный окислитель за бортом, потому его траектория пологая и долгое время проходит в плотных слоях атмосферы, с большой скоростью полета на этом участке. Все это время аппарат находится под воздействием скоростного напора набегающего потока, что требует упрочнения конструкции и повышения эффективности теплозащиты — и то и другое тянет за собой увеличение веса. Есть еще одна хитрость — возможность использовать подъемную силу крыла: если ракета с вертикальным стартом висит на тяге двигателей и при наборе высоты тяга должна быть больше ее веса, то крылатый аппарат с аэродинамическим качеством 5 для набора высоты должен иметь тягу всего лишь больше 1/5 веса. Однако крылья — это тоже дополнительный рост веса конструкции. Все это затягивается в тугой клубок противоречий, решить которые на современном технологическом уровне, получив преимущества над многоступенчатой системой, достаточно сложно.

Почему корабль Boeing не долетел до МКС и насколько это плохо

Самый мощный холодильник в мире

Алан Бонд со своей командой столкнулся с теми же проблемами, что и его предшественники: среди всего множества существующих типов воздушно-реактивных двигателей нет универсала, каждый из них отличается разной эффективностью, каждый хорош в своем диапазоне скоростей, обладает своего рода узкой специализацией. Турбореактивный двигатель отлично работает в диапазоне от 0 до 3 М, но разгон с его помощью до больших скоростей затруднителен: воздух при торможении в воздухозаборнике нагревается так сильно, что дальнейшее сжатие его компрессором приводит к росту температуры до величин, выходящих за пределы термостойкости материалов камеры сгорания и турбины. Прямоточный воздушно-реактивный двигатель и гиперзвуковой прямоточный воздушно-реактивный двигатель (последний отличается сверхзвуковым течением в камере сгорания) отлично работают на больших скоростях (Х-43А достиг 10 М), однако не работают на малых. Турборакетные двигатели обладают низким удельным импульсом и тяговооруженностью (они тяжелы для той тяги, что создают). В свое время большие надежды возлагали на двигатель со сжижением кислорода (LACE, Liquid Air Cycle Engine), в котором криогенное топливо идет через теплообменник, забирая тепло у набегающего потока до температуры сжижения воздуха, далее через сепаратор, где кислород отделяется от азота и подается в камеру сгорания. Однако такой двигатель тяжел, конструктивно сложен (прощай, надежность) и имеет повышенный расход топлива (водорода на охлаждение тратится больше, чем можно сжечь в камере сгорания с полученным жидким кислородом, а это потери удельного импульса). Впрочем, от LACE Алан Бонд решил позаимствовать идею охлаждать воздушный поток в теплообменнике.

Почему корабль Boeing не долетел до МКС и насколько это плохо
Одна из самых сложных и важных деталей SABRE — криогенный теплообменник. Он должен практически мгновенно охлаждать входящий воздух, который нагревается при сжатии до 1000 ˚C, до температуры порядка -140 ˚C. До сих пор это никому не удавалось.

В итоге инженеры пришли к необходимости комбинированной силовой установки из разных двигателей, в которой каждый работает на своем участке (например, для старта используется турбореактивный, для высокоскоростного разгона — прямоточный, для внеатмосферного полета — ракетный). Ракетный двигатель — необходимый компонент коктейля, остальные по вкусу, в разных комбинациях. Однако это порождает определенные проблемы: на всех режимах полета нужно везти мертвый груз в виде двигателя для другого участка траектории, растет аэродинамическое сопротивление из-за сопел неработающих двигателей. Альтернатива — гибридная силовая установка, которая сочетает в себе качества (и агрегаты) всех типов двигателя. Сопло ведь нужно всем? Так зачем тащить несколько, используем одно для всех. Воздухозаборник нужен всем, кроме ракетного? Используем один, а потом закроем заподлицо, чтобы сопротивления не создавал. В этом направлении и двигалась мировая конструкторская мысль (даже силовая установка самолета SR-71 Blackbird — гибрид турбореактивного и прямоточного двигателей, некоторые зенитные ракеты используют ракетно-прямоточный).

Очень быстрый гибрид

Двигатель компании Reaction Engines — SABRE — вполне подходит на роль ключевой технологии, с помощью которой можно разрубить гордиев узел противоречий и реализовать одноступенчатый воздушно-космический аппарат. Этот гибрид сочетает в себе качества турбореактивного (хотя турбину компрессора крутят не выхлопные газы, а горячий гелий в замкнутом цикле), прямоточного и ракетного двигателей и работает с достаточной эффективностью на всех участках траектории, от взлетной полосы до орбиты. Расчеты Reaction Engines показывают, что в случае применения ЖРД общий вес корабля и полезной нагрузки должен составлять 13% от стартового веса для вывода полезной нагрузки 15 т на низкую опорную орбиту. Двигатель SABRE позволяет при тех же условиях довести вес корабля с полезной нагрузкой до 22% — цифра вполне достижимая при современном уровне технологий.

Почему корабль Boeing не долетел до МКС и насколько это плохо
Революционный двигатель SABRE разрабатывается Reaction Engines при поддержке BAE Systems. Ожидается, что он сможет поднять самолет в воздух и разогнать его до 5 М, после чего перейдет в реактивный режим работы — для скоростей до 25 М.

SABRE, как и его предшественник RB545, — гибридный воздушно-реактивный двигатель с предохлаждением потока. Здесь, как и в LACE, за воздухозаборником стоит криогенный теплообменник, однако входящий поток не сжижается, всего лишь охлаждаясь до низких температур. Далее воздух с температурой порядка -140 °С (до этого он нагрелся при торможении свыше 1000 °С) поступает в простой турбокомпрессор из легких сплавов (низкая температура воздушного потока позволила облегчить его на три четверти по сравнению с компрессором турбореактивного двигателя), сжимающий газы до давления камеры сгорания, в которой газообразный воздух смешивается с жидким водородом. При выходе из плотных слоев атмосферы воздухозаборник запирается створками, а камера сгорания питается жидким кислородом из внутренних баков. Поскольку расход водорода на охлаждение больше, чем окислителя в полученном воздухе, избыток (2/3 потока, прошедшего теплообменник) дожигается во втором контуре, смешиваясь с той частью воздуха, которая не поступила в теплообменник.

Однако принципиальная схема по сравнению с RB545 несколько изменилась: добавилась промежуточная петля с жидким гелием — теперь водород охлаждает гелий, а гелий уже отбирает тепло у воздуха и, нагревшись, крутит турбину компрессора и насосов, после чего поступает на повторное охлаждение. Это позволило избежать проблем водородной хрупкости в температурно-напряженном теплообменнике воздухозаборника. Компоновка космического аппарата тоже изменилась: тонкое веретено корпуса оснащено треугольным крылом со слегка искривленными мотогондолами на его концах.

SABRE: история и предыстория
1903

Первый полет самолета братьев Райт, оснащенного двигателем

1935

Появление одного из самых массовых транспортных самолетов в истории, Douglas DC-3

1952

Начало коммерческой эксплуатации реактивного пассажирского авиалайнера de Havilland Comet

1962

Запуск первого в мире коммерческого спутника Telstar 1

1969

Турбореактивные двухконтурные двигатели делают Boeing 747 первым дальнемагистральным широкофюзеляжным пассажирским самолетом

1981

Начало полетов кораблей Space Shuttle

1990

Начало разработки SABRE

2003

Успешное решение проблемы обледенения воздухозаборника

2012

Успешные испытания теплообменника для системы предварительного охлаждения

2013

Британское правительство направляет на поддержку проекта 50 млн фунтов стерлингов

2015

BAE Systems инвестирует в Reaction Engines 20 млн фунтов для создания и испытаний прототипа

Запарились

История создания SABRE — это прежде всего история разработки и совершенствования теплообменника, поскольку все завязано на его характеристики. Он должен извлечь из воздуха до 400 МВт тепла, при этом иметь минимальный вес, малые габариты, малое гидравлическое сопротивление (чтобы обеспечить заданный расход хладагента без установки тяжелых насосов), работать в условиях громадного перепада температур и давлений, сохранив целостность на протяжении всего жизненного цикла аппарата, и быть технологичным в изготовлении. По словам Алана Бонда, современные промышленные теплообменники такой мощности имеют вес в 30 раз больше, чем допустимо для применения на борту одноступенчатого космического аппарата (18 т против 600 кг, заложенных в конструкцию SABRE). Ответ, как часто бывает, подсказала природа. Жабры рыб имеют разветвленную систему капилляров, в которых более тонкая сеть трубочек вливается в толстые сосуды. Это оказалось именно тем решением, которое позволяет снизить сопротивление току жидкости при достаточной площади теплообмена. Существующие теплообменники, как правило, имеют набор трубок равного диаметра, в новой же конструкции применяются изогнутые тонкостенные трубки диаметром 0,9 мм с толщиной стенок 30 нм из сплава Inсonel 718, которые соединяют основные трубопроводы большего диаметра. Для изготовления применяется пайка, а отверстия в основных трубопроводах прожигаются лазером. Был изготовлен опытный образец теплообменника, который поместили перед установленным на стенде реактивным двигателем Rolls-Royce Viper. Инженеры провели цикл наземных испытаний, в которых модуль прошел 200 рабочих циклов по 5 минут каждый — больше, чем за планируемый жизненный цикл аппарата Skylon.

Схема SKYLON
Схема SKYLON 1. Керамический обтекатель;
2. Носовые стабилизаторы;
3. Бак с жидким кислородом;
4. Бак с жидким водородом;
5. Грузовой отсек;
6. Блок управления;
7. Воздухозаборник;
8. Теплообменник;
9. Двигатель SABRE;
10. Орбитальные маневровые двигатели.

При охлаждении воздуха до -140 °С неизбежно возникает проблема обледенения: весь пар (а при этой температуре уже не только пар, но и углекислый газ), который содержался в окружающем воздухе, превращается в лед. При первом пробном запуске теплообменник за считаные секунды покрылся сплошной коркой льда, который полностью забил все каналы для воздуха. По заявлению Reaction Engines, в настоящее время проблема решена, однако компания избегает даже малейших намеков на то, каким образом это удалось, ссылаясь на коммерческую тайну. Некоторое представление можно получить, посмотрев, как с обледенением справлялись в проекте RB545. Охлаждение потока там проводилось в две стадии: первый теплообменник охлаждал воздух до +10 °С, превращая почти весь пар в туман, а затем впрыск жидкого кислорода моментально снижал температуру потока до -50 °С. Вся оставшаяся влага (перед этим опционально стоял еще влагоуловитель) моментально превращалась в мелкодисперсные кристаллы льда, не намерзая на трубки теплообменника.

Поскольку двигатель обладает высокой термодинамической эффективностью, разработчики использовали простой и легкий осесимметричный воздухозаборник с двухскачковой системой торможения воздушного потока с повышением его давления до 1,3 бара. Альтернативой был вариант с плоским клином сжатия, представленный на эскизах HOTOL. Он обладает большей эффективностью (большее число косых скачков уплотнения минимизирует потери полного давления на входе), однако при изменении числа Маха необходимо регулировать углы наклона множества поверхностей, чтобы все скачки сошлись в одну точку. Эта механизация с шарнирами и приводами тянет за собой дополнительный вес. В осесимметричном двухскачковом воздухозаборнике задача решается только перемещением конуса взад-вперед.

Схема SKYLON

Клин клином

Сопло двигателя тоже высокотехнологичный агрегат, имеющий отличия от классического колокола сопла Лаваля, применяющегося на современных жидкостных реактивных двигателях. Существенной проблемой одноступенчатых аппаратов является изменение давления на срезе сопла: оптимизированное под вакуум сопло не даст той тяги в атмосфере, и наоборот. В результате весь участок разгона сопло будет работать то с недорасширением, то с перерасширением, что приведет к падению удельного импульса. В многоступенчатых аппаратах можно оптимизировать сопло каждой ступени под давление на участке ее работы (оно тоже варьируется, но не в таком широком диапазоне). В одноступенчатых нужно или применять сопло изменяемой геометрии (а это дополнительный вес механизмов и приводов), или мириться с потерей эффективности. Решить эту проблему позволяют двигатели с высотной компенсацией, в которых расширяющийся сверхзвуковой поток газа только с одной стороны ограничен стенкой сопла, с другой же — внешняя среда. К таковым относится клиновоздушный ракетный двигатель (aerospike engine, применялся в американском проекте Х-33) и expansion-deflection nozzle — именно такой тип сопла разрабатывается в рамках научно-исследовательских программ STERN и STRICT для SABRE. Этот тип сопла имеет такой же колокол, как и у сопла Лаваля (правда, короче и другой геометрии), с центральным телом по оси, отклоняющим поток к стенкам колокола (по форме похоже на впускной клапан в цилиндре ДВС). За центральным телом остается не занятая выхлопными газами зона, позволяющая компенсировать влияние давления окружающей среды.

Одни проблемы

И это далеко не все сложности. Перед инженерами Reaction Engines стоит ряд других задач: создание систем охлаждения камеры сгорания (на атмосферном участке полета предлагается охлаждать воздухом, пропущенным через рубашку, вне атмосферы — жидким кислородом), отработка сопел системы орбитального маневрирования, промежуточного теплообменника между водородом и гелием (предлагается использовать керамическую матрицу), турбины для жидкого гелия (тут планируется применять оригинальную систему с рабочими колесами противоположного направления вращения) и решение аэродинамических проблем с конструкцией самого космолета.

Схема SKYLON

Все эти работы выполняются в основном на деньги частных инвесторов с минимальным привлечением бюджетного финансирования. При этом сложность возникающих проблем превышает возможности современного компьютерного моделирования, и многое приходится решать экспериментом на натурных стендах (так, для отработки геометрии сопел планируется запуск суборбитальной ракеты, которая пройдет атмосферный участок с тем же числом Маха на заданной высоте, в планах и создание летательного аппарата для отработки компоновки мотогондолы). Еще недавно Алан Бонд говорил, что первый полет планируется в 2029 году, а сейчас называет уже 2024 год. И это будет самолет, который выведет на круговую орбиту 1300 кг. Успех этих работ может существенно снизить цену вывода груза на орбиту, сделать ближний космос столь же доступным, как Антарктика, а технологии двигателей с предохлаждением можно использовать и на Земле — для воздушных перевозок с гиперзвуковой скоростью.

Декабрь ушедшего года принес свежие новости: наряду с возводимым в Великобритании (Уэсткотт, графство Бакингемшир) испытательным стендом для двигателя SABRE Reaction Engines начала строительство еще одного стенда в США. Работы ведутся на средства гранта, выделенного DARPA. А это значит, что к финансированию подключился Пентагон. На стенде будет испытываться система предохлаждения перспективной силовой установки.

Статья «Двигатель для космолета» опубликована в журнале «Популярная механика»
(№2, Февраль 2018).

Двигатели для покорения космоса: краткая история смелых проектов и перспективные разработки

Новые программы освоения космоса требуют разработки более совершенных двигателей. Конструкторам всегда хотелось уменьшить их массу, увеличить тягу и повысить экономичность. Сейчас это стало не простым стремлением сделать лучше, а необходимым условием для будущих пилотируемых миссий и доставки научной аппаратуры к другим планетам в разумные сроки. Какие технические решения выглядят заманчиво в отдалённой перспективе, а какие реализуются прямо сейчас?

С движением мы сталкиваемся ежедневно и привыкли к нему настолько, что не слишком задумываемся о его природе. В обычных условиях всегда есть какая-то среда и возможность взаимодействовать с ней. Ноги и колёса автомобиля отталкиваются от твёрдой поверхности дороги, гребной винт лодки увлекает воду, а турбина самолёта – воздух. Отсутствие привычной среды в космосе не даёт столь богатых возможностей.

Единственный освоенный принцип движения космических аппаратов (КА) был и остаётся прежним: реактивная струя выбрасывается в одну сторону, создавая тягу в противоположном направлении. Вся соль в том, из чего формируется и что представляет собой сама реактивная струя.

Независимо от типа в ракетных двигателях “рабочим телом” принято называть то, что покидает сопло на большой скорости. Для разгонных блоков ракет-носителей это продукты сгорания топлива, для ионных двигателей спутников – ионизированный газ. Во всех случаях время работы двигателя ограничено имеющимся на борту запасом вещества, используемого при создании реактивной тяги.

Для вывода спутника на орбиту Земли и отправки автоматических межпланетных станций (АМС) за её пределы двигатель ракеты-носителя должен обеспечить тягу в сотни и тысячи килоньютон, но ему достаточно проработать несколько минут. Самим космическим аппаратам вне гравитационного поля планеты достаточно тяги в доли ньютона, но эксплуатироваться их двигатели будут годами. Пока даже на одном КА приходится использовать несколько разных типов двигателей в качестве маршевых и корректирующих, но всё может измениться.

HyperV

Недавно в рамках проекта HyperV были собраны через Kickstarter средства на доработку импульсного плазменного двигателя. В качестве рабочего тела сгодятся практически любые газы. Сам двигатель обещает быть гораздо дешевле в производстве и эксплуатации, чем имеющиеся аналоги.

Главное преимущество заключается в универсальности. За счёт регулирования соотношения тяги к удельному импульсу один двигатель можно использовать для разных задач.

Orion, Daedalus, Longshot и другие ядерные ракетные двигатели

Ядерные двигатели разрабатываются с пятидесятых годов прошлого века и актуальны до сих пор. Изначально их предполагалось делать импульсными – ядерные взрывы малой мощности должны были придавать ускорение огромному космическому кораблю. Грандиозный проект Orion был рассчитан на пилотируемую миссию с командой в 200 человек, но его так и не удалось воплотить по техническим и экономическим причинам.

Позже предпочтение отдали менее экстремальному режиму работы ЯРД – реактивному, в котором ядерный реактор используется для контролируемого нагрева рабочего тела. Следующий проект (Daedalus) предполагал строительство на орбите Юпитера автономного зонда. Аппарат длиной почти в полкилометра должен был разогнаться термоядерными ракетными двигателями и достичь через 49 лет звезды Барнарда в созвездии Змееносца. Проект был свёрнут в 1977 году из-за недостаточных знаний об устройстве Солнечной системы вблизи её внешних границ.

В конце восьмидесятых NASA вернулось к идее межзвёздных полётов космических кораблей. Проект Longshot выглядел более реалистично и основывался на использовании лазерно-термоядерного двигателя. В качестве цели была выбрана звезда альфа Центавра B. Время полёта увеличилось до века, а миссия не предполагала возвращения. В отличие от проекта Daedalus, Longshot опирался преимущественно на существующие, а не на перспективные технологии. На последнем этапе стало очевидно, что кораблю потребуется порядка 264 тонн смеси гелия-3 и дейтерия, которых получить в таких количествах ценой разумных затрат не удастся.

Несмотря на серию неудачных проектов, ядерные ракетные двигатели не теряют актуальности. Глава Роскосмоса Владимир Поповкин сообщил в интервью “Российской газете”, что опытный образец ядерной установки мегаваттного класса для межпланетных полётов появится в России в 2017 году.

Проведение стендовых испытаний ядерного реактора запланировано в Сосновом Бору Ленинградской области. По сравнению с прямоточным ядерным двигателем температура нагрева рабочего тела должна снизиться до 1500 градусов, а создаваемая реактивная струя не будет радиоактивной. Второе свойство позволит использовать двигатель уже на ранних этапах полёта без риска радиационного загрязнения атмосферы Земли. Подобная программа NASA “Прометей” была закрыта в 2006 году из-за недостаточного финансирования.

VASIMR

Другим многообещающим проектом является разработка электромагнитного ускорителя с изменяемым удельным импульсом (в англоязычной литературе – VASIMR). Рабочее тело (аргон) ионизируется радиоволнами, и полученная плазма затем разгоняется в электромагнитном поле, создавая реактивную тягу.

Впервые появившись в 1979 году, идея стала по-настоящему революционной и сейчас близка к воплощению. Такой двигатель был бы крайне востребован в системе орбитального и межпланетного транспорта. Для начала “космический буксир” мог бы перемещать многотонные грузы между орбитами Земли и Луны. Модель VASIMR VF-200 производства Ad Astra Rocket Company планируется разместить на борту МКС.

Макет двигателя VASIMR VF-200-1 представлен в ролике ниже.

EmDrive

В конце 2012 года профессор Академии наук Китая Ян Цзюань представила перевод своей статьи, описывающей прототип уникального электромагнитного ракетного двигателя. На бумаге он выглядит гораздо интереснее имеющихся сегодня ионных двигателей хотя бы потому, что не требует расхода рабочего тела, но в этом и главная причина сомнений. Совсем недавно о таком типе электрического ракетного двигателя можно было только мечтать.

В отличие от всех иных типов ракетных двигателей, здесь ускорение должно достигаться за счёт направленного микроволнового излучения. О том, что электромагнитные волны создают давление, было известно ещё со времён Максвелла, однако описание принципов работы EmDrive вызывает множество вопросов.

Образно говоря, такой двигатель похож на микроволновку, к которой добавили резонирующую полость в виде замкнутого усечённого конуса. По идее, излучаемые микроволны оказывают давление на внутреннюю полость, которое не компенсируется только в одном направлении. Так (по мнению госпожи Цзюань) у EmDrive возникает реактивная тяга.

К сожалению, такой принцип работы EmDrive вызывает множество сомнений и напоминает печальный опыт установки экспериментального “движителя без выброса реактивной массы” на спутник “Юбилейный” в 2008 году.

Радует то, что EmDrive хотя бы не относится к пресловутым инерциоидам – типу устройств, работоспособность которых без взаимодействия с внешней средой невозможна. Сомнения касаются и большинства заявленных характеристик. Помимо того что в сравнении с лучшими ионными двигателями EmDrive обещает обеспечить больший срок службы, декларируется примерно в десять раз меньшая масса при той же мощности и большей (720 мН) тяге. Подробнее об истории разработки EmDrive смотрите статью Евгения Золотова.

При исследованиях дальнего космоса энергию для EmDrive, скорее всего, будут вырабатывать привычные модули РИТЭГ. Во внутренней области Солнечной системы (условно – до главного пояса астероидов) можно ограничиться солнечными батареями. Срок автономной работы КА с электромагнитным двигателем и солнечными батареями будет практически ограничен только износом, так как у него на борту нет расходуемых компонентов.

Электромагнитный реактивный ускоритель — Википедия

VASIMR на испытательном стенде

Электромагнитный ускоритель с изменяемым удельным импульсом (англ. Variable Specific Impulse Magnetoplasma Rocket; VASIMR) — электромагнитный плазменный двигатель, предназначенный для реактивного ускорения космического аппарата. Реактивный двигатель использует радиоволны для ионизации рабочего тела с последующим разгоном полученной плазмы с помощью электромагнитного поля, для получения тяги. Способ нагрева плазмы, используемый в VASIMR, был разработан в результате исследований в области термоядерного синтеза.

Цель разработки VASIMR — заполнить разрыв между высокоэффективными реактивными системами малой тяги с высоким удельным импульсом и низкоэффективными системами большой тяги с низким удельным импульсом. VASIMR способен работать в режимах, близких к системам большой тяги и малой.

Сама концепция двигателя была предложена астронавтом и учёным Франклином Чанг-Диазом в 1979 году и продолжает развиваться в настоящее время.

VASIMR, иногда рассматриваемый как электротепловой плазменный ускоритель (ЭПУ), использует радиоволны для ионизации и нагрева рабочего тела и электромагнитные поля для ускорения плазмы для создания тяги. Этот тип двигателя можно рассматривать как разновидность безэлектродного плазменного двигателя, отличающегося в способе ускорения плазмы. Оба типа двигателя не имеют никаких электродов. Основное преимущество такого проекта состоит в исключении эрозии электродов. Более того, так как все части VASIMR защищены магнитным полем и не приходят в прямой контакт с плазмой, потенциальная продолжительность эксплуатации двигателя, построенного по такому проекту, гораздо выше ионного двигателя.

Проект включает в себя три части:

  • превращение газа в плазму с использованием радиоволновых антенн;
  • возбуждение плазмы с помощью дальнейшего нагрева в ускорителе;
  • использование электромагнитов для создания магнитного сопла, которое превращает полученную тепловую энергию плазмы в кинетическую энергию реактивной струи.

Изменяя количество энергии на радиоволновый разогрев и количество рабочего тела, из которого создаётся плазма, VASIMR способен как производить малую тягу с высоким удельным импульсом, так и относительно высокую тягу с низким удельным импульсом.

Диаграмма VASIMR

В отличие от обычных циклотронно-резонансных нагревающих процессов, ионы в VASIMR сразу же проходят через магнитное сопло быстрее времени, необходимого для достижения термодинамического равновесия. Согласно теоретической работе 2004 года Арефьева и Брейзмана из Техасского университета в Остине, практически вся энергия в ионной циклотронной волне будет равномерно распределена в ионизированной плазме за один проход в циклотронном абсорбционном процессе. Это позволяет ионам покинуть магнитное сопло с очень узким распределением энергии, что даёт упрощённое и более плотное распределение магнитов в двигателе.[1]

Текущие VASIMR должны обладать удельными импульсами в диапазоне от 3000 до 30 000 секунд (скорости истечения от 30 до 300 км/с). Нижний предел этого диапазона сопоставим с некоторыми существующими концепциями ионных двигателей. Регулируя получение плазмы и нагрев, в двигателе VASIMR можно управлять удельным импульсом и тягой. Двигатель также способен использовать гораздо более высокие уровни энергии (мегаватты) по сравнению с существующими концепциями ионных двигателей. Поэтому VASIMR может обеспечить в десятки раз большую тягу, при условии наличия подходящего источника энергии.

VASIMR не подходит для подъёма полезной нагрузки с поверхности планеты (например, Земли) на околопланетную орбиту, из-за его низкого соотношения тяги к массе и может быть использован только в невесомости (например, для старта корабля с околопланетной орбиты). Он может быть использован в качестве последней ступени, уменьшая потребность в топливе для транспортировки в космосе, или в качестве разгонного блока. Ожидается, что двигатель должен выполнять эти операции за доли стоимости от стоимости аналогов на основе технологий химического реактивного движения:

  • компенсация торможения в верхней атмосфере Земли (подъём орбиты) для орбитальных станций,
  • обеспечение доставки грузов на лунную орбиту,
  • заправка топливом в космосе,
  • добыча ресурсов в космосе,
  • космические полёты со сверхвысокими скоростями для дальних исследовательских программ.

Другие применения VASIMR (например, доставка людей к Марсу) требуют наличия источников очень высоких энергий с небольшой массой, таких как, например, ядерные энергоблоки.

В августе 2008 г. Тим Гловер, директор по развитию фирмы «Ad Astra», заявил, что первым ожидаемым применением двигателя VASIMR является «заброс грузов (не людей) с низкой околоземной орбиты на низкую лунную орбиту» и будет предназначено для поддержки программы НАСА возвращения на Луну.[2]

Ambox outdated serious.svg

Информация в этой статье или некоторых её разделах устарела.

Вы можете помочь проекту, обновив её и убрав после этого данный шаблон.

Ambox outdated serious.svg

Основным разработчиком VASIMR является «Ad Astra Rocket Company[en]» в Техасе. В настоящее время основные усилия были направлены на улучшение общей эффективности двигателя, путём увеличения уровней используемой энергии. Согласно данным компании, ещё совсем недавно эффективность VASIMR составляла 67 %. Опубликованные данные по двигателю VX-50 говорят о том, что двигатель способен использовать 50 кВт на излучение в радиодиапазоне, обладает КПД 59 %, вычисленное следующим образом: 90 % NA эффективность процесса получения ионов × 65 % NB эффективность процесса ускорения ионов. Модель VX-100, как ожидается, будет иметь общую эффективность 72 %, путём улучшения параметра NB, то есть эффективности ускорения ионов, до 80 %.[3][4]

Однако имеются дополнительные меньшие потери эффективности, относящиеся к превращению энергии постоянного тока в радиоволновую энергию и потребление энергии сверхпроводящими магнитами. Для сравнения, рабочий ионный двигатель NASA HiPEP, обладает общей эффективностью ускорителя 80 %.[5] Опубликованные данные испытаний двигателя VASIMR модели VX-50 показывают, что он способен производить 0,5 Н тяги. «Ad Astra Rocket Company» планировала проведение испытаний прототипа двигателя VX-200 в начале 2008 г. с мощностью излучения в радиодиапазоне 200 кВт с целью достижения требуемой эффективности, требуемой тяги и удельного импульса.

24 октября 2008 года компания заявила, что генерация плазмы двигателем VX-200 с помощью радиоволн первой ступени или твердотельным высокочастотным излучателем энергии достигла планируемых рабочих показателей. Ключевая технология, твердотельное преобразование энергии постоянного тока в радиоволны, стала крайне эффективной и достигла уровня 98 %. Радиоволновый импульс использует 30 кВт для превращения аргона в плазму, оставшиеся 170 кВт расходуются на разгон и разогрев плазмы в задней части двигателя с помощью ион-циклотронного резонансного разогрева.[6]

На основании данных, опубликованных по предыдущим испытаниям VX-100[7], можно ожидать, что двигатель VF-200, который должен быть установлен на МКС, будет иметь системную эффективность 60—65 % и уровень тяги 5 Н. Оптимальный удельный импульс предполагается на уровне 5000 с с использованием в качестве рабочего тела аргона. Удельная мощность оценивается в 1 кг/кВт, что означает, что масса данной версии VASIMR будет составлять только 300 кг.

Одна из оставшихся проблем — определение соотношения потенциально возможной тяги по отношению к действительному её значению. То есть, будет или нет горячая плазма находится на расстоянии от двигателя на самом деле. Это подтверждено в 2009 году, когда двигатель VX-200 был установлен и испытан в достаточно большой вакуумной камере[источник не указан 402 дня].
Другая проблема — управление выделяемой побочной теплотой при работе (60 % эффективности означает около 80 кВт ненужной теплоты), решение которой критически важно для продолжительной работы двигателя VASIMR.

10 декабря 2008 г. «Ad Astra Rocket Company» заключила договор с НАСА на определение расположения и испытание полётной версии VASIMR VF-200 на МКС; его запуск был запланирован на 2015 г.[8]
VASIMR-двигатель на МКС будет использоваться в пакетно-монопольном режиме, с периодическими включениями. Так как производство электроэнергии на МКС недостаточно велико, система будет включать в себя набор батарей с достаточно малым потреблением тока для подзарядки, которая позволит двигателю работать в течение 10 мин. Этого будет достаточно для поддержания высоты станции, что исключит необходимость дорогостоящей операции по подъёму станции с использованием химических ракетных двигательных блоков.

7 июля 2009 года сотрудники «Ad Astra Rocket Company» удачно испытали плазменный двигатель на сверхпроводящих магнитах.[9]

В 2016 году компания Ad Astra Rocket сообщила, что КПД двигателя вырастет с 70 до 75 %, если использовать криптон вместо аргона, тяга двигателя достигнет 2 Н.
Ведутся работы по замене старого магнита на сверхпроводящий магнит нового типа, без охлаждения жидким азотом.
Остается проблема электрического заряда двигателя; при его работе струя выбрасывает заряженные ионы, но оставшиеся электроны заряжают корпус и в наземных условиях невозможно замерить этот эффект зарядки корпуса. Пока считается, что этот эффект мал и на всех электрических ракетных двигателях эта проблема была решена во время испытаний.

Летные испытания на МКС запланированы на 2016 год

Ambox outdated serious.svg

Информация в этой статье или некоторых её разделах устарела.

Вы можете помочь проекту, обновив её и убрав после этого данный шаблон.

Космический буксир: орбитальный транспортный корабль[править | править код]

Ambox outdated serious.svg Космический корабль с VASIMR в представлении художника

Наиболее важным в обозримом будущем применением космических аппаратов с двигателями VASIMR является перевозка грузов (особенно межпланетная). Многочисленные исследования показали, что космический корабль с маршевыми двигателями VASIMR будет более эффективным при движении в космосе по сравнению с кораблями с обычными химическими ракетными двигателями. Космический буксир, ускоряемый одним VF-200, был бы способен переместить 7 т груза с низкой земной орбиты на низкую лунную орбиту примерно за шесть месяцев полёта.

НАСА планирует перемещение 34 т полезного груза от Земли до Луны. Для того, чтобы совершить такое путешествие, должно быть сожжено около 60 тонн кислород/водород. Сопоставимый космический буксир требовал бы 5 двигателей VF-200, потребляющих 1 МВт электроэнергии, получаемой от солнечных батарей или от ядерного реактора. Для того, чтобы проделать такую же работу, подобный буксир потратил бы только 8 тонн аргона. Время полёта буксира может быть сокращено за счёт полёта с меньшим грузом или используя большее количество аргона в двигателях при меньшем удельном импульсе (большем расходе рабочего тела). Например, пустой буксир при возвращении к Земле должен покрывать это расстояние за 23 дня при оптимальном удельном импульсе 5000 с или за 14 дней при удельном импульсе 3000 с.

В 2015 году компания Ad Astra Rocket выиграла 10-миллионный тендер на постройку двигателя VASIMR, способного доставить экспедицию на Марс менее чем за сорок дней[10].
Предполагается, что 200-мегаваттный двигатель класса VASIMR сможет осуществлять полёты с доставкой людей к Марсу всего за 39 дней, по сравнению с шестью месяцами, которые требуются космическим аппаратам с обычными ракетными двигателями.[11]

Какие бывают двигатели у космических аппаратов и в чем их сильные и слабые стороны – Журнал «Все о Космосе»

8:23 16/12/2017 Комментарии 2 👁 3 805

Фалькон 2 ступень

Двигатель — едва ли не самое важное в космическом аппарате. Без возможности активно маневрировать, набирать скорость и тормозить нельзя выбраться дальше околоземной орбиты, да и на орбите приходится бороться с различными уводящими аппарат в сторону эффектами. За прошедшие с момента запуска первого спутника почти шестьдесят лет технологии заметно шагнули вперед, и одними ракетами все давно не ограничивается.

Ракетный двигатель

Принцип работы ракетного двигателя известен нам как минимум с 30-х годов прошлого века, а как максимум — со времен Древнего Китая. Конечно, бамбуковые ракеты, движимые энергией горения черного пороха, для космоса непригодны, но вот уже двигатели американца Роберта Годдарда (1926 год), россиянина Фридриха Цандера (СССР, рубеж 1920-х и 1930-х годов) или немца Германа Оберта (1930 год) работали на паре «жидкое топливо + окислитель» и уже имели узлы, без которых не обходится любой современный ракетный двигатель.

Ракетный двигатель создает тягу при сжигании топлива: в соответствии с законом сохранения импульса движимый им аппарат приобретает импульс, равный импульсу выходящих в сопло продуктов сгорания. Отсюда можно определить рецепт увеличения тяги: сжигать больше топлива или добиться более высокой скорости реактивной.

Установленный в двигателе турбонасосный агрегат раскручивает лопасти насосов при помощи жаростойкой газовой турбины, а насосы закачивают топливо и окислитель в камеру сгорания. Большой поток топлива и окислителя приводит к интенсивному сгоранию и выбросу мощной струи раскаленных газов. Теоретически при сжигании керосина в кислороде можно получить температуру до 3500 °С и добиться истечения струи со скоростью около трех километров в секунду — практические результаты сейчас близки к теории. Пары водород-кислород или гидразин — тетраоксид азота, два других часто используемых сочетания, дают сопоставимые значения, и это объясняет как достоинства, так и недостатки традиционных ракет.

Двигатель RS-68

Ракетный двигатель RS-68, работающий на паре водород-кислород во время испытаний. Обратите внимание на сложную конструкцию над соплом. Стоимость больших ракетных двигателей доходит до $ 10 млн

Достоинством этого двигателя является его мощность, достигаемая сжиганием огромного объема топлива, ограниченная только размерами камеры сгорания. На американском «Сатурне-V» стояли двигатели F1, которые сжигали в единственной камере свыше полутора тонн кислорода и почти тонну керосина ежесекундно. Такое потребление давало тягу более 700 тонна-сил, а пять F1 с успехом доставляли ракету к Луне. Созданные позже советские РД-170 уступали по объему камеры сгорания, но зато камер было сразу четыре — их планировали использовать на сверхтяжелой ракете «Энергия» (носитель «Бурана»), которая могла бы вывести в космос до ста тонн полезной нагрузки.

По сей день начальный этап любого космического полета, хоть на геостационарную орбиту, хоть к Плутону, совершается при помощи ракетных двигателей: ни один другой даже близко не приближается к требуемым для развития космической скорости. Но где достоинства, там и недостатки

Двигатель КДУ-414

Небольшой ракетный двигатель — советский КДУ-414. Его длина составляет всего 70 сантиметров и он дает тягу около 200 килограммов; использовался с середины 1960-х годов для коррекции орбиты космических аппаратов

Экстремальные условия в камере сгорания приводят к тому, что даже многочисленные инженерные хитрости вроде охлаждения стенок подаваемым топливом или отсекания от них основной горячей струи более «холодной» струей от турбонасоса не позволяют добиться сколько-нибудь продолжительной работы в сочетании с высокой надежностью. А внедрение в сплавы жаростойких добавок вплоть до металлов платиновой группы все равно не гарантирует успеха запуска ракеты: доля аварий у всех основных производителей в мире колеблется в районе нескольких процентов. Представьте, какова была бы авиация, если бы даже каждый сотый рейс заканчивался взрывом или падением самолета!

Изготовленные уже не для старта с Земли, а для полета в безвоздушном пространстве ракетные двигатели имеют не столь экстремальные параметры, но все равно регулярно подводят. Российские разгонные блоки ДМ и «Фрегат», например, имеют долю отказов в районе от одного до трех процентов. Последняя авария произошла в 2014 году, когда «Фрегат» вывел на нецелевую орбиту два спутника европейской навигационной системы Galileo. Хотя нельзя сказать, что российские блоки как-то особо ненадежны: американский Centaur отказывал больше десятка раз на двести с лишним запусков.

Статистическая оговорка: как можно заметить, многие числа нами указываются приблизительно. Это обусловлено тем, что говорить о точных значениях зачастую нельзя. Скажем, разгонные блоки многих семейств производятся с 1960-х годов с целым рядом модификаций, и обобщать статистику запусков за все время затруднительно. Тяга двигателя немного зависит от атмосферного давления, а температура сгорания топлива — от его состава и режима работы двигателя.

Ракетные двигатели крайне неэкономичны. Их КПД уступает паровозному: мы вынуждены тратить гигантские запасы горючего с окислителем для достижения цели. Хуже того, наши затраты нелинейно растут с увеличением дельта-V, той скорости, которую должен приобрести наш космический аппарат для достижения цели. Чтобы попасть к Луне и вернуться, потребовался уже упоминавшийся «Сатурн-V»; полет же к звездам или хотя бы к Облаку Оорта за разумное время потребует ракет, габариты которых выходят как за пределы возможностей современных технологий, так и за рамки здравого смысла.

Ионы и плазма

Если снова обратиться к закону сохранения импульса, то становится ясно: чем быстрее покидает двигатель струя вещества, тем он эффективнее. Получить скорость струи свыше нескольких километров в секунду сжиганием чего-либо невозможно, однако двигатели, работающие на частицах со скоростью в десятки км/с, уже существуют. Они — ионные.

Суть ионного двигателя заключается в том, что сначала газ превращается в плазму, смесь положительно заряженных ионов с электронами. Далее заряженные частицы разгоняются электромагнитным полем и выбрасываются наружу — таким образом удается разом обойтись без экстремальных условий внутри двигателя и превзойти скорость истечения продуктов даже самых «жестких» химических реакций вроде сжигания лития в атмосфере фтора.

Правда, назвать ионные двигатели идеальными тоже нельзя. При более-менее достижимой на сегодня электрической мощности — а это, как правило, не более киловатта — их тяга не превышает считанных граммов. Двестикиловаттный VASIMIR, который одно время планировали поставить на МКС, выдавал на испытаниях в вакуумной камере около пяти ньютонов тяги — этого было бы достаточно для отрывания от Земли груза в полкилограмма. Даже в предположении, что ионному двигателю не мешает работать атмосфера, поднять с космодрома хотя бы свой собственный вес такое устройство не сможет.

Плазменный двигатель

Испытания одного из первых плазменных двигателей состоялись уже в 1961 году. Ионные двигатели впервые полетели в космос в 1964-м, а сегодня ионные и плазменные установки ставятся на многие спутники для удержания на заданной орбите.

Но в дальнем космосе этого и не требуется. Там важна экономичность и надежность — то, чем как раз отличаются ионные двигатели. Многие из них способны буквально годами работать бесперебойно, а в пересчете на килограмм потраченного рабочего тела (говорить «топливо» уже не очень корректно, ведь ничего не сжигается) они дают намного больший результат. Аппараты на ионных двигателях поначалу отстают от взявших быстрый старт ракетных аналогов, но ракетного топлива хватает от силы на несколько часов, а ионный «мотор» растягивает запас инертного газа в баке на годы. Медленно, буквально по миллиметру в секунду, прибавляя скорость, «черепаха» на ионной тяге сначала догоняет, а потом и перегоняет ракетного «зайца» с опустевшими баками.

Аппарат «Рассвет», летавший к Весте и Церере, японская миссия «Хаябуса» по доставке на Землю образца астероидного грунта, российские двигатели для геостационарных спутников — все это далеко не полный перечень ионных и плазменных установок в космосе. Плазменные представляют собой вариант ионных: в них ионизированный газ ускоряется не при помощи электродов, а выходит наружу с большой скоростью после разогрева тем или иным способом.

NASA_ionengine-580x387[1] двигатель

Существуют проекты мощных ионных или плазменных двигателей с электропитанием от большого массива солнечных батарей или ядерного реактора. Возможно, уже в ближайшие десятки лет мы получим установки, способные в разы сократить сроки перелетов между планетами. Разработка двигательной установки с ядерным реактором ведется в России силами предприятий Росатома и, по сообщениям осени 2016 года, может быть готова к испытаниям уже к концу 2018 года. Подобным же проектом занимаются и в Китае.

А еще есть проекты плазменных двигателей, которые будут использовать в качестве рабочего тела водяной пар. Воду можно получать, используя астероиды или лунный грунт. Это разом решит проблему и дозаправки вдали от Земли, и дороговизны выведения на орбиту. Упомянутые выше ограничения ракетных двигателей ведут к тому, что сегодня килограмм груза даже на самой низкой орбите стоит тысячи долларов, а доставка на геостационарную орбиту сопоставима по цене с изготовлением такого же по массе спутника из чистого золота!

Паруса

Идеальный двигатель должен по возможности весить как можно меньше, иметь нулевой расход топлива и полное отсутствие частей, которые могут сломаться во время работы. И подобные устройства существуют. Речь о парусах, призванных либо поймать поток заряженных частиц от Солнца, либо потянуть космический аппарат вперед под давлением света. В первом случае парус предполагается делать из тонких проволочек, создающих вокруг себя электрическое поле, а во втором случае сгодится любой легкий и блестящий материал вроде металлизированного пластика.

Солнечный парус

Солнечный парус в испытательной камере на Земле.

Примечательно, что концепция солнечного паруса если не опередила появление жидкостного ракетного двигателя, то возникла примерно тогда же. В 1900 году Петр Лебедев впервые исследовал эффект давления солнечного света, а в 1920-х идея использовать это явление для движения космических аппаратов была озвучена Фридрихом Цандером. Тем самым, который разработал советский жидкостный ракетный двигатель.

На практике «солнечным парусником» стал японский аппарат IKAROS в 2010 году, за ним последовал собранный американским «Планетарным сообществом» зонд Light Sail-1. Два других экспериментальных спутника, Cosmos-1 и NanoSail-D, пытались запустить в 2005 и 2008 годах, но оба раза подвели ракеты — один раз российская «Волна», а во второй — уже Falcon 1 Илона Маска.

Кроме того, эффект давления света использовал вполне обычный межпланетный зонд MESSENGER, летевший к Меркурию. Для корректировки его курса инженеры предпочли использовать отражение солнечных лучей от блестящей поверхности солнечных батарей аппарата. Тяга в итоге получалась очень маленькой, но зато ей можно было очень точно управлять, для маневрирования не требовалось топлива и сберегался ресурс ракетных двигателей.

Спутник кубсат

Отдельно стоит упомянуть и т.н. электрический парус: его толкает вперед взаимодействие электрического поля тонких проволочек с летящими от Солнца заряженными частицами. И первенство в этой области принадлежит не одной из признанных космических держав, а Эстонии: собранный в Университете Тарту ESTCube-1 вышел на орбиту в 2013 году и проработал два года. Правда об успехе эстонцев надо упоминать «со звездочкой»: раскрыть электрический парус им не удалось. Но сейчас эстонские инженеры работают над следующим аппаратом, ESTCube-2. Может, все-таки успеют стать по-настоящему первыми.

Электрические паруса менее эффективны в сравнении с солнечными, однако они требуют куда меньше материала (тонкие проволоки вместо сплошной пленки). Легкие и компактные, они подходят для долговременных миссий — например, есть проект «электрического парусника» к Урану. Он сможет достичь этого ледяного гиганта всего за шесть лет. Для сравнения: «Вояджер-2» потратил девять лет, и при этом расположение планет было на редкость удачным.

Источник


Ядерный ракетный двигатель — Википедия

Классификация ядерных ракетных двигателей[1]

Я́дерный раке́тный дви́гатель (ЯРД) — разновидность ракетного двигателя, которая использует энергию деления или синтеза ядер для создания реактивной тяги.

Традиционный ЯРД в целом представляет собой конструкцию из нагревательной камеры с ядерным реактором как источником тепла, системы подачи рабочего тела и сопла. Рабочее тело (как правило — водород) подаётся из бака в активную зону реактора, где, проходя через нагретые реакцией ядерного распада каналы, разогревается до высоких температур и затем выбрасывается через сопло, создавая реактивную тягу. Существуют различные конструкции ЯРД: твердофазный, жидкофазный и газофазный — соответствующие агрегатному состоянию ядерного топлива в активной зоне реактора — твёрдое, расплав или высокотемпературный газ (либо даже плазма).

В СССР развёрнутое постановление правительства по проблеме создания ЯРД было подписано в 1958 году. Этим документом руководство работами в целом было возложено на академиков М. В. Келдыша, И. В. Курчатова и С. П. Королёва[2][3]. К работам были подключены десятки исследовательских, проектных, конструкторских, строительных и монтажных организаций. ЯРД активно разрабатывались КБХА в Воронеже и испытывались в СССР (см. РД-0410) и США (см. NERVA) с середины 1950-х годов. Исследования ведутся и в 2018 году[4].

По оценкам А. В. Багрова, М. А. Смирнова и С. А. Смирнова, ядерный ракетный двигатель может добраться до Плутона за 2 месяца[5][6] и вернуться обратно за 4 месяца с затратой 75 тонн топлива, до Альфы Центавра за 12 лет, а до Эпсилона Эридана за 24,8 года[7][неавторитетный источник?].

Твердофазный ядерный ракетный двигатель[править | править код]

В твердофазных ЯРД (ТфЯРД) делящееся вещество, как и в обычных ядерных реакторах, размещено в сборках-стержнях (ТВЭЛах) сложной формы с развитой поверхностью, что позволяет эффективно нагревать газообразное рабочее тело (обычно — водород, реже — аммиак), одновременно являющееся теплоносителем, охлаждающим элементы конструкции и сами сборки. Температура нагрева ограничена температурой плавления элементов конструкции (не более 3000 К). Удельный импульс твердофазного ЯРД, по современным оценкам, составит 8000—9000 м/с, что более чем вдвое превышает показатели наиболее совершенных химических ракетных двигателей. Наземные демонстраторы технологий ТфЯРД в ХХ веке были созданы и успешно испытаны на стендах (программа NERVA в США, РД-0410 в СССР).

Жидкофазный ядерный ракетный двигатель[править | править код]

Газофазный ядерный ракетный двигатель[править | править код]

Газофазный ядерный реактивный двигатель (ГЯРД) — концептуальный тип реактивного двигателя, в котором реактивная сила создаётся за счёт выброса теплоносителя (рабочего тела) из ядерного реактора, топливо в котором находится в газообразной форме или в виде плазмы. Считается, что в подобных двигателях удельный импульс составит 30—50 тыс. м/с. Перенос тепла от топлива к теплоносителю достигается в основном за счёт излучения, большей частью в ультрафиолетовой области спектра (при температурах топлива около 25 000 °C).

Атомные заряды мощностью примерно в килотонну на этапе взлёта должны взрываться со скоростью один заряд в секунду. Ударная волна — расширяющееся плазменное облако — должна была приниматься «толкателем» — мощным металлическим диском с теплозащитным покрытием и потом, отразившись от него, создать реактивную тягу. Импульс, принятый плитой толкателя, через элементы конструкции должен передаваться кораблю. Затем, когда высота и скорость вырастут, частоту взрывов можно будет уменьшить. При взлёте корабль должен лететь строго вертикально, чтобы минимизировать площадь радиоактивного загрязнения атмосферы.

В США космические разработки с использованием импульсных ядерных ракетных двигателей осуществлялись с 1958 по 1965 год в рамках проекта «Орион» компанией «Дженерал Атомикс» по заказу ВВС США.

Космический корабль проекта «Орион», рисунок художника

По проекту «Орион» проводились не только расчёты, но и натурные испытания. Лётные испытания моделей летательного аппарата с импульсным приводом (для взрывов использовалась обычная химическая взрывчатка). Были получены положительные результаты о принципиальной возможности управляемого полёта аппарата с импульсным двигателем.
Также для исследования прочности тяговой плиты проведены испытания на атолле Эниветок. Во время ядерных испытаний на этом атолле покрытые графитом стальные сферы были размещены в 9 м от эпицентра взрыва. Сферы после взрыва найдены неповреждёнными, тонкий слой графита испарился (аблировал) с их поверхностей.

Программа развития проекта «Орион» была рассчитана на 12 лет, расчётная стоимость — 24 миллиарда долларов, что было сопоставимо с запланированными расходами на лунную программу «Аполлон» («Apollo»). Интересно, что разработчики проводили предварительные расчёты постройки на базе этой технологии корабля поколений с массой до 40 млн тонн и экипажем до 20 000 человек[8]. Согласно их расчётам один из уменьшенных вариантов такого ядерно-импульсного звездолёта (массой 100 тыс. т) мог бы достичь Альфы Центавра за 130 лет, разогнавшись до скорости 10 000 км/с.[9][10] Однако приоритеты изменились, и в 1965 году проект был закрыт.

В СССР аналогичный проект разрабатывался в 1950—70-х годах[11]. Устройство содержало дополнительные химические реактивные двигатели, выводящие его на 30—40 км от поверхности Земли; затем предполагалось включать основной ядерно-импульсный двигатель. Основной проблемой была прочность экрана-толкателя, который не выдерживал огромных тепловых нагрузок от близких ядерных взрывов. Вместе с тем были предложены несколько технических решений, позволяющих разработать конструкцию плиты-толкателя с достаточным ресурсом. Проект не был завершён. Реальных испытаний импульсного ЯРД с подрывом ядерных устройств не проводилось.

В 1960-х годах США были на пути к Луне. Менее известным является тот факт, что в Зоне 25 (рядом со знаменитой Зоной 51) на полигоне Невады учёные работали над одним амбициозным проектом — полётом на Марс на ядерных двигателях. Проект был назван NERVA. Работая на полную мощность, ядерный двигатель должен был нагреваться до температуры в 2000 °C. В январе 1965 года были произведены испытания ядерного ракетного двигателя под кодовым названием «КИВИ» (KIWI).

В ноябре 2017 года Китайская корпорация аэрокосмической науки и техники (China Aerospace Science and Technology Corporation, CASC) опубликовала дорожную карту развития космической программы КНР на период 2017—2045 годы. Она предусматривает, в частности, создание многоразового корабля, работающего на ядерном ракетном двигателе[12].

В феврале 2018 года появились сообщения о том, что НАСА возобновляет научно-исследовательские работы по ядерному ракетному двигателю[13][14][15].

Ядерная электродвигательная установка[править | править код]

Ядерная электродвигательная установка (ЯЭДУ) используется для выработки электроэнергии, которая, в свою очередь, используется для работы электрического ракетного двигателя.

С 2010 года в России начались работы над проектом ядерной электродвигательной установки мегаваттного класса для космических транспортных систем[16][17]. По словам директора и генерального конструктора ОАО «НИКИЭТ» Юрия Драгунова, чьё предприятие конструирует реакторную установку, согласно плану ЯЭДУ должна быть готова в 2018 году[18][19]. На начало 2016 года завершено эскизное проектирование[20], проектная документация[21], завершены испытания системы управления реактором[22], проведены испытания ТВЭЛ[23], корпуса реактора[24], полномасштабных макетов радиационной защиты реакторной установки[25].

  1. ↑ Паневин, Прищепа, 1978.
  2. ↑ Центр Келдыша, 2003, с. 192.
  3. ↑ Энергомаш, 2008, Очерк разработки ядерных ракетных двигателей в КБ Энергомаш.
  4. Роскосмос занялся разработкой ядерного космического корабля, Lenta.ru, 28.10.2009.
  5. Багров А. В., Смирнов М. А., Смирнов С. А. Межзвездные корабли с магнитным зеркалом // Труды Двадцатых чтений К. Э. Циолковского. — Калуга, 1985.
  6. Багров А. В., Смирнов М. А. Каравеллы для звездоплавателей // Наука и человечество. 1992—1994. — М.: Знание, 1994.
  7. Багров А. В., Смирнов М. А. XXI век: строим звездолет // Международный ежегодник «Гипотезы, прогнозы, наука и фантастика». — 1991.
  8. ↑ http://www.astronautix.com/lvs/oritsink.htm Orion Starship — Heat Sink, Encyclopedia Astronautica www.astronautix.com
  9. ↑ http://www.astronautix.com/lvs/oriative.htm Orion Starship — Ablative, Encyclopedia Astronautica www.astronautix.com
  10. Looking Back at Orion by Paul Gilster on September 23, 2006, Centauri Dreams (centauri-dreams.org)
  11. ↑ Российские ядерные двигатели могут быть использованы при полёте на Марс
  12. ↑ Andrew Jones //China sets out long-term space transportation roadmap including a nuclear space shuttle. gbtimes.com. 2017-11-16.
  13. ↑ NASA Is Bringing Back Nuclear-Powered Rockets to Get to Mars//Fortune, новостной портал, по информации Bloomberg. 15 февраля 2018.
  14. ↑ Даниил Ревадзе//NASA возвращается к идее ядерного двигателя для космических кораблей. Портал hightech.fm. 17 февраля 2018.
  15. ↑ Loura Hall. «Nuclear Thermal Propulsion: Game Changing Technology for Deep Space Exploration». nasa.gov. 2018-05-25.
  16. ↑ В России создается принципиально новая энергодвигательная установка для космических миссий
  17. ↑ Росатом: разработка новой космической ядерной установки идет по плану
  18. ↑ В России собрали первый в мире ТВЭЛ для космической энергоустановки. // Lenta.ru
  19. ↑ Завершены испытания системы управления реактором космической ЯЭДУ
  20. ↑ Первая часть проекта ядерного двигателя для корабля будет заверена в 2012 г.
  21. ↑ В 2016 году Росатом приступит к созданию космического реактора
  22. ↑ Завершены испытания регулирующего органа реактора ЯЭДУ мегаваттного класса
  23. ↑ Космические ядерные энергодвигательные установки сейчас возможны только в России
  24. ↑ В России успешно завершены испытания корпуса ядерного реактора для космоса
  25. ↑ АО «НИКИЭТ» успешно завершило испытания полномасштабных макетов радиационной защиты реакторной установки для транспортно-энергетического модуля
  • Паневин И. Г., Прищепа В. И. Космические ядерные ракетные двигатели. — М.: Знание, 1978. — 64 с.
  • Коротеев А. С., Конюхов Г. В., Демянко Ю.Г. Ядерные ракетные двигатели. — М.: Норма-Информ, 2001. — 415 с.
  • Демянко Ю. Г., Конюхов Г. В., Коротеев А. С., Кузьмин Е. П., Павельев А. А. Ядерные ракетные двигатели. 2001.
  • Акимов В. Н., Коротеев А. С., Гафаров А. А. и др. Ядерные ракетные двигатели: воспоминания о будущем // Исследовательский центр имени М. В. Келдыша. 1933-2003 : 70 лет на передовых рубежах ракетно-космической техники. — М: Машиностроение, 2003. — С. 190—209. — 439 с. — ISBN 5-217-03205-7.
  • Коротеев А. С. Ракетные двигатели и энергетические установки на основе ядерного реактора.
  • Письма и документы В. П. Глушко из архивов РКК «Энергия» им. С. П. Королёва (1944-1980 гг). Очерк разработки ядерных ракетных двигателей в КБ Энергомаш. 26.07.1973 г. // Избранные работы академика В. П. Глушко / В. С. Судаков. — Химки: НПО «Энергомаш», 2008. — Т. 1. — 419 с. — 250 экз.

Межзвёздный прямоточный двигатель Бассарда — Википедия

Межзвёздный прямоточный двигатель Бассарда (поле коллектора показано видимым) в представлении художника

Межзвёздный прямоточный двигатель Бассарда (англ. Bussard ramjet) — концепция ракетного двигателя для межзвёздных полётов, предложенная в 1960 году физиком Робертом Бассардом (Robert W. Bussard (англ.)русск.).

Основой концепции является захват вещества межзвёздной среды (водорода и пыли) идущим на высокой скорости космическим кораблём и использование этого вещества в качестве рабочего тела (либо непосредственно топлива) в термоядерном ракетном двигателе корабля. Захват вещества межзвёздной среды осуществляется мощным электромагнитным полем, в приближении имеющим конфигурацию широкой воронки, направленной вперёд по вектору скорости корабля. Предположительно, диаметр собирающего поля должен составлять тысячи или десятки тысяч километров. Существенной особенностью такой схемы будет являться практически полная топливная автономность корабля: будучи разогнанным имеющимся на борту запасом топлива до некоторой скорости, обеспечивающей достаточный приток межзвёздного водорода во входной коллектор, то есть после входа в «прямоточный режим», корабль сможет двигаться далее с постоянным ускорением, не выключая привода и не переходя на инерционный полёт.

Предложены два основных варианта использования захваченного межзвёздного водорода:

  1. В качестве рабочего тела для ТЯРД, при собственном запасе термоядерного топлива на борту (RAIR).
  2. Непосредственно в качестве термоядерного топлива.

Межзвёздная среда содержит вещество в количестве порядка 10−21 кг/м³, в основной массе — ионизированный и неионизированный водород, небольшое количество гелия и практически никаких других газов в заметном количестве. Соответственно, через коллектор корабля должен пропускаться объём пространства порядка 1018 м³ для сбора одного грамма водорода. Подобный объём требует огромного диаметра электромагнитного (электростатического ионного) собирающего коллектора и чрезвычайно большой напряжённости поля.

Пример расчёта сбора межзвездного газа для случая радиуса поля захвата 50 км. Тогда

 R=50 000 м
 Площадь захвата=7 853 981 633,97 м2
 Скорость (берем максимальную из раздела Ограничение на скорость) = 35 700 000 м/с
 Время = 1 сек
 Просеянный объем = 280 387 144 332 889 000 м3
 Плотность среды  = 1E-21 кг/м3
 Полученная масса = 0,000 280 387 144 332 890 кг
 

То есть идеально работающее поле радиусом 50 км при максимальной скорости будет захватывать в среднем 0,28 грамма межзвездного газа за секунду (релятивистским замедлением времени пренебрегаем).

Исходя из состава межзвёздной среды (в основном водород), именно термоядерный синтез на водородной реакции был предложен Бассардом в первоначальной концепции двигателя. К сожалению, протон-протонный цикл непригоден для использования в силу исключительной трудности его осуществления в термоядерном реакторе. Соответственно, более пригодны термоядерные реакции других типов, в частности 2H + 2H → 3He + 1n + 18 МэВ, или 2H + 3H → 4He + 1n + 20 МэВ, но требуемые для них изотопы чрезвычайно редки в составе межзвёздной среды.

Выход, в принципе, был предложен в использовании термоядерных реакций CNO-цикла, где углерод является катализатором термоядерного горения водорода.
Тем не менее в любом т. н. каталитическом цикле ядерного синтеза реакции протекают крайне медленно, и плотность мощности ничтожна (для сравнения: в центре Солнца энерговыделение составляет всего лишь порядка 1 ватта на кубический сантиметр). За время пролёта вещества даже при самых оптимистичных предположениях может прогореть лишь ничтожная его доля.

В 1974 году Алан Бонд предложил концепцию RAIR (ram-augmented interstellar rocket), разрешающую проблему трудноосуществимого термоядерного синтеза на протон-протонном цикле. В этой схеме входящий в коллектор протонный поток тормозится до энергии порядка 1 МэВ и бомбардирует мишень из изотопов литий-6 или бор-11. Реакция литий-протон или бор-протон осуществляется проще протон-протонной и даёт значительный выход энергии, которая увеличивает скорость истечения рабочего тела из сопла двигателя. Такая термоядерная реакция может проходить и с использованием малых количеств антиматерии в качестве катализатора.

В концепции двигателя Бассарда, в то же время, существуют значительные теоретические проблемы из-за фактора сопротивления межзвёздной среды — передача импульса от встречного потока вещества на коллектор и далее корабль, что требует превышения тяги двигателя над показателем сопротивления.

В настоящее время работа над концепцией производится в рамках теоретических изысканий.

Ключевая проблема «прямоточника» также в том, что «магнитная воронка» отнюдь не будет выполнять функцию массозаборника так, как предполагалось автором концепции. Скорее, она будет вести себя как «тормоз» (см. «Магнитная пробка», «Пробкотрон», «Адиабатический инвариант»).

Ограничение на скорость[править | править код]

Ещё одним недостатком термоядерного прямоточного двигателя (даже на наиболее эффективном протон-протонном цикле) является ограниченность скорости, которой может достичь оснащённый им корабль (не более 0,119c = 35,7 тыс. км/с). Это связано с тем, что при улавливании каждого атома водорода (который можно в первом приближении считать неподвижным относительно звёзд) корабль теряет определённый импульс, который удастся компенсировать тягой двигателя только если скорость не превышает некоторого предела. Для преодоления этого ограничения необходимо как можно более полное использование кинетической энергии улавливаемых атомов, что представляется достаточно трудной задачей.

Вывод

Допустим, экран уловил 4 атома водорода. При работе термоядерного реактора четыре протона превращаются в одну альфа-частицу, два позитрона и два нейтрино. Для простоты пренебрежём нейтрино (учёт нейтрино потребует точного расчёта всех стадий реакции, а потери на нейтрино составляют около процента), а позитроны проаннигилируем с 2 электронами, оставшимися от атомов водорода после изъятия из них протонов. Ещё 2 электрона пойдут на то, чтобы превратить альфа-частицу в нейтральный атом гелия, который благодаря полученной от реакции энергии будет ускорен в сопле двигателя.

Итоговое уравнение реакции без учёта нейтрино:

41
1H → 4
2He + (4mHmHe)c² (≈27 МэВ)

Пусть корабль летит со скоростью v. При улавливании четырёх атомов водорода в системе отсчёта корабля теряется импульс:

P1=4mHv1−v2/c2.{\displaystyle P_{1}={\frac {4m_{\text{H}}v}{\sqrt {1-v^{2}/c^{2}}}}.}

Теоретически достижимый импульс, с которым корабль может запустить атом гелия, можно получить из известного релятивистского соотношения между массой, энергией и импульсом:

EHe2/c2−P22=mHe2c2.{\displaystyle E_{\text{He}}^{2}/c^{2}-P_{2}^{2}=m_{\text{He}}^{2}c^{2}.}

Энергия атома гелия (включая энергию покоя) не может превышать сумму масс четырёх атомов водорода, умноженную на квадрат скорости света:

maxEHe=4mHc2.{\displaystyle \max E_{\text{He}}=4m_{\text{H}}c^{2}.}

Отсюда квадрат максимально достижимого импульса атома гелия:

P22=(4mH)2c2−mHe2c2.{\displaystyle P_{2}^{2}=(4m_{\text{H}})^{2}c^{2}-m_{\text{He}}^{2}c^{2}.}

Если корабль в результате улавливания и использования четырёх атомов водорода не ускорился и не замедлился, значит, импульс, потерянный при их улавливании, равен импульсу, приобретённому в результате выброса атома гелия из сопла:

P1=P2,{\displaystyle P_{1}=P_{2},}
P12=P22,{\displaystyle P_{1}^{2}=P_{2}^{2},}
(4mH)2v21−v2/c2=(4mH)2c2−mHe2c2,{\displaystyle {\frac {(4m_{\text{H}})^{2}v^{2}}{1-v^{2}/c^{2}}}=(4m_{\text{H}})^{2}c^{2}-m_{\text{He}}^{2}c^{2},}
v2/c21−v2/c2=1−(mHe4mH)2,{\displaystyle {\frac {v^{2}/c^{2}}{1-v^{2}/c^{2}}}=1-\left({\frac {m_{\text{He}}}{4m_{\text{H}}}}\right)^{2},}
vc=1−(mHe4mH)22−(mHe4mH)2≈0,119.{\displaystyle {\frac {v}{c}}={\sqrt {\frac {1-\left({\frac {m_{\text{He}}}{4m_{\text{H}}}}\right)^{2}}{2-\left({\frac {m_{\text{He}}}{4m_{\text{H}}}}\right)^{2}}}}\approx 0{,}119.}

Концепции, связанные с двигателем Бассарда[править | править код]

Проблема торможения бассардовского корабля встречным потоком вещества привела к появлению концепции магнитного паруса (англ.)русск. (или парашюта). В этом случае электромагнитное поле коллектора поглощает энергию встречного звёздного ветра (либо межзвёздной среды) и передаёт тормозящий импульс на корабль. Таким образом, уменьшаются требования к расходу топлива на торможение в системе звезды — цели межзвёздного полёта. Концепция предложена Робертом Зубриным (Robert Zubrin) в конце 1980-х годов.[1][2]

Соответственно, магнитный парус может быть использован и для разгона корабля в направлении от звезды, на потоке звёздного корпускулярного ветра.

Развитие этой идеи — ускорение (торможение) корабля с магнитным парусом с помощью мощного потока частиц, разогнанных стационарным планетарным (орбитальным) ускорителем.
В данной схеме уменьшаются требования к запасу бортового топлива, используемого для разгона корабля.

Также предложена концепция «подготовленной трассы», в которой на траекторию будущего полёта прямоточного корабля заблаговременно (посредством стационарных установок) выводится поток мелкодисперсного термоядерного горючего.

Двигатель Бассарда в научной фантастике[править | править код]

Эта концепция нашла широкое распространение в фантастической литературе, в частности, на ней построен сюжет романа Пола Андерсона «Тау Ноль».

Принцип двигателя Бассарда используют инопланетяне в повести Тома Лигона «Эльдорадо». Их снаряд, «Всасывающий водород преследователь света», направляется точно на Солнце чтобы ударить в него и вызвать взрыв, аналогичный взрыву сверхновой. Обложка журнала «Если», где опубликована «Эльдорадо», демонстрирует один из вариантов дизайна двигателя Бассарда.[3]

Практически все корабли Федерации из вселенной «Звездного пути» используют коллекторы Бассарда для сбора межзвездного газа с целью последующего использования в двигательно-энергетической системе корабля.

Двигатели космических кораблей во вселенной Рейнольдса «Космический Апокалипсис» (в романах они названы прямоточными Конджойнерскими двигателями) используют межзвездный водород в качестве топлива.

Космический корабль «Тезей» в романе Питера Уоттса «Ложная слепота» использует двигатель Бассарда.

Двигатель Бассарда многократно упоминается в серии «Известный космос» Ларри Нивена. В некоторых произведениях используется название «прямоточный двигатель» (ramjet).

Двигатель, «поглощающий межзвёздное вещество», используется у братьев Стругацких в рассказе «Частные предположения» на фотонном звездолёте «Муромец».

В романе «Фиаско» писателя Станислава Лема звездолет «Эвридика» использует двигатели, работающие на основе реакции термоядерного синтеза, топливом для которых служит водород космического пространства.

Космические моторы. Главные разработки Валентина Глушко, известные на весь мир

2 сентября исполнилось 110 лет со дня рождения инженера, ученого и конструктора, занимавшегося разработкой ракетных двигателей и космических систем, — Валентина Петровича Глушко. При его непосредственном участии был разработан целый ряд двигателей, на которых до сегодняшнего дня летают космические носители «Союз» и «Протон», а также межконтинентальная баллистическая ракета «Воевода», которая известна на Западе как «Сатана». ТАСС собрал главные изобретения знаменитого конструктора ракетно-космической техники.

Первый электрический реактивный двигатель

Под руководством Глушко был разработан первый в мире электротермический реактивный двигатель. Опытный образец был создан в СССР — в Газодинамической лаборатории в Ленинграде, которой заведовал Глушко, в 1929 году.

Спецпроект на тему

В двигателе в камеру сгорания устанавливались специальные проводники (из железа, палладия других металлов), на эти проводники подавались кратковременные, но мощные импульсы электрического тока с определенной частотой. Сам процесс назывался «электрическим взрывом» — при прохождении разряда проводники в прямом смысле разрушались, выделяя водород, который истекал из сопла двигателя и создавал тягу. Позже работы по этим двигателям были свернуты из-за низкой мощности.

Впервые в советской космической промышленности электрореактивные двигатели (ЭРД), но с иным принципом, были применены значительно позже — в 1964 году в космос был отправлен спутник «Зонд-2», с шестью установленными плазменными двигателями ориентации.

В современной космической технике применяются различные ЭРД, например, ионный (ионизированный газ разгоняется в электрическом поле). Такие модели, как и первый двигатель Глушко, имеют малую тягу, но могут работать за счет низкого расхода рабочего тела чрезвычайно долго — до нескольких лет. В качестве маршевого ЭРД был, например, установлен на японском космическом аппарате «Хаябуса», запущенном для изучения астероида Итокава. ЭРД широко применяются на спутниках в качестве двигателей коррекции траектории.

Первые в СССР жидкостные ракетные двигатели

Под руководством Глушко после завершения работ по ЭРД впервые в отечественной космической промышленности была создана целая серия опытных ракетных двигателей, работающих на жидком топливе. Серия называлась ОРМ — опытные ракетные моторы. В качестве топлива в двигателях серии использовались керосин, бензин, толуол, другие вещества.

Советские ученые экспериментировали как со смешанными унитарными, так и с двухкомпонентными топливами. Первые образцы, работавшие на унитарном топливе (ОРМ-1 тягой всего 20 кгс), были крайне несовершенны и терпели отказы, вплоть до аварийных ситуаций — двигатели взрывались на стендах во время работы. В итоге был сделан выбор в пользу более безопасной двухкомпонентной схемы — отдельные баки для горючего, отдельные для окислителя.

Работы над двигателями серии ОРМ Газодинамическая лаборатория начала в 1930-х годах, и к 1933-му был создан достаточно мощный образец ОРМ-52 с тягой 300 кгс. Под этот двигатель был разработан целый ряд реактивных летательных аппаратов («РЛА-1», «РЛА-2» и так далее), но их образцы «в железе» не создавались. По задумке инженеров, РЛА должны были взлетать на высоту нескольких километров и выбрасывать контейнер с метеоаппаратурой, которая затем опускалась бы на землю на парашюте. ОРМ-52 прошел официальные государственные испытания, правда, только на стенде. На одном из запусков образца двигателя в 1933 году присутствовал начальник вооружения Красной Армии маршал Михаил Тухачевский и дал работе лаборатории Глушко положительную оценку.

В 1934 году коллектив Газодинамической лаборатории из Ленинграда был объединен с московской группой изучения реактивного движения (под руководством Сергея Павловича Королева) в Реактивный научно-исследовательский институт. Ученые совместными усилиями продолжили разработку двигателей и носителей под них. Коллектив Глушко создал образцы с номерами от ОРМ-53 до ОРМ-102. В частности, двигатель ОРМ-65 разработки Глушко ставился на созданную Королевым крылатую ракету — «объект 212». В 1939 году прошли ее испытания — ракета с ОРМ-65 достигла высоты 250 м, когда преждевременно раскрылся ее парашют. Двигатель ОРМ-65 работал на азотной кислоте и керосине, развивал тягу 150 кгс и мог работать до 80 секунд.

Двигатели для баллистических и космических ракет

С 1946 года Глушко был назначен главным конструктором ОКБ-456 в Химках (сейчас НПО «Энергомаш» — главный разработчик и производитель российских ракетных двигателей — прим. ТАСС). Здесь под его руководством созданы двигатели для первых советских баллистических ракет Р-1, Р-2 и Р-5.

В 1954–1957 годах коллектив ОКБ-456 разработал жидкостные ракетные двигатели РД-107, которые впоследствии будут устанавливаться на знаменитую ракету Р-7, сконструированную коллективом ОКБ-1 под руководством Королева, так называемую королевскую семерку. Это была первая в мире полноценная межконтинентальная баллистическая ракета с максимальной дальностью полета 8 тыс. км и одним термоядерным зарядом мощностью 3 мегатонны. Первый запуск Р-7 состоялся 15 мая 1957 года, на вооружение Ракетных войск стратегического назначения она была принята в январе 1960-го.

Жидкостный ракетный двигатель "РД-107" бокового блока ракеты-носителя "Восток" Черединцев Валентин/ТАСС

Жидкостный ракетный двигатель «РД-107» бокового блока ракеты-носителя «Восток»

© Черединцев Валентин/ТАСС

На базе Р-7 был создано целое семейство ракет космического назначения. В частности, знаменитый «Восток», на котором 12 апреля 1961 года в космос отправился Юрий Гагарин. Модификации этой ракеты используются до сих пор — с грузовыми кораблями и спутниками в космос стартуют ракеты серии «Союз-2», с пилотируемыми — «Союз-ФГ» (со следующего года запуски космонавтов будут переведены на «Союз-2»). До сих пор на этих ракетах используются модификации двигателей, разработанных Глушко: версии РД-107 для боковых и центрального блока первой ступени и варианты РД-108 — для второй ступени.

Также сотрудники ОКБ-456 под руководством Глушко создали двигатель РД-253, который с изменениями и сейчас используется в самой массовой серии советских и российских тяжелых грузовых ракет «Протон». Последний вариант — «Протон-М» — использует на первой ступени шесть двигателей РД-276, которые являются глубокой модернизацией РД-253 Глушко.

Параллельно известный конструктор работал над двигателями для советских баллистических ракет, появившихся после Р-7. В частности, самая мощная на сегодняшний день и стоящая на вооружении РВСН тяжелая межконтинентальная ракета «Воевода» использует на первой ступени двигатель РД-264, разработанный при непосредственном участии Глушко.

«Энергия  Буран»

В 1974 году было создано НПО «Энергия» (сейчас Ракетно-космическая корпорация «Энергия»), в новую организацию вошло Центральное конструкторское бюро машиностроения (ОКБ-1, переименованное так после смерти Королева), а также КБ «Энергомаш» (бывшее ОКБ-456). Глушко стал главным конструктором «Энергии», название которой, по некоторым данным, он и придумал.

Несмотря на все его усилия, НПО «Энергия» не получило заказ от государства на разработку двигателей под ракету сверхтяжелого класса Н-1 для советской лунной программы. Идеи конструктора были отклонены из-за токсичности предложенных им компонентов топлива. Позже он в своих письмах не оставляет планов покорения Луны, в частности, предлагает руководству страны в течение десяти лет разработать и создать систему доставки космонавтов к естественному спутнику Земли и орбитальный лунный модуль весом 60 тонн, который обеспечит высадку на Луну трех космонавтов. Однако этим планам не суждено сбыться.

Универсальная ракетно-космическая транспортная система "Энергия" с орбитальным кораблем многоразового использования "Буран" на стартовом комплексе космодрома Байконур, 1988 год Альберт Пушкарев/ТАСС

Универсальная ракетно-космическая транспортная система «Энергия» с орбитальным кораблем многоразового использования «Буран» на стартовом комплексе космодрома Байконур, 1988 год

© Альберт Пушкарев/ТАСС

В 1976 году внимание Глушко переключается на совсем другую тему — создание челнока «Буран» как ответа на запуски американских многоразовых кораблей «Спейс Шаттл». Отечественная многоразовая система «Энергия — Буран» создавалась под непосредственным руководством Глушко и по его проекту, именно он настоял на облике сверхтяжелой ракеты «Энергия» и предложил вид двигателя первой ступени РД-170. Успешный запуск «Бурана» прошел в ноябре 1988 года в автоматическом режиме.

Кроме двигателей, под руководством Глушко был выполнен ряд ключевых работ по направлению пилотируемой космонавтики. Так, конструктор возглавлял работы по совершенствованию пилотируемых космических кораблей «Союз», им была предложена концепция многомодульной станции «Мир»: НПО «Энергия» выдвинула свои предложения по созданию новых орбитальных станций в 1976 году, эскизный проект «Мира» был готов в 1978 году.

Подготовила Валерия Решетникова

Оставьте комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *