Как устроен атомный реактор – Устройство и Принцип Работы Атомной Электростанции, Как Устроены Приборы, Список Оборудования и Схема Действия, Аварии и Катастрофы

Природный ядерный реактор в Окло — Википедия

Природный ядерный реактор в Окло (Габон)Red pog.png

Окло

Red pog.png Геологический разрез естественного ядерного реактора Окло
1. Зоны деления
2. Песчаник
3. Слой урановой руды
4. Гранит

Приро́дный я́дерный реа́ктор в О́кло — несколько рудных тел в урановом месторождении Окло в Габоне, в которых около 1,8 млрд лет назад[1] происходила самопроизвольная цепная реакция деления ядер урана. В настоящее время реакция прекратилась из-за истощения запасов изотопа 235U подходящей концентрации.

Явление было обнаружено французским физиком Франсисом Перреном (фр.)русск. в 1972 году в результате изучения изотопного состава элементов в рудах месторождения Окло. Природные условия, при которых возможно протекание самоподдерживающейся реакции ядерного деления, предсказаны Полом Кадзуо Куродой (англ. Paul Kazuo Kuroda) в 1956 году[2] и оказались близкими к реальности.

Рудные тела, в которых происходила цепная реакция, представляют собой залегающие в пористом песчанике линзовидные образования из уранинита (UO2) диаметром порядка 10 м и толщиной от 20 до 90 см; содержание урана в них составляло от 20 до 80% (по массе). Определены 16 одиночных реакторов в трёх различных частях месторождения: в Окло, в Окелобондо (Okelobondo, 1,6 км от Окло) и в Бангомбе (Bangombe, 20 км к югу от Окло). Все 16 рудных тел объединяют под общим названием «Природный ядерный реактор Окло».

Окло — единственный известный на Земле естественный ядерный реактор. Цепная реакция началась здесь около 2 млрд лет назад и продолжалась в течение нескольких сотен тысяч лет. Средняя тепловая мощность реактора составляла около 100 кВт[3][4]. И хотя природные цепные реакции в настоящее время невозможны из-за низкого изотопного содержания урана-235 в природном уране вследствие естественного радиоактивного распада, естественные ядерные реакторы могли существовать более миллиарда лет назад, когда содержание урана-235 было выше (например, два миллиарда лет назад концентрация урана-235 составляла 3,7%, 3 млрд лет — 8,4%, а 4 млрд лет — 19,2%)[5].

В мае 1972 года на урановой обогатительной фабрике в Пьерлате (фр.)русск. (Франция) во время обычного масс-спектрометрического анализа гексафторида урана UF6 из Окло было обнаружено отклонение от нормы изотопного состава урана. Содержание изотопа 235U составило 0,717 % вместо обычных 0,720 %. Это расхождение требовало объяснения, так как все ядерные объекты подвергаются жёсткому контролю с целью недопущения незаконного использования расщепляющихся материалов в военных целях. Французский Комиссариат атомной энергетики (CEA) начал расследование. Серия измерений обнаружила значительные отклонения изотопного отношения 235U/238U в нескольких шахтах. В одной из шахт содержание 235U составило 0,440 %. Были обнаружены также аномалии в распределении изотопов неодима и рутения.

Уменьшение концентрации изотопа 235U является характерной чертой отработанного ядерного топлива, так как именно этот изотоп является основным расщепляющимся материалом уранового ядерного реактора. 25 сентября 1972 года CEA объявила об открытии естественной самоподдерживающейся реакции ядерного деления. Следы протекания таких реакций были обнаружены в общей сложности в 16 точках.

Изотопные признаки ядерного деления[править | править код]

Изотопные содержания некоторых элементов из середины таблицы Менделеева в рудах Окло демонстрируют существование здесь в прошлом очага деления урана-235.

Неодим[править | править код]

Red pog.png Изотопный состав неодима в естественной среде (синий) и в продуктах деления 235U (красный)

Неодим является одним из элементов, изотопный состав которого в Окло аномален по сравнению с другими территориями. Например, естественный неодим содержит 27 % изотопа 142Nd, тогда как в Окло он составляет всего 6 %. В то же время руды Окло содержали больше изотопа 143Nd. Если из измеренного в Окло изотопного содержания неодима вычесть фоновое (природное, существующее в интактных частях земной коры) содержание, полученный изотопный состав неодима характерен для продуктов деления 235U.

Рутений[править | править код]

Red pog.png Изотопный состав рутения в естественной среде (синий) и в продуктах деления 235U (красный)

Похожие аномалии изотопного состава в Окло наблюдаются и для рутения. Изотоп 99Ru обнаруживается в бо́льших количествах, чем в естественных условиях (27—30 % вместо 12,7 %). Аномалию можно объяснить распадом 99Tc → 99Ru, так как технеций-99 является относительно короткоживущим (T1/2 = 212 тыс. лет) продуктом деления 235U. Изотоп 100Ru обнаруживается в значительно меньших количествах, обусловленных лишь его природной распространённостью, так как он не возникает при делении урана-235. Его изобар 100Mo, который является продуктом деления и распадается (посредством двойного бета-распада) в 100Ru, имеет слишком длинное время жизни (~1019 лет), чтобы внести какой-либо измеримый вклад в содержание рутения-100 в минералах Окло.

Реактор возник в результате затопления пористых богатых ураном пород грунтовыми водами, которые выступили в качестве замедлителей нейтронов. Тепло, выделявшееся в результате реакции, вызывало кипение и испарение воды, что замедляло или останавливало цепную реакцию. После того, как порода охлаждалась и распадались короткоживущие продукты распада (нейтронные яды), вода конденсировалась, и реакция возобновлялась. Этот циклический процесс продолжался несколько сотен тысяч лет.

При делении урана среди продуктов деления образуются пять изотопов ксенона. Все пять изотопов в варьирующихся концентрациях были обнаружены в породах природного реактора. Изотопный состав выделенного из пород ксенона позволяет рассчитать, что типичный цикл работы реактора составлял примерно 3 часа: около 30 минут критичности и 2 часа 30 минут охлаждения[6].

Ключевой фактор, сделавший возможной работу реактора, — это примерно 3,7%-е изотопное содержание 235U в природном уране в те времена. Это изотопное содержание сравнимо с содержанием урана в низкообогащённом ядерном топливе, используемом в большинстве современных энергетических ядерных реакторов. (Оставшиеся 96% составляет 238U, не подходящий для реакторов на тепловых нейтронах). Поскольку уран-235 имеет период полураспада лишь 0,7 млрд лет (значительно короче, чем уран-238), современная распространённость урана-235 составляет лишь 0,72%, чего недостаточно для работы реактора с легководным замедлителем без предварительного изотопного обогащения. Таким образом, в настоящее время образование природного ядерного реактора на Земле невозможно.

Урановое месторождение Окло — единственное известное место, где существовал природный ядерный реактор. Другие богатые урановые рудные тела тоже имели достаточное количество урана для самоподдерживающейся цепной реакции деления в то время, но комбинация физических условий в Окло (в частности, наличие воды как замедлителя нейтронов, и пр.) была уникальной.

Ещё одним фактором, который, вероятно, способствовал началу реакции в Окло именно 2 млрд лет назад, а не ранее, был рост содержания кислорода в атмосфере Земли[4]. Уран хорошо растворяется в воде лишь в присутствии кислорода, поэтому в земной коре перенос и концентрация урана подземными водами, формирующими богатые рудные тела, стали возможными только после достижения достаточного содержания свободного кислорода.

По оценке, в реакциях деления, проходивших в урановых минеральных образованиях размером от сантиметров до метров, выгорело около 5 тонн урана-235. Температуры в реакторе поднимались до нескольких сотен градусов Цельсия. Большинство нелетучих продуктов деления и актиноидов за прошедшие 2 млрд лет диффундировали лишь на сантиметры[4]. Это позволяет исследовать перенос радиоактивных изотопов в земной коре, важный для прогноза их долгосрочного поведения в местах захоронения радиоактивных отходов[7].

Связь с вариациями фундаментальных констант[править | править код]

Вскоре после открытия природного реактора в Окло исследования изотопных соотношений в его породах были использованы[8][9] для проверки, изменялись ли фундаментальные физические константы в течение последних 2 млрд лет. В частности, резонансный захват теплового нейтрона ядром 149Sm с образованием 150Sm перестаёт быть возможным уже при небольшом изменении постоянной тонкой структуры α, определяющей силу электромагнитных взаимодействий, и аналогичных констант для сильного и слабого взаимодействия. Измерение относительного содержания 149Sm/150Sm в минералах Окло позволило установить, что в пределах экспериментальной погрешности значение этих констант было тем же, что и в наше время, поскольку скорость захвата тепловых нейтронов самарием-149 не изменилась за истекшие 2 млрд лет[10][11]. На 2015 год проведены ещё более чувствительные измерения, и считается установленным[12], что во время работы реактора в Окло относительное отличие |Δα/α| постоянной тонкой структуры от современного значения не превосходило 1,1×10−8 с доверительной вероятностью 95 %. В предположении линейного изменения α со временем это означает ограничение на скорость годичной вариации постоянной тонкой структуры[12]:

(1α|dαdt|)≤0,61×10−17{\displaystyle \left({\frac {1}{\alpha }}\left|{\frac {d\alpha }{dt}}\right|\right)\leq 0,61\times 10^{-17}} год−1.
  1. ↑ В различных источниках возраст реактора определён в диапазоне от 2 до 1,8 млрд лет назад.
  2. Kuroda, P. K. On the Nuclear Physical Stability of the Uranium Minerals (англ.) // Journal of Chemical Physics : journal. — 1956. — Vol. 25. — P. 781—782; 1295—1296. — DOI:10.1063/1.1743058. — Bibcode: 1956JChPh..25..781K.
  3. Meshik, A. P. The Workings of an Ancient Nuclear Reactor (англ.) // Scientific American. — Springer Nature, 2005. — November.
  4. 1 2 3 Gauthier-Lafaye, F.; Holliger, P.; Blanc, P.-L. Natural fission reactors in the Franceville Basin, Gabon: a review of the conditions and results of a «critical event» in a geologic system (англ.) // Geochimica et Cosmochimica Acta (англ.)русск. : journal. — 1996. — Vol. 60, no. 25. — P. 4831—4852. — DOI:10.1016/S0016-7037(96)00245-1. — Bibcode: 1996GeCoA..60.4831G.
  5. Шуколюков, А. Ю. Уран. Природный ядерный реактор (неопр.) // Химия и жизнь. — 1980. — № 6. — С. 20—24.
  6. Meshik, A. P.; et al. Record of Cycling Operation of the Natural Nuclear Reactor in the Oklo/Okelobondo Area in Gabon (англ.) // Physical Review Letters : journal. — 2004. — Vol. 93, no. 18. — P. 182302. — DOI:10.1103/PhysRevLett.93.182302. — Bibcode: 2004PhRvL..93r2302M. — PMID 15525157.
  7. De Laeter, J. R.; Rosman, K. J. R.; Smith, C. L. The Oklo Natural Reactor: Cumulative Fission Yields and Retentivity of the Symmetric Mass Region Fission Products (англ.) // Earth and Planetary Science Letters (англ.)русск. : journal. — 1980. — Vol. 50. — P. 238—246. — DOI:10.1016/0012-821X(80)90135-1. — Bibcode: 1980E&PSL..50..238D.
  8. Shlyakhter A. I. Direct test of the constancy of fundamental nuclear constants (англ.) // Nature. — 1976. — 25 November (vol. 264). — P. 340. Архивировано 22 сентября 2015 года.
  9. Шляхтер А. И. Прямая проверка постоянства фундаментальных констант по данным о естественном ядерном реакторе Окло // Препринт ЛИЯФ. — 1976. — Сентябрь (№ 260).
  10. ↑ New Scientist: Oklo Reactor and fine-structure value. June 30, 2004.
  11. Petrov, Yu. V.; Nazarov A. I., Onegin M. S., Sakhnovsky E. G. Natural nuclear reactor at Oklo and variation of fundamental constants: Computation of neutronics of a fresh core (англ.) // Physical Review C : journal. — 2006. — Vol. 74, no. 6. — P. 064610. — DOI:10.1103/PHYSREVC.74.064610. — Bibcode: 2006PhRvC..74f4610P. — arXiv:hep-ph/0506186.
  12. 1 2 Edward D. Davis and Leila Hamdan. Reappraisal of the limit on the variation in α implied by the Oklo natural fission reactors (англ.) // Phys. Rev. C. — 2015. — Vol. 92. — P. 014319. — DOI:10.1103/PhysRevC.92.014319. — arXiv:1503.06011.

Атомные реакторы, спроектированные и построенные в СССР — Википедия

Материал из Википедии — свободной энциклопедии

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 31 августа 2019;
проверки требуют 2 правки.
Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 31 августа 2019;
проверки требуют 2 правки.

Перечень по типам стационарных энергетических установок, которые применяются на атомных электростанциях.

  • РБМК — реактор большой мощности канальный.
    • РБМК-1000 (Ленинградская им. В. И. Ленина, Курская, Чернобыльская, Смоленская)
    • РБМК-1500 (Игналинская АЭС Литва)
    • РБМКП-2400 (Разрабатывался; отличительная особенность — перегретый пар до 450 °C; активная зона имеет форму параллелепипеда; в пароперегревательных каналах уран с обогащением до 2,2 %, сплав оболочек ТВЭЛов заменён на нержавеющую сталь)
    • МКЭР-1500 (Проект; Особенности — Защитная гермооболочка, КПД — 35,2 %, срок службы 50 лет, обогащение 2,4 %, Расход природного урана — 16,7 г/МВт·ч(э). См. Описание реактора МКЭР-1500

ВВЭР — водо-водяной энергетический реактор

Применяется на следующих АЭС:

  • Нововоронежская 1-й блок ВВЭР 210; 2-й 365;3 и 4-й 440, 5-й ВВЭР-1000
  • Кольская, 4 блока ВВЭР-440,
  • Калининская, 4 блока ВВЭР-1000,
  • Балаковская, 4 блока ВВЭР-1000,
  • Волгодонская, 1 и 2 блоки ВВЭР-1000 (запущены в 2002 и 2010 гг. соответственно)
  • Армянская 1 и 2-й блоки ВВЭР-440, (1 блок остановлен)
  • Южно-Украинская, 3 блока ВВЭР-1000,
  • Запорожская, 6 блоков ВВЭР-1000,
  • Ровенская 1 и 2 блоки ВВЭР-440, 3 и 4 блоки ВВЭР-1000 (запущены в 1986 и 2004 гг. соответственно),
  • Хмельницкая, 1 и 2 блоки ВВЭР-1000 (запущены в 1987 и 2004 гг. соответственно),
  • Богунице, 1 и 2 блоки ВВЭР-440
  • Козлодуй, 1,2,3,4 блоки ВВЭР-440 и 5,6 блоки ВВЭР-1000,
  • Мо́ховце, 1 и 2 блоки ВВЭР-440(Словакия, пущен в октябре 1998 и марте 2000). В настоящее время достраиваются блоки 3 и 4.
  • Ловииса, 1 и 2 блоки ВВЭР-440, модернизированы до 510 МВт.эл.
  • Куданкулам, 1 и 2 блоки ВВЭР-1000 (в настоящее время идет пуско-наладка),
  • Тяньваньская АЭС, 1 и 2 блоки ВВЭР-1000 (начало эксплуатации 2007 год),

ОК-650 — серия водо-водяных ядерных реакторов на тепловых нейтронах, размещаемых на подводных лодках. Используется высокообогащённая двуокись урана. Тепловая мощность — 180…190 МВт.

Разработан на основе реакторной установки КЛТ-40С используемой на российских ледоколах. В настоящее время плавучая АЭС строится в Санкт-Петербурге. Планируется построить несколько АЭС, для удалённых заполярных городов и в качестве опреснительных установок на экспорт.

Ядерная силовая установка — Википедия

Ядерная силовая установка (ЯСУ) — силовая установка, работающая на энергии цепной реакции деления ядра. Состоит из ядерного реактора и паро- или газотурбинной установки, в которой тепловая энергия, выделяющаяся в реакторе, преобразуется в механическую или электрическую энергию. КПД лучших образцов достигает 40%[1].

Основная сфера применения — морской флот, как надводный, так и подводный. Также может быть использована в автомобильном, железнодорожном, авиационном и космическом транспортном средстве.

ЯСУ перед прочими силовыми установками на обычном топливе предоставляет практически неограниченную автономность передвижения (дальность хода), и большую мощность двигателей: и как следствие, возможность длительно использовать высокую скорость движения, транспортировать более тяжёлые грузы и способность работать в тяжёлых условиях (например: атомный ледокол).

В середине XX века было много проектов по использованию атомной энергии в бытовых целях. Проекты по использованию ядерного реактора в транспортной промышленности в основном разрабатывали в США и СССР.

Например, компания Ford в 1958 году создала концепт-кар Ford Nucleon с ЯСУ.
В середине 1950-х годов в США писали, что, возможно, скоро будет создан атомный пылесос[2].
Кроме этого в оборонной промышленности СССР и США разрабатывались: атомный танк, атомовоз, атомолёт и ядерный ракетный двигатель.
В СССР газета «Гудок» в 1958 году писала[3]:

Конечно, атомный локомотив будет значительно тяжелее паровоза или тепловоза той же мощности. Но если такой локомотив направить на отдаленную магистраль, например в Арктику, то он будет работать там с перерывами в течение целого зимнего сезона без дополнительного снабжения. Его очень легко превратить в подвижную электростанцию. Кроме того, он сможет снабжать энергией бани, прачечные, парники для выращивания овощей.

Но ни один из этих проектов в XX веке так и не был реализован на практике.

В 1950-х — 1970-х годах в СССР было затрачено много средств и ресурсов на создание ядерного ракетного двигателя для космических ракет, который к 1981 году практически был создан, но дальнейшее развитие этого проекта было приостановлено[4].
Частичным успехом увенчались некоторые проекты по использованию ядерных реакторов на космических аппаратах.

Также, в 1960-х годах велись работы по созданию челнока с ядерной двигательной установкой для осуществления полётов между орбитами Земли, Луны и Марса[5].

В XX веке проекты по использованию ЯСУ успешно реализованы были только на водном транспорте и в военно-морском флоте в виде:

В начале XXI века многие проекты середины XX века по использованию ЯСУ были заново переосмыслены и начали воплощаться с использованием современных технологий и учитывая полученный положительный и отрицательный опыт прошлого.
Залогом успеха в реализации таких проектов является дальнейшая миниатюризация ядерных реакторов на компактных мини-АЭС не нуждающихся в постоянном обслуживании, которые сегодня успешно разрабатываются в США и Японии[6]. Как пример можно привести реактор Rapid-L, разрабатываемый в Японии, вес которого составляет 8 тонн при высоте 6 м и ширине 2 м[7].

Например в США в новом воплощении возрождается проект атомолёта: в 2003 году военно-исследовательская лаборатория ВВС США профинансировала разработку атомного двигателя для беспилотного самолёта-разведчика Global Hawk с целью увеличить продолжительность полёта до нескольких месяцев[8].

А в России возрождаются проекты ядерного ракетного двигателя для освоения дальнего космоса[9] и атомовоза в рамках сотрудничества «Росатома» и ОАО «Российские железные дороги»[10].

В современных проектах водных и наземных транспортных средств с ЯСУ, чаще всего ЯСУ используется как энергетическая установка (мини-АЭС) вырабатывающая электрический ток и питающая электрические двигатели транспортного средства.
По такому принципу сегодня строятся и проектируются все современные атомные ледоколы, атомные подводные лодки, атомоходы и атомовозы.

1 марта 2018 года Президент Российской Федерации Владимир Путин сообщил о лётно-конструкторских испытаниях крылатой ракеты с малогабаритной ядерной энергоустановкой[11]. 3 марта 2018 года агентство ТАСС сообщило о завершении испытаний малогабаритной ядерной энергетической установки, которая может использоваться при производстве крылатых ракет и подводных аппаратов[12].

Кампания ядерного реактора — Википедия

Материал из Википедии — свободной энциклопедии

У этого термина существуют и другие значения, см. Кампания.

Кампания ядерного реактора — время работы реактора с одной и той же загрузкой ядерного топлива.

Когда весь запас реактивности реактора исчерпан, то есть когда компенсирующие стержни заняли своё предельное конечное положение, цепная реакция сама собой прекращается. Она может быть возобновлена только после замены урана в активной зоне. Разумеется, что величину кампании энергетического реактора желательно иметь возможно бо́льшей, поскольку получаемая энергия тем дешевле, чем больше её производится при одной загрузке урана. Однако продолжительность кампании ограничена некоторым минимальным значением критической массы. Часть делящегося материала, составляющая эту критическую массу в конце кампании, из-за прекращения цепной реакции делению не подвергается, выгружается из реактора и в дальнейшем может быть использована только после надлежащей переработки урана, если такая переработка оправдана.

Реакторы на естественном уране имеют малый начальный запас реактивности и их кампании обычно определяются этим запасом. В реакторах с обогащённым ураном запас реактивности может быть сделан большим. Однако имеется ещё одно ограничение продолжительности кампании реактора, связанное с реакцией материала тепловыделяющих элементов на накопление продуктов деления. В результате деления ядра вместо одного атома образуются два новых, суммарный объём которых примерно в 2 раза больше объёма разделившегося атома, поскольку все атомы имеют примерно одинаковые объёмы. Помимо этого, новые атомы не могут помещаться в узлах кристаллической решётки урана и размещаются в решётке произвольно. Наконец, существенно, что значительная часть продуктов деления — газы. В результате накопление продуктов деления сопровождается появлением внутренних перенапряжений в материале, повышением давления газа, что в конце концов приводит к образованию трещин, вздутий и деформации тепловыделяющих элементов. Срок службы основного оборудования реактора много больше, чем урановых элементов, и последние по завершении кампании должны выгружаться из активной зоны. Однако эта операция становится невозможной в случае их деформации. Кроме того, у повреждённых ТВЭЛов нарушается герметичность покрытия, и радиоактивные газы проникают в теплоноситель. Все это означает, что срок службы урановых блоков в ядерном реакторе должен определяться их стойкостью по отношению к разрушительному воздействию накапливающихся продуктов деления. Соответственно, кампания реактора должна определяться прежде всего указанной стойкостью тепловыделяющих блоков, а начальный запас реактивности должен быть таким, чтобы он полностью истощался к концу срока пребывания урановых блоков в реакторе. В противном случае по окончании кампании из реактора будет выгружаться лишнее количество неиспользованного делящегося материала, что невыгодно.

Накопление продуктов деления характеризуется их количеством в граммах, приходящимся на тонну урана. Однако непосредственное измерение массы продуктов деления крайне сложно. Зато всегда известно полное количество энергии, выделившейся в активной зоне реактора при делении. Поскольку же деление 1 г урана сопровождается освобождением примерно 1 МВт·сутки тепловой энергии и образованием около 1 г продуктов деления, то число выработанных мегаватт-суток тепловой энергии приблизительно равно числу граммов продуктов деления. Полная масса загруженного в реактор урана также известна. Поэтому количество накопившихся продуктов деления выражают в единицах МВт·сутки/т — количеством мегаватт-суток на тонну урана.

Каждый материал характеризуется своим пределом по накоплению продуктов деления — допустимой глубиной выгорания делящихся атомов. Глубина выгорания для металлического урана составляет 3000—3500 МВт·сутки/т, но для его соединений может быть много больше. Например, оксид урана является веществом пористым и поэтому способным накопить много больше, чем металлический уран, продуктов деления без видимых нарушений формы тепловыделяющего элемента — до 20 000 МВт·сутки/т, а возможно, и больше — до 100 000 МВт·сутки/т. Тонна естественного урана содержит около 7 кг 235U. Глубина выгорания 3500 МВт·сутки/т соответствует делению 3,5 кг атомов. Однако не все продукты деления происходят от 235U, ведь в реакторе накапливается 239Pu, который также участвует в делении. Поэтому часть продуктов деления получается из плутония, и 235U расходуется меньше, чем получается продуктов деления. Чем выше допустимая глубина выгорания, тем больше длительность кампании реактора и тем экономичнее ядерная энергетическая установка с заданным топливом. Однако большие глубины выгорания предполагают обогащённый уран, который намного дороже естественного. Минимальная критическая масса в конце кампании меньше в том случае, если топливом является металлический уран, а не его соединения, например, с кислородом. Поэтому экономичность применения того или иного вида ядерного топлива определяется многими факторами.

  • Климов А. Н. Ядерная физика и ядерные реакторы. М. Атомиздат, 1971.
  • Левин В. Е. Ядерная физика и ядерные реакторы. 4-е изд. — М.: Атомиздат, 1979.
  • Петунин В. П. Теплоэнергетика ядерных установок М.: Атомиздат, 1960.

Ядерное топливо — Википедия

ТВС (тепловыделяющая сборка)
Топливные таблетки.

Я́дерное то́пливо — материалы, которые используются в ядерных реакторах для осуществления управляемой цепной ядерной реакции деления. Ядерное топливо принципиально отличается от других видов топлива, используемых человечеством, оно чрезвычайно энергоемко, но и весьма опасно для человека, что накладывает множество ограничений на его использование из соображений безопасности. По этой и многим другим причинам ядерное топливо гораздо сложнее в применении, чем любой вид органического топлива, и требует множества специальных технических и организационных мер при его использовании, а также высокую квалификацию персонала, имеющего с ним дело.

Цепная ядерная реакция представляет собой деление ядра на две части, называемые осколками деления, с одновременным выделением нескольких (2—3) нейтронов, которые, в свою очередь, могут вызвать деление следующих ядер. Такое деление происходит при попадании нейтрона в ядро атома исходного вещества. Образующиеся при делении ядра осколки деления обладают большой кинетической энергией. Торможение осколков деления в веществе сопровождается выделением большого количества тепла. Осколки деления — это ядра, образовавшиеся непосредственно в результате деления. Осколки деления и продукты их радиоактивного распада обычно называют продуктами деления. Ядра, делящиеся нейтронами любых энергий, называют ядерным горючим (как правило, это вещества с нечётным атомным числом). Существуют ядра, которые делятся только нейтронами с энергией выше некоторого порогового значения (как правило, это элементы с чётным атомным числом). Такие ядра называют сырьевым материалом, так как при захвате нейтрона пороговым ядром образуются ядра ядерного горючего. Комбинация ядерного горючего и сырьевого материала называется ядерным топливом.
Ниже приведено распределение энергии деления ядра 235U между различными продуктами деления (в МэВ):

Кинетическая энергия осколков деления 162 81%
Кинетическая энергия нейтронов деления 5 2,5%
Энергия γ-излучения, сопровождающего захват нейтронов 10 5%
Энергия γ-излучения продуктов деления 6 3%
Энергия β-излучения продуктов деления 5 2,5%
Энергия, уносимая нейтрино 11 5,5%
Полная энергия деления ~200 100%

Так как энергия нейтрино уносится безвозвратно, доступно для использования только 188 МэВ/атом = 30 пДж/атом = 18 ТДж/моль = 76,6 ТДж/кг (по другим данным (см. ссылку) 205,2 — 8,6 = 196,6 МэВ/атом)[1].

Природный уран состоит из трёх изотопов: 238U (99,282 %), 235U (0,712 %) и 234U (0,006 %). Он не всегда пригоден как ядерное топливо, особенно если конструкционные материалы и замедлитель интенсивно поглощают нейтроны. В этом случае ядерное топливо изготавливают на основе обогащённого урана. В энергетических реакторах на тепловых нейтронах используют уран с обогащением менее 6 %, а в реакторах на быстрых и промежуточных нейтронах обогащение урана превышает 20 %. Обогащённый уран получают на специальных обогатительных заводах.

Ядерное топливо делится на два вида:

  • Природное урановое, содержащее делящиеся ядра 235U, а также сырьё 238U, способное при захвате нейтрона образовывать плутоний 239Pu;
  • Вторичное топливо, которое не встречается в природе, в том числе 239Pu, получаемый из топлива первого вида, а также изотопы 233U, образующиеся при захвате нейтронов ядрами тория 232Th.

По химическому составу, ядерное топливо может быть:

На выделенном фрагменте этого муляжа ТВС с вырезанными для удобства обзора секторами ТВЭЛов видны топливные таблетки.

Ядерное топливо используется в ядерных реакторах в виде таблеток размером в несколько сантиметров, где оно обычно располагается в герметично закрытых тепловыделяющих элементах (ТВЭЛах), которые в свою очередь для удобства использования объединяются по нескольку сотен в тепловыделяющие сборки (ТВС).

К ядерному топливу применяются высокие требования по химической совместимости с оболочками ТВЭЛов, у него должна быть достаточная температура плавления и испарения, хорошая теплопроводность, небольшое увеличение объёма при нейтронном облучении, технологичность производства.

Металлический уран сравнительно редко используют как ядерное топливо. Его максимальная температура ограничена 660 °C. При этой температуре происходит фазовый переход, в котором изменяется кристаллическая структура урана. Фазовый переход сопровождается увеличением объёма урана, что может привести к разрушению оболочки ТВЭЛов. При длительном облучении в температурном интервале 200—500 °C уран подвержен радиационному росту. Это явление заключается в том, что облучённый урановый стержень удлиняется. Экспериментально наблюдалось увеличение длины уранового стержня в два — три раза[2].

Использование металлического урана, особенно при температуре больше 500 °C, затруднено из-за его распухания. После деления ядра образуются два осколка деления, суммарный объём которых больше объёма атома урана (плутония). Часть атомов — осколков деления являются атомами газов (криптона, ксенона и др.). Атомы газов накапливаются в по́рах урана и создают внутреннее давление, которое увеличивается с повышением температуры. За счёт изменения объёма атомов в процессе деления и повышения внутреннего давления газов уран и другие ядерные топлива начинают распухать. Под распуханием понимают относительное изменение объёма ядерного топлива, связанное с делением ядер.

Распухание зависит от выгорания и температуры ТВЭЛов. Количество осколков деления возрастает с увеличением выгорания, а внутреннее давление газа — с увеличением выгорания и температуры. Распухание ядерного топлива может привести к разрушению оболочки ТВЭЛа. Ядерное топливо менее подвержено распуханию, если оно обладает высокими механическими свойствами. Металлический уран как раз не относится к таким материалам. Поэтому применение металлического урана в качестве ядерного топлива ограничивает глубину выгорания, которая является одной из главных характеристик ядерного топлива.

Радиационная стойкость и механические свойства топлива улучшаются после легирования урана, в процессе которого в уран добавляют небольшое количество молибдена, алюминия и других металлов. Легирующие добавки снижают число нейтронов деления на один захват нейтрона ядерным топливом. Поэтому легирующие добавки к урану стремятся выбрать из материалов, слабо поглощающих нейтроны.

К хорошим ядерным топливам относятся некоторые тугоплавкие соединения урана: окислы, карбиды и интерметаллические соединения. Наиболее широкое применение получила керамика — диоксид урана UO2. Её температура плавления равна 2800 °C, плотность — 10,2 г/см³. У диоксида урана нет фазовых переходов, она менее подвержена распуханию, чем сплавы урана. Это позволяет повысить выгорание до нескольких процентов. Диоксид урана не взаимодействует с цирконием, ниобием, нержавеющей сталью и другими материалами при высоких температурах. Основной недостаток керамики — низкая теплопроводность — 4,5 кДж/(м·К), которая ограничивает удельную мощность реактора по температуре плавления. Так, максимальная плотность теплового потока в реакторах ВВЭР на диоксида урана не превышает 1,4⋅103 кВт/м², при этом максимальная температура в стержневых ТВЭЛах достигает 2200 °C. Кроме того, горячая керамика очень хрупка и может растрескиваться.

Плутоний относится к низкоплавким металлам. Его температура плавления равна 640 °C. У плутония плохие пластические свойства, поэтому он почти не поддаётся механической обработке. Технология изготовления ТВЭЛов усложняется токсичностью плутония. Для приготовления ядерного топлива обычно применяются диоксид плутония, смесь карбидов плутония с карбидами урана, сплавы плутония с металлами.

Высокими теплопроводностью и механическими свойствами обладают дисперсионные топлива, в которых мелкие частицы UO2, UC, PuO2 и других соединений урана и плутония размещают гетерогенно в металлической матрице из алюминия, молибдена, нержавеющей стали и др. Материал матрицы и определяет радиационную стойкость и теплопроводность дисперсионного топлива. Например, дисперсионное топливо Первой АЭС состояло из частиц сплава урана с 9 % молибдена, залитых магнием.

На АЭС и другие ядерные установки топливо приходит в виде довольно сложных технических устройств — тепловыделяющих сборок (ТВС), которые в зависимости от типа реактора загружаются непосредственно во время его работы (как на реакторах типа РБМК в России) на место выгоревших ТВС или заменяют отработавшие сборки большими группами во время ремонтной кампании (как на российских реакторах ВВЭР или их аналогах в других странах, PWR и других). В последнем случае при каждой новой загрузке меняется чаще всего треть топлива и полностью изменяется его расстановка в активной зоне реактора, наиболее выгоревшие сборки с топливом, из центра активной зоны, выгружаются, на их место ставится вторая треть сборок, со средним выгоранием и расположением. На их место в свою очередь ставятся наименее выгоревшие ТВС, с периферии активной зоны; в то время как на периферию загружается свежее топливо. Такая схема перестановки топлива является традиционной и обусловлена многими причинами, например стремлением обеспечить равномерное энерговыделение в топливе и максимальный запас до кризиса теплообмена воды на оболочках ТВЭЛ.

Описание загрузки ядерного топлива в активную зону реактора, данное выше, всё же является весьма условным, позволяющим иметь общее представление об этом процессе. На самом деле загрузка топлива осуществляется сборками с различными степенями обогащения топлива и её предваряют сложнейшие ядерно-физические расчёты конфигурации активной зоны реактора в специализированном программном обеспечении[3], которые совершаются на годы вперёд и позволяют планировать топливные и ремонтные кампании для увеличения показателей эффективности работы АЭС, например КИУМа. Кроме того, если конфигурация топлива не будет удовлетворять определённым требованиям, важнейшими из которых являются различные коэффициенты неравномерности энерговыделения в активной зоне, реактор не сможет работать вовсе или будет неуправляемым. Кроме различной степени обогащения разных ТВС применяются другие решения для обеспечения нужной конфигурации активной зоны и стабильности её характеристик в течение топливной кампании, например ТВС, в которых вместо некоторых ТВЭЛов содержатся поглощающие элементы (ПЭЛы), которые компенсируют изначальную избыточную реактивность свежего топлива, выгорают в процессе работы реактора и по мере использования топлива всё меньше влияют на его реактивность, что в итоге выравнивает по времени величину энерговыделения на протяжении всего срока работы тепловыделяющей сборки. В настоящий момент в топливе промышленных водо-водяных реакторов во всём мире практически перестали использовать ПЭЛы с борным поглотителем, долгое время являвшимися почти безальтернативными элементами, и перешли на более прогрессивный способ[4] — внесение с теми же целями гадолиниевого выгорающего поглотителя непосредственно в топливную матрицу; этот способ имеет много важных преимуществ.

После выгрузки из активной зоны реактора отработавшего топлива его помещают в специальный бассейн выдержки, обычно располагающийся в непосредственной близости от реактора. Дело в том, что в отработавших ТВС содержится большое количество осколков деления урана, сразу после выгрузки каждый ТВЭЛ в среднем содержит 300000 Кюри радиоактивных веществ, которые выделяют энергию 100 кВт*час. За счёт этой энергии использованное ядерное топливо имеет свойство саморазогреваться до больших температур без принятия специальных мер (недавно выгруженное топливо может разогреться на воздухе примерно до 300 °C) и является высокорадиоактивным, поэтому его хранят 3-4 года в бассейнах с определённым температурным режимом под слоем воды, защищающим персонал от ионизирующего излучения продуктов распада урана. По мере выдержки уменьшается радиоактивность топлива и мощность его остаточных энерговыделений, обычно через 3 года, когда саморазогрев ТВС сокращается до 50-60 °C, его извлекают и отправляют для хранения, захоронения или переработки[5][6][7][8].

Урановое топливо[править | править код]

Урановое ядерное топливо получают переработкой руд. Процесс происходит в несколько этапов:

  • Для бедных месторождений: В современной промышленности в силу отсутствия богатых урановых руд (исключения составляют канадские и австралийские месторождения типа несогласия[9], в которых концентрация урана доходит до 3 %) используется способ подземного выщелачивания руд. Это исключает дорогостоящую добычу руды. Предварительная подготовка идёт непосредственно под землёй. Через закачные скважины под землю над месторождением закачивается серная кислота, иногда с добавлением солей трёхвалентного железа (для окисления урана U (IV) до U (VI)), хотя руды часто содержат железо и пиролюзит, которые облегчают окисление. Через откачные скважины специальными насосами раствор серной кислоты с ураном поднимается на поверхность. Далее он непосредственно поступает на сорбционное, гидрометаллургическое извлечение и одновременное обогащение урана.
  • Для рудных месторождений: используют обогащение руды и радиометрическое обогащение руды.
  • Гидрометаллургическая переработка — дробление, выщелачивание, сорбционное или экстракционное извлечение урана с получением очищенной закиси-окиси урана (U3O8), диураната натрия (Na2U2O7) или диураната аммония ((NH4)2U2O7).
  • Перевод урана из оксида в тетрафторид UF4, или из оксидов непосредственно для получения гексафторида UF6, который используется для обогащения урана по изотопу 235.
  • Обогащение методами газовой термодиффузии или центрифугированием.
  • UF6, обогащенный по 235 изотопу переводят в диоксид UO2, из которой изготавливают «таблетки» ТВЭЛов или получают другие соединения урана с этой же целью.

Ториевое топливо[править | править код]

Ambox outdated serious.svg

Информация в этой статье или некоторых её разделах устарела.

Вы можете помочь проекту, обновив её и убрав после этого данный шаблон.

Торий в настоящее время в качестве сырья для производства ядерного топлива не применяется в силу следующих причин:

  1. Запасы урана достаточно велики;
  2. Образование 232U, который, в свою очередь, образует γ-активные ядра 212Bi, 208Tl, затрудняющие производство ТВЭЛов;
  3. Переработка облучённых ториевых ТВЭЛов сложнее и дороже переработки урановых.

Плутониевое топливо[править | править код]

Плутониевое ядерное топливо в настоящее время также не применяется, что связано с его крайне сложной химией. За многолетнюю историю атомной промышленности неоднократно предпринимались попытки использования плутония как в виде чистых соединений, так и в смеси с соединениями урана, однако успехом они не увенчались. Топливо для АЭС, содержащее плутоний, называется MOX-топливо. Применение его в реакторах ВВЭР нецелесообразно из-за уменьшения примерно в 2 раза периода разгона[11], на что не рассчитаны штатные системы управления реактором.

При работе ядерного реактора топливо выгорает не полностью, имеет место процесс воспроизводства отдельных изотопов (Pu). В связи с этим отработанные ТВЭЛы направляют на переработку для регенерации топлива и повторного его использования.

В настоящее время для этих целей наиболее широко применяется пьюрекс-процесс, суть которого состоит в следующем: ТВЭЛы разрезают на части и растворяют в азотной кислоте, далее раствор очищают от продуктов деления и элементов оболочки, выделяют чистые соединения U и Pu. Затем полученный диоксид плутония PuO2 направляют на изготовление новых сердечников, а уран либо на изготовление сердечников, либо на обогащение 235U.

Переработка и регенерация высокорадиоактивных веществ — сложный и дорогостоящий процесс. ТВЭЛы после извлечения из реакторов проходят выдержку в течение нескольких лет (обычно 3—6) в специальных хранилищах. Трудности вызывает также переработка и захоронение отходов, непригодных к регенерации. Стоимость всех этих мер оказывает существенное влияние на экономическую эффективность атомных электростанций.

  1. ↑ Изотопы: свойства, получение, применение. В 2 т. Т. 2/ Под ред. В. Ю. Баранова. — М.: Физматлит, 2005, с. 115.
  2. ↑ Харьковский физико-технический институт, Наукова думка, Киев, 1978, стр. 45.
  3. ↑ например в России БИПР-7А (разработки Курчатовского института) для ВВЭР и DINA-РБМК для РБМК (разработки НИКИЭТ имени Н. А. Доллежаля) или программа WIMS-D/4, использующаяся для расчёта некоторых европейских реакторов
  4. ↑ промышленная эксплуатация такого топлива в России насчитывает примерно 10 лет
  5. Бартоломей Г.Г., Байбаков В.Д., Алхутов М.С., Бать Г.А. Основы теории и методы расчёта ядерных энергетических реакторов. — М.: Энергоатомиздат, 1982.
  6. Т.Х.Маргулова. Атомные электрические станции. — М.: ИздАТ, 1994.
  7. Б.А.Дементьев. Кинетика и регулирование ядерных реакторов. — М.: Энергоатомиздат, 1986.
  8. ↑ Пособие по физике реактора ВВЭР-1000.—БАЭС, ЦПП, 2003
  9. ↑ Формирование урановых месторождений «типа несогласия» с богатыми рудами связывается, прежде всего, с древними (протерозойскими) рудообразующими процессами, проявленными в зонах структурно-стратиграфических несогласий (ССН). Соответственно, перспективными для обнаружения месторождений данного типа являются районы широкого развития докембрийских формаций — щиты, срединные массивы и выступы кристаллического фундамента. К таким тектоническим структурам в России относятся Балтийский щит, Воронежский кристаллический массив, Восточно-Саянский, Патомский и Алданский районы южного обрамления Сибирской платформы, Анабарский щит и Омолонский массив, примыкающая к Северному Ледовитому океану часть полуострова Таймыр и северо-восточное окончание Чукотки.
  10. ↑ англ. Yellowcake
  11. ↑ Период разгона реактора — время, за которое мощность ядерного реактора изменяется в e раз.
  • БСЭ
  • Петунин В. П. Теплоэнергетика ядерных установок М.: Атомиздат, 1960.
  • Левин В. Е. Ядерная физика и ядерные реакторы 4-е изд. — М.: Атомиздат, 1979.

Тяжеловодный ядерный реактор — Википедия

Материал из Википедии — свободной энциклопедии

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 15 июня 2019;
проверки требуют 2 правки.
Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 15 июня 2019;
проверки требуют 2 правки.

Тяжелово́дный я́дерный реа́ктор (англ. Pressurised Heavy Water Reactor (PHWR)) — ядерный реактор, который в качестве теплоносителя и замедлителя использует D2O — тяжёлую воду. Так как дейтерий имеет меньшее сечение поглощения нейтронов, чем лёгкий водород, такие реакторы имеют улучшенный нейтронный баланс (то есть для них требуется менее обогащённый уран), что позволяет использовать в качестве топлива природный уран в энергетических реакторах или использовать «лишние» нейтроны для наработки изотопов.

В энергетических реакторах использование природного урана значительно снижает расходы на топливо, хотя экономический эффект несколько сглаживается бо́льшей ценой энергоблока и теплоносителя.
Первыми реакторами такого типа являлись американский CP-3, построенный в 1944 году, и ZEEP, запущенный в Канаде в 1945 году.
Наиболее известным реактором этого типа является канадский CANDU. Помимо самой Канады, реакторы CANDU экспортировались в Китай, Южную Корею, Индию, Румынию, Аргентину и Пакистан. Крупномасштабная программа строительства тяжеловодных реакторов осуществляется в Индии.
Всего в мире на данный момент действует 47 энергетических реакторов на тяжёлой воде, 3 строятся.

Промышленные тяжеловодные реакторы широко использовались для производства трития и плутония, а также для производства широкого спектра изотопной продукции, в том числе и медицинского назначения.

Исследовательские реакторы также часто используют тяжёлую воду.

В настоящее время в Индии разрабатывается т. н. «Улучшенный тяжеловодный ядерный реактор[en]», использующий канальную архитектуру и ториевый цикл, а также обычную лёгкую воду в качестве теплоносителя с естественной циркуляцией. Замедлитель — тяжёлая вода — находится в отдельных от теплоносителя каналах под пониженным относительно него давлением.

Аналогичные идеи реализуются и в Канаде, в реакторе «Улучшенный CANDU[en]», использующем обычный урановый цикл, а также SGHWR[en] (кипящий канальный тяжеловодный реактор).

В СССР тяжеловодные реакторы разрабатывал Институт теоретической и экспериментальной физики. Первый экспериментальный тяжеловодный реактор (главный конструктор — Б. М. Шолкович) был запущен в Лаборатории № 3 АН СССР в апреле 1949 г. Под руководством А. И. Алиханова и В. В. Владимирского были разработаны и сооружены промышленные тяжеловодные реакторы для производства плутония, трития и изотопов, опытные тяжеловодные реакторы в Югославии и КНР, тяжеловодный реактор с газовым охлаждением КС-150 для атомной электростанции А-1 в Богунице (Словакия), вступившей в строй в 1972 году. Разработка ТВЭЛов для КС-150 велась в Харьковском физико-техническом институте АН УССР.

Иодная яма — Википедия

Материал из Википедии — свободной энциклопедии

Ио́дная я́ма, или ксено́новая я́ма, — состояние ядерного реактора после его выключения либо снижения его мощности, характеризующееся накоплением короткоживущего изотопа ксенона 135Xe (период полураспада 9,14 часа), образующегося в результате радиоактивного распада изотопа иода 135I (период полураспада 6,57 часа). Этот процесс приводит к временному появлению значительной отрицательной реактивности, что, в свою очередь, делает невозможным вывод реактора на проектную мощность в течение определённого периода (около 1-2 суток).

Иодная яма — одно из проявлений так называемого «отравления» ядерного реактора, которое является одной из главных сложностей, делающих проблематичной работу АЭС в режиме постоянно меняющейся выходной мощности. Работа реактора при ксеноновом отравлении стала одним из факторов, повлиявших на развитие чернобыльской аварии. Для работы в маневровом режиме в комплексе с АЭС возможно строительство ГАЭС, как, например, на Южно-Украинском энергетическом комплексе.

В процессе деления ядер урана, во время работы ядерного реактора, среди прочих продуктов деления образуется радиоактивный изотоп иода 135I. В результате β-распада с периодом полураспада 6,57 часа он превращается в изотоп ксенона 135Xe. Этот изотоп тоже радиоактивен, но его период полураспада больше — 9,14 часа. 135Xe очень хорошо поглощает нейтроны. Поглощённые им нейтроны, очевидно, не могут участвовать в цепной реакции деления урана, поэтому присутствие 135Xe снижает запас реактивности реактора. В реакторе, работающем на большой мощности, убыль 135Xe определяется его радиоактивным распадом и «выгоранием» в результате захвата нейтронов.

235U или 239Pu 135Te 135 I 135Xe 135Cs 135Ba
деление (6,4 %) β (19,2 с) β (6,53 ч) β (9,17 ч) β (2,6 млн. лет)

или

После остановки реактора плотность потока нейтронов φ в активной зоне становится практически равной нулю. Изменение концентрации 135Xe в активной зоне остановленного реактора определяется разницей в скоростях β-распада 135I и 135Xe. За 1 с в 1 м³ ядерного топлива возникает λINI и распадается λXeNXe ядер 135Xe. Если активность 135I больше активности 135Xe (λINI > λXeNXe), то концентрация 135Xe в активной зоне растёт, и наоборот.

Равновесная концентрация иода-135 N0I в работающем реакторе пропорциональна величине φ, в то время как равновесная концентрация ксенона-135 N0Xe мало зависит от неё при φ > 1017 нейтр./(м²·с). Вследствие этого, при плотности потока φ > 1017 нейтр./(м²·с) величина N0I становится больше N0Xe. Так как постоянная распада λI > λXe, то в некотором интервале времени после остановки реактора λINI > λXeNXe. Поэтому концентрация 135Xe в остановленном реакторе вначале растёт до тех пор, пока активности 135I и 135Xe не станут равными (то есть до выполнения условия векового равновесия). После этого распад 135I уже не компенсирует убыль 135Xe, и концентрация последнего начинает уменьшаться вместе с иодом.

Зависимость концентрации 135Xe (1) и реактивности (2) после остановки реактора. (До остановки реактора плотность потока нейтронов была φ = 1018 нейтр./(м²·с).)

На рисунке показано изменение концентрации NXe(t) и реактивности ρ остановленного реактора, если плотность потока φ в работающем реакторе до остановки была равна 1018 нейтр./(м²·с). Максимальное отравление, наступающее через 11 ч после остановки реактора, возрастает с увеличением плотности потока нейтронов φ.

Реактивность остановленного реактора сначала падает, достигая минимума при максимальной концентрации ксенона, а затем увеличивается. Кривая изменения реактивности имеет вид ямы, а увеличение отравления после остановки реактора связано с накоплением 135I в работающем реакторе. Поэтому действие отравления на реактивность остановленного реактора называют иодной ямой. Она не наблюдается в реакторах с плотностью потока нейтронов φ < 1017 нейтр./(м²·с).

При проектировании реактора учитывают эффект иодной ямы. Высокие значения удельной мощности требуют дополнительного увеличения загрузки ядерного топлива для компенсации иодной ямы. Иначе выключенный реактор будет невозможно вывести на мощность (особенно в конце кампании) в течение нескольких десятков часов, пока не произойдёт почти полный распад 135Xe в активной зоне.

  • Петунин В. П. Теплоэнергетика ядерных установок. — М.: Атомиздат, 1960.
  • Левин В. Е. Ядерная физика и ядерные реакторы. 4-е изд. — М.: Атомиздат, 1979.

Оставьте комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *