Как печатает 3д принтер: Как работает 3D принтер: объяснение на простых примерах

Содержание

Как работает 3D принтер: объяснение на простых примерах

 
3D-печать распространена повсеместно. Она позволяет создать что угодно — от прототипов всевозможных изделий, до функциональных частей реактивных двигателей самолетов и космических аппаратов, от канцелярских принадлежностей и автозапчастей, до шоколадок и сувениров.

Но, как именно работают 3D-принтеры, как они создают трехмерные объекты любой возможной формы — знают еще не все. Если вы хоть раз задавались этими вопросами, то перед вами — самое простое объяснение 3D-печати.

Общие принципы 3D-печати

Принцип 3D-печати по любой существующей технологии — создание объемных объектов из совокупности плоских слоев.

Цифровая модель изделия разделяется на слои специальной программой — слайсером, а принтер печатает эти слои, один на другом, составляя из них трехмерный объект. Так, из множества слоев, получается объемная деталь.

Общий принцип один, но технологии различаются; самая распространенная и доступная среди них — FDM.

FDM

Моделирование методом послойного наплавления (FDM), также известное как производство способом наплавления нитей (FFF) — самый популярный и массовый тип 3D-печати.

Стандартное FDM-устройство работает как термоклеевой пистолет управляемый роботом, что не удивляет, ведь разработка технологии FDM когда-то начиналась с опытов с термоклеем. Пластиковый пруток проталкивается через горячее сопло, где он плавится, а выходя из него укладывается слоями. Процесс повторяется снова и снова, пока не появится готовый 3D-объект.



 

Единственное отличие в том, что 3D-принтеры используют не стержни термоклея, а пластиковый филамент намотанный на катушки.

Самые распространенные материалы для FDM (FFF) — пластики ABS и PLA.

 

Пластиковая нить, она же филамент, выпускается в такой форме для того, чтобы она могла легко плавиться при заданной температуре, но очень быстро застывать — после охлаждения всего на пару градусов. Именно это и позволяет печатать 3D изделия со сложной геометрией с высокой точностью.

 

Проще говоря, 3D-печать отличается от традиционной 2D-печати только тем, что повторяется снова и снова, создавая слой за слоем, один на поверхности другого. В конце концов, тысячи слоев образуют 3D-объект.

 

 

FDM-принтер на примере MakerBot Replicator 2

 

Стереолитография

Стереолитография использует свет для “выращивания” объектов в емкости с фотополимерной смолой. Как и в прочих технологиях 3D-печати, изделие образуется слой за слоем, здесь — при отверждении жидкого фотополимера светом.

От FDM стереолитография отличается более монолитными принтами, даже с одинаковой заданной толщиной слоя.


 

На фото: принты FDM и SLA, слой обеих моделей — 0,1 мм.

Дело в разнице в технологиях — фотополимерная засветка дает более аккуратные слои, чем расплавленный филамент выдавливаемый из сопла FDM-принтера.

SLA и DLP — две разновидности стереолитографии. SLA — лазерная стереолитография, DLP — цифровая проекция. Различие между ними в том, что в SLA источником света служит лазер, а в DLP — проектор.

Независимо от технических особенностей, принцип работы устройств SLA и DLP схож. Для запуска печати необходимо опустить специальную платформу построения в емкость с жидкой фотополимерной смолой.

Платформа останавливается на высоте одного слоя от дна емкости.

Происходит засветка источником света принтера.

Жидкий полимер, под воздействием света, становится твердым и прилипает к платформе построения. После этого платформа поднимается на высоту еще одного слоя и процесс повторяется.

   

SLA-принтер на примере Formlabs Form 2

SLA дает более гладкие поверхности, по сравнению не только с FDM, но и с DLP, о которой рассказываем далее.

Так получается потому, что DLP проецирует слои картинкой из пикселей, а луч лазера в SLA движется непрерывно, что дает ровный, не пикселизованный слой.

DLP в тех же целях использует проектор, а LED DLP — ЖК-дисплей с ультрафиолетовой подсветкой. В этих конструкциях свет проецируется на смолу по всей площади слоя одновременно, что дает преимущество в скорости, когда необходима печать крупных объектов с заполнением в 100% — полная засветка слоя происходит быстрее, чем в SLA.

Но при печати мелких или пустотелых объектов SLA быстрее, так как интенсивность засветки лазерным лучом, а значит и скорость полимеризации, выше.

DLP-принтер на примере SprintRay MoonRay S

SLS

Главное преимущество технологии перед FDM и SLA — SLS-печать не требует создания поддерживающих структур, ведь материалом поддержки служит окружающий модель материал — это позволяет печатать изделия любой формы, с любым количеством внутренних полостей, и заполнять ими весь рабочий объем принтера. SLS-принтеры работают с широким спектром материалов, а их принты прочнее, чем большинство напечатанных FDM или стереолитографией.

Благодаря прочностным характеристикам, напечатанные на SLS-принтерах детали могут использоваться в практических целях, а не только как прототипы и декоративные элементы.

Для создания объекта аппарат направляет лазер на слой мелкофракционного порошка, сплавляя частицы друг с другом для формирования слоя изделия. Затем, устройство рассыпает следующую порцию порошка на поверхность готового слоя и разравнивает его, а лазер расплавляет, создавая следующий слой изделия. Процедура повторяется до тех пор, пока печать не будет завершена.

Есть у SLS-принтеров и минус — их стоимость. Они очень дороги, по сравнению с FDM и SLA/DLP. Это связано с ценой необходимых для такой печати высокоэнергетических лазеров. В принципе, стоимость даже самых дешевых SLS-принтеров совсем недавно начиналась от $200 000.

Тем не менее, некоторые компании в настоящее время работают над тем, чтобы сделать данную технологию более доступной, поэтому есть шанс, что приобрести SLS-принтер в ближайшем будущем смогут позволить себе даже любители. Один из примеров — польская компания Sinterit.

SLS-принтер на примере Sinterit Lisa Pro

Извлеченная из SLS-принтера модель не требует удаления поддержек и может использоваться без постобработки, ее надо лишь очистить от лишнего порошка.

Polyjet

Главное преимущество технологии Polyjet в ее мультиматериальности — многие Polyjet-принтеры способны печатать объект большим количеством различных материалов одновременно, что позволяет создавать изделия состоящие из участков с разными механическими и оптическими свойствами, то есть — разной твердости и цвета. Это фирменная технология компании Stratasys.

Пример: принтер Stratasys и напечатанные на нем кроссовки.

 

Polyjet 3D-принтеры распыляют крошечные капельки фотополимерной смолы на поверхность и полимеризуют их ультрафиолетовым излучением.

 
Этот процесс повторяется до тех пор, пока не будет создан объект. В отличие от FDM-принтеров, Polyjet-устройства могут наносить материал из многочисленных сопел одновременно.

Polyjet-принтер на примере Stratasys J750


 

 

Заключение

Прочитав эту статью, вы ознакомились с принципами и примерами работы 3D-принтеров функционирующих по самым распространенным технологиям.

Существуют и другие технологии, в основном — связанные с 3D-печатью металлами, но они используются только в промышленности. О них мы поговорим отдельно.

Чтобы выбрать 3D-печатное оборудование и материалы для любых задач обращайтесь в Top 3D Shop — проконсультируем, подберем максимально подходящую технику и расходники, оформим заказ, доставим, установим и научим.

Узнайте больше о возможностях усовершенствовать ваше производство интеграцией нового оборудования:

3D-печать для «чайников» или «что такое 3D-принтер?»

Термин 3D-печать

Термин 3D-печать имеет несколько синонимов, один из которых достаточно кратко и точно характеризует сущность процесса – «аддитивное производство», то есть производство за счет добавления материала. Термин был придуман не случайно, ибо в этом и состоит основное отличие множественных технологий 3D-печати от привычных методов промышленного производства, получивших в свою очередь название «субтрактивных технологий», то есть «отнимающих». Если при фрезеровке, шлифовке, резке и прочих схожих процедурах лишний материал удаляется с заготовки, то в случае с аддитивным производством материал постепенно добавляется до получения цельной модели.

В скором времени 3D-печать будет опробована даже на Международной космической станции

Строго говоря, многие традиционные методы можно было бы отнести к «аддитивным» в широком смысле этого слова – например, литье или клепку. Однако стоит иметь в виду, что в этих случаях либо требуется расход материалов на изготовление специфических инструментов, занятых в производстве конкретных деталей (как в случае с литьем), либо весь процесс сводится к соединению уже готовых деталей (сварке, клепке и пр.). Для того чтобы технология классифицировалась как «3D-печать», необходимо построение конечного продукта из сырья, а не заготовок, а формирование объектов должно быть произвольным – то есть без использования форм. Последнее означает, что аддитивное производство требует программной составляющей. Грубо говоря, аддитивное производство требует управления с помощью компьютеров, чтобы форму конечных изделий можно было определять за счет построения цифровых моделей. Именно этот фактор и задержал широкое распространение 3D-печати до того момента, когда числовое программное управление и 3D-проектирование стали общедоступными и высокопроизводительными.

Методы 3D-печати

Технологий 3D-печати существует великое множество, названий же для них еще больше ввиду патентных ограничений. Тем не менее, можно попробовать разделить технологии по основным направлениям:

Экструзионная печать

Сюда входят такие методы, как послойное наплавление (FDM) и многоструйная печать (MJM). В основе этого метода лежит выдавливание (экструзия) расходного материала с последовательным формированием готового изделия. Как правило, расходные материалы состоят из термопластиков, либо композитных материалов на их основе.

Плавка, спекание или склеивание

Этот подход основывается на соединении порошкового материала в единое целое. Формирование производится разными способами. Наиболее простым является склеивание, как в случае со струйной трехмерной печатью (3DP). Подобные принтеры наносят на рабочую платформу тонкие слои порошка, которые затем выборочно склеиваются связующим материалом. Порошки могут состоять из практически любого материала, который можно измельчить до состояния пудры – пластика, древесины, металла.

Эта модель автомобиля Aston Martin, принадлежавшего Джеймсу Бонду, была успешно напечатана на SLS-принтере компании Voxeljet и не менее успешно взорвана во время съемок фильма «Координаты Скайфолл» вместо дорогого оригинала

Наиболее популярными же в данной категории стали технологии лазерного спекания (SLS и DMLS) и плавки (SLM), позволяющие создавать цельнометаллические детали. Как и в случае со струйной трехмерной печатью, эти устройства наносят тонкие слои порошка, но материал не склеивается, а спекается или плавится с помощью лазера. Лазерное спекание (SLS) применяется для работы как с пластиковыми, так и с металлическими порошками, хотя металлические гранулы обычно имеют более легкоплавкую оболочку, а после печати дополнительно спекаются в специальных печах. DMLS – вариант SLS установок с более мощными лазерами, позволяющими спекать непосредственно металлические порошки без добавок. SLM-принтеры предусматривают уже не просто спекание частиц, а их полную плавку, что позволяет создавать монолитные модели, не страдающие от относительной хрупкости, вызываемой пористостью структуры. Как правило, принтеры для работы с металлическими порошками оснащаются вакуумными рабочими камерами, либо замещают воздух инертными газами. Подобное усложнение конструкции вызывается необходимостью работы с металлами и сплавами, подверженными оксидации – например, с титаном.

Стереолитография

Схема работы SLA-принтера

Стереолитографические принтеры используют специальные жидкие материалы, называемые «фотополимерными смолами». Термин «фотополимеризация» указывает на способность материала затвердевать под воздействием света. Как правило, такие материалы реагируют на облучение ультрафиолетом.

Смола заливается в специальный контейнер с подвижной платформой, которая устанавливается в позиции возле поверхности жидкости. Слой смолы, покрывающий платформу, соответствует одному слою цифровой модели. Затем тонкий слой смолы обрабатывается лазерным лучом, затвердевая в точках соприкосновения. По окончании засветки платформа вместе с готовым слоем погружаются на толщину следующего слоя, и засветка производится вновь.

Ламинирование

Схема работы 3D-принтеров, использующих технологию ламинирования (LOM)

Некоторые 3D-принтеры выстраивают модели, используя листовые материалы – бумагу, фольгу, пластиковую пленку.

Слои материала наклеиваются друг на друга и обрезаются по контурам цифровой модели с помощью лазера или лезвия.

Такие установки хорошо подходят для макетирования и могут использовать очень дешевые расходные материалы, включая обычную офисную бумагу. Тем не менее, сложность и шумность таких принтеров, вкупе с ограниченными возможностями изготовляемых моделей ограничивают их популярность.

Наиболее популярными методами 3D-печати, применяемыми в быту и в офисных условиях стали моделирование методом послойного наплавления (FDM) и лазерная стереолитография (SLA).

Остановимся на этих технологиях поподробнее.

Печать методом послойного наплавления (FDM)

FDM – пожалуй, наиболее простой и доступный метод трехмерного построения, что и обуславливает его высокую популярность.

Высокий спрос на FDM-принтеры ведет к быстрому снижению цен на устройства и расходные материалы, наряду с развитием технологии в направлении удобства эксплуатации и повышения надежности.

Расходные материалы

Катушка с нитью из ABS-пластика и готовая модель

FDM-принтеры предназначены для печати термопластиками, которые обычно поставляются в виде тонких нитей, намотанных на катушки. Ассортимент «чистых» пластиков весьма широк. Одним из наиболее популярных материалов является полилактид или «PLA-пластик». Этот материал изготавливается из кукурузы или сахарного тростника, что обуславливает его нетоксичность и экологичность, но делает его относительно недолговечным. ABS-пластик, наоборот, очень долговечен и износоустойчив, хотя и восприимчив к прямому солнечному свету и может выделять небольшие объемы вредных испарений при нагревании. Из этого материала производятся многие пластиковые предметы, которыми мы пользуемся на повседневной основе: корпуса бытовых устройств, сантехника, пластиковые карты, игрушки и т.д.

Кроме PLA и ABS возможна печать нейлоном, поликарбонатом, полиэтиленом и многими другими термопластиками, широко распространенными в современной промышленности. Возможно и применение более экзотичных материалов – таких, как поливиниловый спирт, известный как «PVA-пластик». Этот материал растворяется в воде, что делает его весьма полезным при печати моделей сложной геометрической формы. Но об этом чуть ниже.

Модель, изготовленная из Laywoo-D3. Изменение температуры экструзии позволяет добиваться разных оттенков и имитировать годовые кольца

Вовсе необязательно печатать однородными пластиками. Возможно и применение композитных материалов, имитирующих древесину, металлы, камень. Такие материалы используют все те же термопластики, но с примесями непластичных материалов.

Так, Laywoo-D3 состоит отчасти из натуральной древесной пыли, что позволяет печатать «деревянные» изделия, включая мебель.

Материал под названием BronzeFill имеет наполнитель из настоящей бронзы, а изготовленные из него модели поддаются шлифовке и полировке, достигая высокой схожести с изделиями из чистой бронзы.

Стоит лишь помнить, что связующим элементом в композитных материалах служат термопластики – именно они и определяют пороги прочности, термоустойчивости и другие физические и химические свойства готовых моделей.

Экструдер

Экструдер – печатная головка FDM-принтера. Строго говоря, это не совсем верно, ибо головка состоит из нескольких частей, из которых непосредственно «экструдером» является лишь подающий механизм. Тем не менее, по устоявшейся традиции термин «экструдер» повсеместно применяется в качестве синонима целой печатающей сборки.

Общая схема конструкции FDM-экструдера

Экструдер предназначен для плавки и нанесения термопластиковой нити. Первый компонент – механизм подачи нити, состоящий из валиков и шестерней, приводимых в движение электромотором. Механизм осуществляет подачу нити в специальную нагреваемую металлическую трубку с соплом небольшого диаметра, называемую «хот-энд» или просто «сопло». Тот же механизм используется и для извлечения нити, если необходима смена материала.

Хот-энд служит для нагревания и плавления нити, подаваемой протягивающим механизмом. Как правило, сопла производятся из латуни или алюминия, хотя возможно использование более термоустойчивых, но и более дорогих материалов. Для печати наиболее популярными пластиками вполне достаточно и латунного сопла. Собственно «сопло» крепится к концу трубки с помощью резьбового соединения и может быть заменено на новое в случае износа или при необходимости смены диаметра. Диаметр сопла обуславливает толщину расплавленной нити и, как следствие, влияет на разрешение печати. Нагревание хот-энда регулируется термистором. Регулировка температуры очень важна, так при перегреве материала может произойти пиролиз, то есть разложение пластика, что способствует как потере свойств самого материала, так и забиванию сопла.

Экструдер FDM-принтера PrintBox3D One

Для того чтобы нить не расплавилась слишком рано, верхняя часть хот-энда охлаждается с помощью радиаторов и вентиляторов. Этот момент имеет огромное значение, так как термопластики, проходящие порог температуры стеклования, значительно расширяются в объеме и повышают трение материала со стенками хот-энда. Если длина такого участка слишком велика, протягивающему механизму может не хватить сил для проталкивания нити.

Количество экструдеров может варьироваться в зависимости от предназначения 3D-принтера. Простейшие варианты используют одну печатающую головку. Двойной экструдер значительно расширяет возможности устройства, позволяя печатать одну модель двумя разными цветами, а также использовать разные материалы. Последний момент важен при построении сложных моделей с нависающими элементами конструкции: FDM-принтеры не могут печатать «по воздуху», так как наносимым слоям требуется опора. В случае с навесными элементами приходится печатать временные опорные структуры, которые удаляются по завершении печати. Процесс удаления чреват повреждением самой модели и требует аккуратности. Кроме того, если модель имеет сложную структуру с труднодоступными внутренними полостями, построение обычных опор может оказаться непрактичным виду сложности удаления лишнего материала.

Готовая модель с опорами из PVA-пластика (белого цвета) до и после промывки

В таких случаях весьма кстати приходится тот самый водорастворимый поливиниловый спирт (PVA-пластик). С помощью двойного экструдера можно построить модель из водоупорного термопластика, используя PVA для создания опор.

После окончания печати PVA можно просто растворить в воде и получить сложное изделие идеального качества.

Некоторые модели FDM-принтеров могут использовать три или даже четыре экструдера.

Рабочая платформа

Подогреваемая платформа, накрытая съемным стеклянным рабочим столиком

Построение моделей происходит на специальной платформе, зачастую оснащаемой нагревательными элементами. Подогрев требуется для работы с целым рядом пластиков, включая популярный ABS, подверженных высокой степени усадки при охлаждении. Быстрая потеря объема холодными слоями в сравнении со свеженанесенным материалом может привести к деформации модели или расслоению. Подогрев платформы позволяет значительно выравнивать градиент температур между верхними и нижними слоями.

Для некоторых материалов подогрев противопоказан. Характерный пример – PLA-пластик, который требует достаточно длительного времени для затвердевания. Подогрев PLA может привести к деформации нижних слоев под тяжестью верхних. При работе с PLA обычно принимаются меры не для подогрева, а для охлаждения модели. Такие принтеры имеют характерные открытые корпуса и дополнительные вентиляторы, обдувающие свежие слои модели.

Калибровочный винт рабочей платформы, покрытой синим малярным скотчем

Платформа требует калибровки перед печатью, чтобы сопло не задевало нанесенные слои и не отходило слишком далеко, вызывая печать «по воздуху», что приводит к образованию «вермишели» из пластика. Процесс калибровки может быть как ручным, так и автоматическим. В ручном режиме калибровка производится позиционированием сопла в разных точках платформы и регулировкой наклона платформы с помощью опорных винтов для достижения оптимальной дистанции между поверхностью и соплом.

Как правило, платформы оснащаются дополнительным элементом – съемным столиком. Такая конструкция упрощает чистку рабочей поверхности и облегчает снятие готовой модели. Столики производятся из различных материалов, включая алюминий, акрил, стекло и пр. Выбор материала для изготовления столика зависит от наличия подогрева и расходных материалов, под которые оптимизирован принтер.

Для лучшего схватывания первого слоя модели с поверхностью столика зачастую применяются дополнительные средства, включая полиимидную пленку, клей и даже лак для волос! Но наиболее популярным средством служит недорогой, но эффективный малярный скотч. Некоторые производители делают перфорированные столики, хорошо удерживающие модель, но сложные в очистке. В целом, целесообразность нанесения дополнительных средств на столик зависит от расходного материала и материала самого столика.

Механизмы позиционирования

Схема работы позиционирующих механизмов

Само собой, печатающая головка должна перемещаться относительно рабочей платформы, причем в отличие от обычных офисных принтеров, позиционирование должно производиться не в двух, а в трех плоскостях, включая регулировку по высоте.

Схема позиционирования может варьироваться. Самый простой и распространенный вариант подразумевает крепление печатающей головки на перпендикулярных направляющих, приводимых в движение пошаговыми двигателями и обеспечивающими позиционирование по осям X и Y.

Вертикальное же позиционирование осуществляется за счет передвижения рабочей платформы.

С другой стороны, возможно передвижение экструдера в одной плоскости, а платформы – в двух.

Дельта-принтер ORION производства компании SeemeCNC

Один из вариантов, набирающих популярность, является использование дельтаобразной системы координат.

Подобные устройства в промышленности называют «дельта-роботами».

В дельта-принтерах печатная головка подвешивается на трех манипуляторах, каждый из которых передвигается по вертикальной направляющей.

Синхронное симметричное движение манипуляторов позволяет изменять высоту экструдера над платформой, а ассиметричное движение вызывает смещение головки в горизонтальной плоскости.

Вариантом такой системы является обратный дельтовидный дизайн, где экструдер крепится неподвижно к потолку рабочей камеры, а платформа передвигается на трех опорных манипуляторах.

Дельта-принтеры имеют цилиндрическую область построения, а их конструкция облегчает увеличение высоты рабочей зоны с минимальными изменениями дизайна за счет удлинения направляющих.

В итоге все зависит от решения конструкторов, но основополагающий принцип не меняется.

Управление

Типичный контроллер на основе Arduino, оснащенный дополнительными модулями

Управление работой FDM-принтера, включая регулировку температуры сопла и платформы, темпа подачи нити и работы пошаговых моторов, обеспечивающих позиционирование экструдера, выполняется достаточно простыми электронными контроллерами. Большинство контроллеров основываются на платформе Arduino, имеющей открытую архитектуру.

Программный язык, используемый принтерами, называется G-код (G-Code) и состоит из перечня команд, поочередно выполняемых системами 3D-принтера. G-код компилируется программами, называемыми «слайсерами» – стандартным программным обеспечением 3D-принтеров, сочетающим некоторые функции графических редакторов с возможностью установки параметров печати через графический интерфейс. Выбор слайсера зависит от модели принтера. Принтеры RepRap используют слайсеры с открытым исходным кодом – такие, как Skeinforge, Replicator G и Repetier-Host. Некоторые компании создают принтеры, требующие использование фирменного программного обеспечения.

Программный код для печати генерируется с помощью слайсеров

В качестве примера можно упомянуть принтеры линейки Cube от компании 3D Systems. Есть и такие компании, которые предлагают фирменное обеспечение, но позволяют использовать и сторонние программы, как в случае с последними поколениями 3D-принтеров компании MakerBot.

Слайсеры не предназначены для 3D-проектирования, как такового. Эта задача выполняется с помощью CAD-редакторов и требует определенных навыков трехмерного дизайна. Хотя новичкам не стоит отчаиваться: цифровые модели самых различных дизайнов предлагаются на многих сайтах, зачастую даже бесплатно. Наконец, некоторые компании и частные специалисты предлагают услуги 3D-проектирования для печати на заказ.

И наконец, 3D-принтеры можно использовать вкупе с 3D-сканерами, автоматизирующими процесс оцифровки объектов. Многие их таких устройств создаются специально для работы с 3D-принтерами. Наиболее известные примеры включают ручной сканер 3D Systems Sense и портативный настольный сканер MakerBot Digitizer.

FDM-принтер MakerBot Replicator 5-го поколения, со встроенным контрольным модулем в верхней части рамы

Пользовательский интерфейс 3D-принтера может состоять из банального USB порта для подключения к персональному компьютеру. В таких случаях управление устройством фактически осуществляется посредством слайсера.

Недостатком такой упрощенности является достаточно высокая вероятность сбоя печати при зависаниях или притормаживании компьютера.

Более продвинутый вариант включает наличие внутренней памяти или интерфейса для карты памяти, что позволяет сделать процесс автономным.

Такие модели оснащаются контрольными модулями, позволяющими регулировать многие параметры печати (например, скорость печати или температуру экструзии). В состав модуля может входить небольшой LCD-дисплей или даже мини-планшет.

Разновидности FDM-принтеров

Профессиональный FDM-принтер Stratasys Fortus 360mc, позволяющий печатать нейлоном

FDM-принтеры весьма и весьма разнообразны, начиная от простейших самодельных RepRap принтеров и заканчивая промышленными установками, способными печатать крупногабаритные объекты.

Лидером по производству промышленных установок является компания Stratasys, основанная автором технологии FDM-печати Скоттом Крампом.

Простейшие FDM-принтеры можно построить самому. Такие устройства именуют RepRap, где «Rep» указывает на возможность «репликации», то есть самовоспроизведения.

RepRap принтеры могут быть использованы для печати пластиковых деталей, включенных в собственную конструкцию.

Контроллер, направляющие, ремни, моторы и прочие компоненты можно легко приобрести по отдельности.

Разумеется, сборка подобного устройства своими силами требует серьезных технических и даже инженерных навыков.

Некоторые производители облегчают задачу, продавая комплекты для самостоятельной сборки, но подобные конструкторы все равно требуют хорошего понимания технологии.

Вариант популярного RepRap принтера Prusa позднего, третьего поколения

Если же вам по душе мастерить вещи собственными руками, то RepRap принтеры приятно порадуют ценой: средняя стоимость популярного дизайна Prusa Mendel ранних поколений составляет порядка $500 в полной комплектации.

И, несмотря на свою «самодельную сущность», RepRap принтеры вполне способны производить модели с качеством на уровне дорогих фирменных собратьев.

Обыденные же пользователи, не желающие вникать в тонкости процесса, а требующие лишь удобное устройство для бытовой эксплуатации, могут приобрести FDM-принтер в готовом виде.

Многие компании делают упор на развитие именно пользовательского сегмента рынка, предлагая на продажу 3D-принтеры, готовые к печати «прямо из упаковки» и не требующие серьезных навыков в обращении с компьютерами.

Бытовой 3D-принтер Cube производства компании 3D Systems

Самым известным примером бытового 3D-принтера служит 3D Systems Cube.

Хотя это устройство и не блещет огромной зоной построения, сверхвысокой скоростью печати или непревзойденным качеством изготовления моделей, оно удобно в использовании, вполне доступно и безопасно: этот принтер получил необходимую сертификацию для использования даже детьми.

Демонстрация работы FDM-принтера производства компании Mankati: http://youtu.be/51rypJIK4y0

Лазерная стереолитография (SLA)

Стереолитографические 3D-принтеры широко используются в зубном протезировании

Стереолитографические принтеры – вторые по популярности и распространенности после FDM-принтеров.

Эти устройства позволяют добиваться исключительно высокого качества печати.

Разрешение некоторых SLA-принтеров исчисляется считанными микронами – неудивительно, что эти устройства быстро завоевали любовь ювелиров и стоматологов.

Программная сторона лазерной стереолитографии практически идентична FDM-печати, поэтому не будем повторяться и затронем лишь отличительные особенности технологии.

Лазеры и проекторы

Проекторная засветка фотополимерной модели на примере DLP-принтера Kudo3D Titan

Стоимость стереолитографических принтеров стремительно снижается, что объясняется растущей конкуренцией ввиду высокого спроса и применением новых технологий, удешевляющих конструкцию.

Несмотря на то, что технология обобщенно называется «лазерной» стереолитографией, наиболее современные разработки в большинстве своем применяют ультрафиолетовые светодиодные проекторы.

Проекторы дешевле и надежнее лазеров, не требуют использования деликатных зеркал для отклонения лазерного луча, а также имеют более высокую производительность. Последнее объясняется тем, что контур целого слоя засвечивается целиком, а не последовательно, точка за точкой, как в случае с лазерными вариантами. Этот вариант технологии называется проекторной стереолитографией, «DLP-SLA» или просто «DLP». Тем не менее, на данный момент распространены оба варианта – как лазерные, так и проекторные версии.

Кювета и смола

Фотополимерная смола заливается в кювету

В качестве расходных материалов для стереолитографических принтеров используется фотополимерная смола, внешне напоминающая эпоксидную. Смолы могут иметь самые разные характеристики, но все они обладают одной чертой, краеугольной для применения в 3D-печати: эти материалы затвердевают под воздействием ультрафиолетового света. Отсюда, собственно, и название «фотополимерные».

В полимеризованном виде смолы могут иметь самые разные физические характеристики. Некоторые смолы напоминают резину, другие – твердые пластики вроде ABS. Возможен выбор разных цветов и степени прозрачности. Главный же недостаток смол и SLA-печати в целом – стоимость расходных материалов, значительно превышающая стоимость термопластиков.

С другой стороны, стереолитографические принтеры в основном применяются ювелирами и стоматологами, не требующими построения деталей большого размера, но ценящими экономию от быстрого и точного прототипирования изделий. Таким образом, SLA-принтеры и расходные материалы окупаются очень быстро.

Пример модели, напечатанной на лазерном стереолитографическом 3D-принтере

Смола заливается в кювету, которая может оснащаться опускаемой платформой. В этом случае принтер использует выравнивающее устройство для разглаживания тонкого слоя смолы, покрывающего платформу, непосредственно перед облучением. По мере изготовления модели платформа вместе с готовыми слоями «утапливается» в смоле. По завершении печати модель вынимается из кюветы, обрабатывается специальным раствором для удаления остатков жидкой смолы и помещается в ультрафиолетовую печь, где производится окончательная засветка модели.

Некоторые SLA и DLP принтеры работают по «перевернутой» схеме: модель не погружается в расходный материал, а «вытягивается» из него, в то время как лазер или проектор размещаются под кюветой, а не над ней. Такой подход устраняет необходимость выравнивания поверхности после каждой засветки, но требует использования кюветы из прозрачного для ультрафиолетового света материала – например, из кварцевого стекла.

Точность стереолитографических принтеров чрезвычайно высока. Для сравнения, эталоном вертикального разрешения для FDM-принтеров считается 100 микрон, а некоторые варианты SLA-принтеров позволяют наносить слои толщиной всего в 15 микрон. Но и это не предел. Проблема, скорее, не столько в точности лазеров, сколько в скорости процесса: чем выше разрешение, тем ниже скорость печати. Использование цифровых проекторов позволяет значительно ускорить процесс, ибо каждый слой засвечивается целиком. Как результат, производители некоторых DLP-принтеров заявляют о возможности печатать с разрешением в один микрон по вертикали!

Видео с выставки CES 2013, демонстрирующее работу стереолитографического 3D-принтера Formlabs Form1: http://youtu.be/IjaUasw64VE

Разновидности стереолитографических принтеров

Настольный стереолитографический принтер Formlabs Form1

Как и в случае с FDM-принтерами, SLA-принтеры поставляются в широком диапазоне с точки зрения габаритов, возможностей и стоимости. Профессиональные установки могут стоить десятки, если не сотни тысяч долларов и весить пару тонн, но быстрое развитие настольных SLA и DLP-принтеров приводит к постепенному снижению стоимости аппаратуры без потери качества печати.

Такие модели как Titan 1 обещают сделать стереолитографическую 3D-печать доступной для небольших компаний и даже для бытового использования, имея стоимость в районе $1 000. Form 1 от компании Formlabs уже доступен по отпускной цене производителя в $3 299.

Разработчик же DLP принтера Peachy вообще намеревается преодолеть нижний ценовой барьер в $100.

При этом стоимость фотополимерных смол остается достаточно высокой, хотя средняя цена за последнюю пару лет упала со $150 до $50 за литр.

Само собой, растущий спрос на стереолитографические принтеры будет стимулировать рост производства расходных материалов, что будет вести к дополнительному снижению цен.

Перейти на главную страницу Энциклопедии 3D-печати

Безопасно ли печатать двигатели самолетов на 3D-принтере

Безопасно ли использовать 3D-принтер в авиастроении и как устроен процесс печати деталей для самолетов, узнал ведущий YouTube-канала «Индустрия 4.0» Николай Дубинин

В 2015 году в Австралии ученые из университета Монаша собрали двигатель, целиком напечатанный на 3D-принтере:

Это не единичный случай. Boeing и Airbus давно занимаются аддитивными технологиями — когда 3D-принтер изготавливает деталь послойно, ориентируясь на компьютерную модель. Например, в каждом пассажирском лайнере Boeing 787 есть около 30 деталей, напечатанных по такому алгоритму, а в Airbus A350 и A320neo — целый титановый кронштейн, который соединяет крылья с двигателем.

В 2016 году компания Airbus показала первый в мире полностью напечатанный на 3D-принтере самолет Thor. Он, конечно, больше похож на авиамодель: длина — 4 м, вес — 21 кг, управление — дистанционное.

Россия не отстает. В 2020 году в Казани протестировали самолет с двигателем, напечатанным на 3D-принтере. Легкий беспилотник пролетел на высоте 170 м и двигался со скоростью 150 км/ч. В России печатают и более масштабные детали — например, для нового лайнера МС-21 и вертолета К-226. Их создают на ферме 3D-принтеров Центра аддитивных технологий «Ростеха».

Как печатают детали

В «Ростехе» детали печатают из металла — но в виде порошка с определенными свойствами и размером гранул. При этом каждый 3D-принтер предназначен для определенного вида металла и печатать на другом материале не может.

Сначала устройство внутри принтера наносит на специальную платформу слой металлического порошка. Затем лазер, работающий по заранее установленной программе, нагревает и сплавляет этот слой порошка, из-за чего он затвердевает. Затем платформа, на которой происходит выращивание, опускается на толщину слоя, и все повторяется. Так происходит несколько раз — слой за слоем. В зависимости от размера детали, процесс длится от нескольких часов до нескольких дней.

Плюсы 3D-печати

  • Детали становятся легче. Это важно в авиастроении: сэкономленный вес можно использовать, например, для дополнительных пассажирских или багажных мест.
  • Экологичность. При создании деталей традиционным способом нужный элемент вырезают из куска металла, а остальное выбрасывают. Во время работы на 3D-принтере отходов практически нет.
  • Создание форм, которые невозможно воспроизвести другими способами.
  • Быстрая скорость создания деталей.

Стоит отметить, что на 3D-принтере вряд ли когда-нибудь будут печатать детали, которые дешево и быстро изготавливаются с помощью стандартных технологий.

Принтер-гигант и принтер-ремонтник

Не все 3D-принтеры предназначены для одних и тех же действий. Так, например, в Центре аддитивных технологий «Ростеха» есть большой 3D-принтер, способный напечатать детали размером до полуметра. Такие использует Boeing: компания использует напечатанные титановые компоненты двигателей на пассажирском самолете Dreamliner 787.

При этом самолет — не единственное, что можно будет создавать на 3D-принтере. Например, стартап Relativity Space хочет в 2021 году запустить на орбиту первую в мире ракету, полностью напечатанную на 3D-принтере. И это не какие-то мечтатели, грезящие о звездах: они уже привлекли $700 млн инвестиций, а значит, в проект верят.

Другой интересный объект — принтер-ремонтник. Он способен не только печатать детали по заданной программе, но и ремонтировать их. Работает эта машина немного иначе: по технологии прямой печати металлом.

Этот механизм состоит из двух основных элементов. Первый — источник лазерного излучения, второй — специальное сопло, через которое в струе инертного газа подается порошок. Струя газа и лазерный луч фокусируются в одной точке, где и происходит плавление порошка — и рост детали. Принтер позволяет ремонтировать сломанные части, а не выбрасывать их. При этом деталь не теряет своих исходных свойств.

Чтобы починить деталь, ее надо отсканировать. Другой вариант — задать управляющую программу, где есть 3D-модель этой детали со сломанным участком. Однако чаще всего используют 3D-сканер, который позволяет получить точный образец детали, которая уже есть. На основе этой модели разрабатывают управляющую программу по ремонту.

Для чего нужен 3D-сканер

Именно 3D-сканер проверяет качество всех деталей для самолетов, которые создали на 3D-принтере. Все они должны быть безупречны.

Кроме того, технология дает возможность делать конструкции, которые нельзя создать стандартными методами — например, кронштейн. Он бы состоял из нескольких частей и, соответственно, пришлось бы делать несколько механообработок, сборочных операций. Все это отнимает время, а 3D-сканер дает возможность ускорить процесс.

3D печать воском на FDM 3D принтере. Рекомендации и настройка на примере 3Д принтера PICASO Designer X.

  1. 1. Для начала немного истории
  2. 2. Что такое Filamentarno Wax Base?
  3. 3. Какой принтер подойдет для печати?
  4. 4. Чем хорош Picaso Designer X для печати Wax Base?
  5. 5. Подготовка Picaso Designer X перед печатью Wax Base
  6. 6. Процесс печати
  7. 7. Результат и вывод


Всем привет друзья, С Вами 3DTool!


Литье по выплавляемым моделям, довольно популярный метод производства изделий из металла. Подобным образом производят бОльшую часть ювелирных украшений, этот метод применяется при создании деталей механизмов, корпусов и других элементов, и узлов, требующих повышенную прочность. В качестве отправной точки в процессе литья служит исходная модель или готовая матрица, по которой производится копия из воска или другого легко расплавляемого материала для создания оболочковых форм, в которые уже и заливают металл. А что, если миновать фазу создания исходной модели  и изготовить сразу расплавляемую восковую модель? Именно здесь на помощь приходит 3d печать и новый материал от компании Filamentarno – Wax Base.

1. Для начала немного истории



Идея печатать восковки на 3д принтере далеко не нова, изначально, технология появилась в стане фотополимерных 3D принтеров, применялась, да и применяется по сей день, например, у таких гигантов как 3D Systems и Solidscape. Целые линейки устройств были заточены на производство высокоточных выплавляемых распечаток с идеальной поверхностью. Однако у таких принтеров был и есть один ощутимый минус – что если искомый объект сильно больше размера рабочей области устройства, а качество поверхности, в общем то, не имеет сильного значения в разумных пределах? Первое что приходит в голову – найти устройство с бОльшей рабочей зоной, однако среди фотополимерных принтеров моделей, отвечающих этому требованию ничтожно мало и в основном, они заточены именно на высокое качество и миниатюрность. Или слишком дороги в обслуживании. Что же делать? А что, если использовать для этих целей FDM?


Фото из открытых источников, сайт sapr.ru


Первые опыты с выжигаемыми / выплавляемыми моделями распечатанными на FDM 3D принтерах использовали PLA и PMMA, относительно небольшая зольность при выжигании которых в теории обещала добиваться хорошего качества литья, и некоторые энтузиасты действительно добивались неплохих результатов. Вместо выплавления, правда, применяли технику выжигания материала. Тем не менее, широкая практика показала слишком высокую зависимость результата от качества материала, присутствия или отсутствия красителя, правильного температурного режима и сильного ограничения по оборудованию и материалам, формующим оболочковую форму, не все из которых выдерживают последующее прокаливание и не лопаются. Более того, формирующий корку состав способен передавать даже самые мелкие дефекты и артефакты на поверхности и любые не проливы, каверны и изъяны тотчас же появлялись на конечном результате. А избежать образования нежелательных газов при выжигании PLA очень сложно.


Фото из открытых источников, сайт sapr.ru


И если крупноформатное литье в промышленных, заводских условиях позволяет использовать PLA и PMMA, благодаря усложнению технологии производства, (известна широкая практика применения для этих целей таких гигантов мира FDM принтеров, как BigRep), то цеха средней руки и маленькие студии оборудованные обычными бойлерклавами требуют более гибкого подхода. И именно в этом случае Wax Base идеально им подходит.

2. Что такое Filamentarno Wax Base?


Filamentarno WAX Base — филамент для печати на 3D-принтерах по технологии FDM для последующего литья из металлов по выплавляемым моделям, основную массу которого составляет настоящий ювелирный воск. Разумеется, состав содержит и другие примеси, для стабилизации прутка и соответствию его характеристик требованиям fdm 3д печати, однако конечный результат полностью совместим с любыми техниками выплавления обычных восковых составов и легко клеится к ним, например для формирования литников.


Компания Filamentarno долго шла к производству этого материала, идея появилась уже сравнительно давно, однако результатов удалось добиться лишь в последние пару лет, тем не менее фурор был таковым, что компании даже пришлось открывать небольшую студию 3д печати, чтобы наработать опыт применения и ответить на запрос рынка т. к. аналогов этому материалу ранее не было.


Материал вышел многообещающим, среди его плюсов и резко возросший максимально возможный размер восковок, и скорость печати, а также возможность сильно сократить затраты, т. к. по стоимости выплавляемый воск в виде нити получился гораздо выгоднее фотополимерного, не говоря уже о цене самих фотополимерных 3д принтеров.


Обладает этот материал и определенными особенностями, которые трудно назвать явными минусами, однако они предъявляют жесткие требования к устройству, на котором планируется печатать. Подробнее о них далее.

3. Какой принтер подойдет для печати?


В силу физических характеристик исходного сырья нить Filamentarno Wax Base печатается при значительно более низких температурах, нежели другие материалы. Размягчение наступает уже при ~ 45 градусах, а расплавление, от ~ 95 градусов цельсия. Благодаря этому, его легко можно сглаживать при постобработке с помощью строительных фенов, горелок или паяльных станций. Рекомендованный диапазон печати от 110 до 130 градусов, тогда как большинство стандартных 3D принтеров не позволяют опустить температуру экструдера ниже 190, реже 170 градусов цельсия, что является избыточным в случае с Wax base.


Владельцы более простых и дешевых моделей 3д принтеров, как правило имеют возможность подправить соответствующие параметры в аппаратной прошивке принтера, или понизить температуру с помощью специальных управляющих команд. Тем временем дорогие бренды, обычно таких возможностей не предоставляют и полностью закрывают от изменения как прошивку, так и «консольные» команды от пользователей. Вот что пишет производитель на своем сайте в описании материала в этом случае:


«Чаще всего печать на 3D-принтере с температурой сопла ниже 170°С запрещена прошивкой принтера. Для обхода этого ограничения используйте команду G-Code: «M302 S80» — ее можно вставить в стартовый G-Code в настройках слайсера. Эта команда снизит ограничение на температуру печати до 80°С.»


Также, так как материал довольно легко рвется, мягок и легко плавится даже при небольших температурах нагрева Cold End’a, для печати потребуется использовать прямой привод экструдера (Direct), удаленный (Bowden) протяжной механизм с задачей не справится и в лучшем случае «зажует» материал.


Тем не менее, как минимум одну компанию — производителя, позаботившуюся о печати низкотемпературными материалами «из коробки» и обладающую печатающими блоками, оборудованными прямым приводом, мы точно можем назвать. Конечно же, речь идет о производителе 3D принтеров Picaso3D и линейке 3Д принтеров Designer Series X.


Давайте рассмотрим преимущества линейки Series X для печати воском на примере модели Picaso 3D Designer X.

4. Чем хорош Picaso Designer X для печати Wax Base?


Помимо возможности устанавливать крайне низкие для FDM 3D печати температуры экструдера в профилях материала, платформа Series X обладает рядом дополнительно облегчающих работу с Wax Base особенностей.


В первую очередь, это регулируемая температура холодной зоны (термобарьера) печатающего блока. В ней установлен еще один температурный датчик, который позволяет отслеживать и регулировать пиковые показатели повышая и понижая обороты кулера охлаждения.


Эта особенность препятствует образованию пробок в трубке экструдера выше зоны расплава. Так же на руку играет особое строение приемного «горлышка» в протягивающем механизме, которое исключает выгибание материала в процессе заправки и печати.


Помимо этого, система активной «продувки» рабочей зоны благодаря нескольким турбинным вентиляторам позволяет быстро охлаждать материал при печати, что так же положительно сказывается на качестве поверхности при печати закруглений и нависающих элементов.


А датчики наличия филамента и контроля верхнего слоя помогут предотвратить порчу многочасовой печати, в случае обрыва или окончания нити.

5. Подготовка Picaso Designer X перед печатью Wax Base


Чтобы уверено печатать Wax Base на вашем устройстве, необходимо запастись чистым, желательно новым, блоком экструдера с новым же, или тщательно очищенным медным соплом диаметром не менее 0.4мм. В нашем случае, наиболее подходящим в линейке Picaso Designer X является сопло 0.5.


Так же необходимо учесть следующие нюансы:


  • На принтерах Picaso 3D установлен резиновый чистик, для прочистки ПГ — при печати WAX он размазывает материал и скорее вредит, чем приносит пользу, его необходимо снять.


  • Для нормальной адгезии нагревательный стол на первом слое должен быть разогрет до 85-90 градусов, последующие слои – необходимо установить на 0-30 градусов, чтобы не деформировать воск. Для этого необходимо иметь два разных профиля материала.


  • Обдув – требуется при печати нависающих элементов, главное не переборщить, иначе слои будут плохо спекаться.


  • Wax, как и многие эластомеры не любит ретрактов, этот параметр необходимо установить на 0.


  • Заправка пластика проходит в два этапа. Первый — заправка на повышенной температуре 190-200 градусов, для устранения возможной восковой пробки. Второй этап- заправка на температуре экструзии – 110-130С


  • Необходимо помнить, что пластик очень чувствителен к температуре экструзии, слишком высокая забивает сопло, слишком низкая даёт слабую межслойную адгезию. Оптимальная температура на picaso designer x — 115 градусов на первый слой, 120-125 градусов на последующие.


  • Периодически нужно проверять, не слипается ли нить пластика, намотанная на катушку сама с собой, это может вызвать проскальзывания материала, т.к. он легко вытягивается.


  • Очень важно правильно выставить высоту сопла над столом, т. к. в случае, если сопло будет пережато, в экструдере быстро образуется пробка, устранить которую получится только перезаправкой пластика заново.


Перед печатью в первый раз обязательно замените хотенд целиком, или сопло на новое / чистое, в противном случае желаемый результат не будет достигнут.


При подготовке 3д модели к печати в Polygon X, необходимо придерживаться следующих правил, старайтесь не делать внешнюю стенку очень тонкой, материал может лопаться. Идеальный вариант – 2 периметра, примерно в 1.2 мм, при сопле 0.5


Процент заполнения, не менее 15%, если позволяет геометрия модели.


В остальном, требования к материалу такие же, как к обычным пластикам. Необходимо отметить, что поддержки отходят очень легко и при необходимости место прикрепления можно обработать горелкой или строительным феном, дабы добиться ровной поверхности.


Текущие модели мы печатали при следующих настройках (на фото выше).


Осталось завести два профиля печати под печать первого и последующих слоев, отправить их на принтер и подождать результатов печати.

6. Процесс 3D печати


Перед печатью обязательно тщательно промойте стеклянную платформу стола и нанесите на нее свежий адгезив. В нашем случае подойдет обычный спрей – клей от PICASO 3D, однако производитель предлагает и фирменный адгезив:


Далее необходимо подготовить два профиля печати по следующим настройкам, экспериментально они показали наиболее хороший результат при печати.


Wax3D_F – профиль для последующих слоев, Wax3D(1Layer) для первого.


При просчете модели обязательно установите вручную  паузу после второго слоя, чтобы успеть переключить профили печати.


Если ранее вы уже печатали воском на текущем принтере, необходимо завести еще один профиль с более высокой температурой и загружать материал только после «проплавки» старого материала.


Оставлять материал в сопле при высокой температуре не рекомендуется. Это чревато пробками.

7. Результат и вывод


При печати мы несколько раз столкнулись с расслоением и отклеиванием материала от нагревательного стола в процессе печати и подбора параметров.


Как видно на фото, материал расходится по слоям и может возникнуть ощущение, что температура недостаточна для спекания. Тем не менее это не так, ведь при повышении температуры, материал не экструдируется, а вытекает из фильеры, из-за чего нарушается структура слоя, а воск не успевает остыть. Различие отлично видно на фото ниже, слева температура через чур высока.


Тем не менее, после нескольких повторных печатей, нам удалось добиться хорошего качества печати. Как с поддержками, так и без них.


Довольно крутые углы наклона материал выдерживает «на отлично», что видно по этому фланцу на фото.


Не чужд материалу и художественный подход, голову данного персонажа мы печатали около суток и, как видите результат отличный.


В общем и целом, при печати изделий не высокой детализации, лучше всего выбирать медленную (профиль качество) или среднюю (профиль стандарт) настройку скорости печати, дабы материал успевал правильно формироваться и остывать при экструзии. Иначе могут образовываться наплывы «вытягивание» нити.


По результатам наших экспериментов, мы подтвердили ожидания на счет удобства использования Picaso 3D Designer X для печати Wax Base, этот 3д принтер идеально подходит для задач подобного рода и в портфеле наших покупателей уже есть несколько успешных примеров применения этой связки в производстве.


Если Вас заинтересовал данный материал, вы занимаетесь литейным производством, или хотите открыть свой / модифицировать уже существующий бизнес, смело рассматривайте к покупке одно из устройств линейки Series X, в зависимости от ваших задач. Это могут быть модели с большой рабочей областью – Designer Xl и Xl Pro, или хорошо знакомые Designer X и X Pro. Все эти модели обладают необходимыми условиями для успешной печати данным материалом и наши опыты это подтверждают.


Что ж, а на этом у нас все! Надеемся, статья был для Вас полезна!


Приобрести 3D принтер Picaso Designer X, или другие 3Д принтеры PICASO Series X, Filamentarno Wax Base, а также задать свой вопрос, или сделать предложение, вы можете, связавшись с нами:


 


Не забывайте подписываться на наш YouTube канал :



И на наши группы в соц.сетях:


INSTAGRAM


ВКонтакте


Facebook

 

3D-принтер: что это и как он работает? | GeekBrains

Описание возможностей 3д принтера и история его появления.

https://gbcdn.mrgcdn.ru/uploads/post/1999/og_image/501bb6c82a53bb3bc2a0fee73b0c9e9e.png

В 2011 году принтер, который заправили биогелем, напечатал человеческую почку прямо во время конференции TED. Два года назад Adidas анонсировала новую модель кроссовок, которые печатают на 3D-принтере за 20 минут. А недавно компания Илона Маска SpaceX успешно провела испытания двигателей космического корабля, которые тоже напечатали на 3D-принтере.

В современном мире 3D-печать — это не удивительная технология будущего, а хорошо изученная реальность. Ее применяют в архитектуре, строительстве, медицине, дизайне, производстве одежды и обуви и других сферах. По запросу «3D-принтер» поисковики выдают сотни чертежей и прототипов разной сложности — от мыльницы и настольной лампы до автомобильного двигателя и даже жилого дома. 

Любой может купить принтер и напечатать чехол для смартфона, но дальше 3д печати по чертежу идут не все. В этой статье расскажем, когда появилась 3D-печать, как можно применять технологию и какие у нее перспективы.

Как появился трехмерный принтер

Не будем слишком утомлять вас датами и кратко перескажем историю 3D-печати.

Предвестник трехмерной печати. В начале 80-х доктор Хидео Кодама разработал систему быстрого прототипирования с помощью фотополимера — жидкого вещества на основе акрила. Технология печати была похожа на современную: принтер печатал объект по модели, послойно. 

Первый 3D-принтинг. Изготовление физических предметов с помощью цифровых данных продемонстрировал Чарльз Халл. В 1984 году, когда компьютеры еще не сильно отличались от калькуляторов, а до выхода Windows-95 было десять лет, он изобрел стереолитографию — предшественницу 3D-печати. Работала технология так: под воздействием ультрафиолетового лазера материал застывал и превращался в пластиковое изделие. Форму печатали по цифровым объектам, и это стало бумом среди разработчиков — теперь можно было создавать прототипы с меньшими издержками. 

Первый 3D-принтер. Источник: habr

Первый производитель 3D-принтеров. Через два года Чарльз Халл запатентовал технологию и открыл компанию по производству принтеров 3D Systems. Она выпустила первый аппарат для промышленной 3D-печати и до сих пор лидирует на рынке. Правда, тогда принтер называли иначе — аппаратом для стереолитографии.

Популярность 3D-печати и новые технологии. В конце 80-х 3D Systems запустила серийное производство стереолитографических принтеров. Но к тому времени появились и другие технологии печати: лазерное спекание и моделирование методом наплавления. В первом случае лазером обрабатывался порошок, а не жидкость. А по методу наплавления работает большинство современных 3D-принтеров. Термин «3D-печать» вошел в обиход, появились первые домашние принтеры.

Революция в 3D-печати. В начале нулевых рынок раскололся на два направления: дорогие сложные системы и те, что доступны каждому для печати дома. Технологию начали применять в специфических областях: впервые на 3D-принтере напечатали мочевой пузырь, который успешно имплантировали.

Печать тестового образца почки. Источник: BBC

В 2005 году появился первый цветной 3D-принтер с высоким качеством печати, который создавал комплекты деталей для себя и «коллег».

Как устроен 3D-принтер

В основном принтеры трехмерной печати состоят из одинаковых деталей и по устройству похожи на обычные принтеры. Главное отличие — очевидное: 3D-принтер печатает в трех плоскостях, и кроме ширины и высоты появляется глубина. 

Вот из каких деталей состоит 3D-принтер, не считая корпуса:

  • экструдер, или печатающая головка — разогревает поверхность, с помощью системы захвата отмеряет точное количество материала и выдавливает полужидкий пластик, который подается в виде нитей; 
  • рабочий стол (его еще называют рабочей платформой или поверхностью для печати) — на нем принтер формирует детали и выращивает изделия;
  • линейный и шаговый двигатели — приводят в движение детали, отвечают за точность и скорость печати;
  • фиксаторы — датчики, которые определяют координаты печати и ограничивают подвижные детали. Нужны, чтобы принтер не выходил за пределы рабочего стола, и делают печать более аккуратной;
  • рама — соединяет все элементы принтера.

Схема 3D-принтера. Источник: Lostprinters

Все это управляется компьютером.

Как создают изделия

За создание трехмерного изделия отвечает аддитивный процесс 3д-печати — это когда при изготовлении предмета слои материала накладываются друг на друга, снизу вверх, пока не получится копия формы в чертеже. Так печатают изделия из пластика. А фотополимерная печать работает по технологии стереолитографии (SLA): под воздействием лазерного излучателя фотополимеры затвердевают. Кроме пластика и фотополимерных смол, современные 3D-принтеры работают с металлоглиной и металлическим порошком. 

Печать состоит из непрерывных циклов, которые повторяются один за другим — на один слой материала наносится следующий, и печатающая головка двигается, пока на рабочей поверхности не окажется готовый предмет. Отходы печати принтер сам удаляет с рабочего стола.

Как работает 3D-чертеж

Принтер печатает изделие по 3D-чертежу: его создают на компьютере в специальной программе, затем сохраняют в формате STL. Этот файл выводят в программу резки для принтера — она помогает задать модели физические свойства изделия, например плотность. Далее программа преобразует модель в инструкцию для экструдера и выгружает ее на принтер, который начинает печатать изделие.

3D-чертеж легко сделать в домашних условиях — почитайте инструкцию на habr. 

Как запрограммировать 3D-принтер

Краткая инструкция по настройке принтера:

  1. Выбрать 3D-модель. Изделие можно нарисовать самому в специальном CAD-редакторе или найти готовый чертеж — в интернете полно моделей разной сложности.
  2. Подготовить 3D-модель к печати. Это делают методом слайсинга (slice — часть). К примеру, чтобы распечатать игрушку, ее модель нужно с помощью программ-слайсеров «разбить» на слои и передать их на принтер. Проще говоря, слайсер показывает принтеру, как печатать предмет: по какому контуру двигаться печатной головке, с какой скоростью, какую толщину слоев делать. 
  3. Передать модель принтеру. Из слайсера 3D-чертеж сохраняется в файл под названием G-code. Компьютер загружает файл в принтер и запускает 3д-печать.
  4. Наблюдать за печатью.

Можно ли применять напечатанные изделия

Зависит от качества материала, принтера и конечного изделия. Часто домашние принтеры неточно передают форму и цвет предмета. Изделия из пластика нужно дополнительно обработать: иногда они печатаются с заусенцами и дефектами и почти всегда с ребристой поверхностью. 

Изделие после и до обработки. Источник: 3D-Today

Для обработки поверхности есть несколько способов — не все подходят для домашнего применения:

  • механическая обработка — шлифовка вручную, срезание заусенцев;
  • химическая — погружение в ацетон, пескоструйная обработка, нанесение спецраствора кисточкой. 

Что можно напечатать на 3D-принтере

В интернете полно подборок с инструкциями для печати 3D-изделий. 3D-Today публикует фотографии работ владельцев принтеров, от мелких запчастей до скульптур. На «Хабре» уже три года назад постили список «50 крутых вещей для печати на 3D-принтере». Make3D написали о более масштабных проектах — печати автомобилей, оружия, солнечных батарей и протезов.

Есть ряд перспективных областей, в которых уже применяют 3D-печать.

Изготовление моделей по собственным эскизам. Константин Иванов, создатель сервиса 3DPrintus, в интервью «Афише» рассказал, что 3D-печать приведет к расцвету customizable things: любой сможет собрать и распечатать нужное изделие онлайн. Например, сделать модель робота и заказать его печать на промышленном принтере, создать и распечатать свой дизайн обручальных колец или обуви. Примеры таких проектов — Thinker Thing и Jweel. 

Быстрое прототипирование. Самая популярная область, в которой используют трехмерную печать. На 3D-принтерах делают тестовые модели протезов, прототипы лечебных корсетов, барельефов, олимпийского снаряжения.

Прототипы детских протезов, 3D-печать. Источник: 3D-Pulse

Сложная геометрия. 3D-принтер легко справляется с изготовлением моделей любой формы. Несколько примеров:

— в австралийском университете исследовали возможности 3D-принтера и напечатали табурет в форме отпечатка пальца;

— шеф-повар из Дании победил в конкурсе высокой кухни: он напечатал на 3D-принтере миниатюрные блюда сложной формы из морепродуктов и свекольного пюре;

Одно из победивших блюд шеф-повара. Источник: 3D-Pulse

— в немецком институте разработали систему для ускоренной 3D-печати — за 18 минут принтер изготавливает сложное геометрическое изделие высотой в 30 см. Обычно у принтеров уходит час на печать карманных фигурок.

Технологии 3D-печати 

Кратко об основных методах 3D-принтинга.

Стереолитография (SLA). В стереолитографическом принтере лазер облучает фотополимеры, и формирует каждый слой по 3D-чертежу. После облучения материал затвердевает. Прочность изделия зависит от типа полимера — термопластика, смол, резины. 

Цветную печать стереолитография не поддерживает. Из других недостатков — медленная работа, огромный размер стереолитографических установок, а еще нельзя сочетать несколько материалов в одном цикле.

Эта технология — одна из самых дорогих, но гарантирует точность печати. Принтер наносит слои толщиной 15 микрон — это в несколько раз тоньше человеческого волоса. Поэтому с помощью стереолитографии делают стоматологические протезы и украшения. 

Промышленные стереолитографические установки могут печатать огромные изделия, в несколько метров. Поэтому их успешно применяют в производстве самолетов, судов, в оборонной промышленности, медицине и машиностроении. 

Селективное лазерное спекание (SLS). Самый распространенный метод спекания порошковых материалов. Другие технологии — прямое лазерное спекание и выборочная лазерная плавка.

Метод изобрел Карл Декарт в конце восьмидесятых: его принтер печатал методом послойного вычерчивания (спекания). Мощный лазер нагревает небольшие частицы материала и двигается по контурам 3D-чертежа, пока изделие не будет готово. Технологию используют для изготовления не цельных изделий, а деталей. После спекания детали помещают в печь, где материал выгорает. SLS использует пластик, керамику, металл, полимеры, стекловолокно в виде порошка.

На атлете — кроссовки New Balance, которые изготовили с помощью лазерного спекания. Источник: 3D-Today

Технологию SLS используют для прототипов и сложных геометрических деталей. Для печати в домашних условиях SLS не подходит из-за огромных размеров принтера.

Послойная заливка полимера (FDM), или моделирование методом послойного наплавления. Этот способ 3d-печати изобретен американцем Скоттом Крампом. Работает FDM так: материал выводится в экструдер в виде нити, там он нагревается и подается на рабочий стол микрокаплями. Экструдер перемещается по рабочей поверхности в соответствии с 3D-моделью, материал охлаждается и застывает в изделие. 

Преимущества — высокая гибкость изделий и устойчивость к температурам. Для такой печати используют разные виды термопластика. FDM — самая недорогая среди 3D-технологий печати, поэтому принтеры популярны в домашнем использовании: для изготовления игрушек, сувениров, украшений. Но в основном моделирование послойным наплавлением используют в прототипировании и промышленном производстве — принтеры довольно быстро печатают мелкосерийные партии изделий. Предметы из огнеупорных пластиков изготовляют для космической отрасли. 

Струйная 3D-печать. Один из первых методов трехмерной печати — в 1993 году его изобрели американские студенты, когда усовершенствовали обычный бумажный принтер, и вскоре технологию приобрела та самая компания 3D Systems. 

Работает струйная печать так: на тонкий слой материала наносится связующее вещество по контурам чертежа. Печатная головка наносит материал по границам модели, и частицы каждого нового слоя склеиваются между собой. Этот цикл повторяется, пока изделие не будет готово. Это один из видов порошковой печати: раньше струйные 3D-принтеры печатали на гипсе, сейчас используют пластики, песчаные смеси и металлические порошки. Чтобы сделать изделие крепче, после печати его могут пропитывать воском или обжигать.

Предметы, которые напечатали по этой технологии, обычно долговечные, но не очень прочные. Поэтому с помощью струйной печати делают сувениры, украшения или прототипы. Такой принтер можно использовать дома. 

Эти конфеты сделали на кондитерском струйном 3D-принтере ChefJet: вместо пластика он использует воду, сахар, шоколад и пищевые красители. Источник: 3Dcream.ru

Еще струйную технологию используют в биопечати — наносят живые клетки друг на друга послойно и таким образом строят органические ткани. 

Где применяют 3D-печать

В основном в профессиональных сферах.

Строительство. На 3D-принтерах печатают стены из специальной цементной смеси и даже дома в несколько этажей. Например, Андрей Руденко еще в 2014 году напечатал на строительном принтере замок 3 × 5 метров. Такие 3D-принтеры могут построить двухэтажный дом за 20 часов.

Медицина. О печати органов мы уже упоминали, а еще 3D-принтеры активно используют в протезировании и стоматологии. Впечатляющие примеры — с помощью 3D-печати врачам удалось разделить сиамских близнецов, а кошке без четырех лап поставили протезы, которые напечатали на принтере. 

Подробнее о 3D-принтинге в медицине можно узнать в статье издания 3D-Pulse.

Космос. С помощью трехмерной печати делают оборудование для ракет, космических станций. Еще технологию используют в космической биопечати и даже в работе луноходов. Например, российская компания 3D Bioprinting Solutions отправит в космос живые бактерии и клетки, которые вырастят на 3D-принтере. Создатель Amazon Джефф Безос презентовал прототип лунного модуля с напечатанным двигателем, а космический стартап Relativity Space строит фабрику 3D-печати ракет. 

Авиация. 3D-детали печатают не только для космических аппаратов, но и для самолетов. Инженеры из лаборатории ВВС США изготавливают на 3D-принтере авиакомпоненты — например, элемент обшивки фюзеляжа — примерно за пять часов.

Архитектура и промышленный дизайн. На трехмерных принтерах печатают макеты домов, микрорайонов и поселков, включая инфраструктуру: дороги, деревья, магазины, освещение, транспорт. В качестве материала обычно используют недорогой гипсовый композит. 

Одно из необычных решений — дизайн бетонных баррикад от американского дизайнера Джо Дюсе. После терактов с грузовыми автомобилями, которые врезались в толпу людей, он предложил макет прочных и функциональных заграждений в виде конструктора, которые можно напечатать на 3D-принтере.

Изготовить прототип помогла компания UrbaStyle, которая печатает бетонные формы на строительных 3D-принтерах

Образование. С помощью 3D-печати производят наглядные пособия для детских садов, школ и вузов. В некоторых московских школах с 2016 года есть трехмерные принтеры: на уроках химии дети разглядывают 3D-модели молекул и проводят реакции в напечатанных пробирках, на физике изучают электрическую цепь на 3D-прототипе токопроводящего стенда, а еще сами печатают себе ручки на уроках ИЗО.

Узнать больше о 3D-технологиях в школах можно на сайте «Ассоциации 3D-образования». 

А еще 3D-печать помогает в быту, производстве одежды, украшений, картографии, изготовлении игрушек и дизайне упаковок.

FDM — технология 3D-печати пластиком

FDM — самая распространенная технология 3D-печати в мире. С ее помощью выращивают изделия как дешевые домашние принтеры, так и промышленные системы высокоточной 3D-печати. Принцип построения по технологии FDM заключается в послойном выращивании изделия из предварительно расплавленной пластиковой нити.

Что лучше печатать: крупные изделия, которые должны обладать надежными механическими свойствами (прочность, износостойкость, гибкость).

Преимущества: прочные износостойкие изделия, низкая стоимость материалов, широкие возможности пост-обработки.

Альтернатива: технологии MJM и PolyJet, которые с помощью специальных материалов (имитация ABS) обеспечивают более высокую точность построения и качество поверхностей готовых изделий (при более высокой себестоимости печати).

Принцип построения изделия по технологии FDM

3D-модель в формате STL передается в программное обеспечение 3D-принтера. Программа автоматически (или оператор вручную) располагает модель в виртуальном пространстве рабочей камеры. Затем программа автоматически генерирует элементы вспомогательных конструкций (из специального материала поддержки) и проводит расчет количества расходных материалов, а также времени выращивания прототипа. Перед запуском процесса печати модель автоматически разделяется на горизонтальные слои и производится расчет путей перемещения печатающей головки.

Затем запускается процесс непосредственной 3D-печати: нагревающая головка с фильерами (экструдер) расплавляет тонкую пластиковую нить (леску) и послойно укладывает ее согласно данным математической 3D-модели.

После завершения процесса построения изделия вспомогательные конструкции удаляются (вручную или растворяются в специальном растворе). Готовое изделие может быть использовано в напечатанном виде или подвергнуто любому способу пост-обработки.

Примеры изделий, созданный по технологии FDM

Свойства готовых изделий

Детали, получаемые по технологии FDM – одноцветные, прочные и упругие, обладают стабильным набором физических характеристик, которые зависят от типа материала. Они могут быть термостойкими, износоустойчивыми, обладать повышенной гибкостью или ударной вязкостью и т.д.

Цвет изделий

Стандартный цвет пластика ABSPlus — белый. Однако, этот вид пластика так же доступен еще в 8 цветах: слоновая кость, черный, красный, оливковый зеленый, нектарин, флуоресцентный желтый, синий, серый.

Точность построения

Точность построения моделей по технологии FDM во многом зависит от толщины печатного слоя. Эта величина может составлять от 0,127 до 1 мм. Поверхность готовых объектов обычно слегка ребристая (ступенчатая — в пределах 0,1-1 мм). Ребристость обусловлена тем, что расплавленная нить имеет округлую форму. Придать дополнительную гладкость поверхности можно с помощью пост-обработки.

Пост-обработка пластиковых изделий

  • Удаление материала поддержки
    • BST — материал поддержки, изготавливаемый из красноватого пластика и отделяемый методом «отламывания». Процедура требует аккуратности и существенных усилий.
    • SST — детали отделяются от поддержки в подогреваемой щелочной ванне (поставляется в комплекте с машиной).
  • Обработка прототипа после печати
    • Выращенная поверхность будет немного ребристой в силу большой толщины нити.
    • Обрабатывать изделия потребуется только в тех случаях, когда требуется идеально гладкая поверхность.
  • Дополнительные возможности
    • Прототипы легко красятся обычной краской или автоэмалью.
    • Прототипы можно сверлить, полировать или шлифовать.
    • Части моделей легко склеиваются между собой любым клеем для пластика.

3D-принтеры, работающие по технологии FDM

Органы печати: как с помощью 3D-принтера делают уши, кожу и носы

  • Наталка Писня
  • Русская служба Би-би-си, США

Автор фото, Masela family archive

Подпись к фото,

Люк Масела с родителями через месяц после операции по пересадке искусственного мочевого пузыря. 2001 год.

Люку Масела сейчас 27 — он спортсмен с дипломом по экономике, работает в крупной выставочной компании, много путешествует и недавно встретил, по его словам, «самую красивую девушку на свете». И она, и большинство его нынешних друзей были крайне удивлены, когда узнали, что 17 лет назад он пережил полтора десятка операций.

Люк родился с расщеплением позвоночника — и хотя он смог начать ходить, его мочевой пузырь был сильно поврежден. К 10 годам он почти не выходил из больниц: из-за неправильной работы мочевого пузыря в почки мальчика стала возвращаться жидкость, врачи диагностировали необратимую патологию органа.

Для просмотра этого контента вам надо включить JavaScript или использовать другой браузер

Подпись к видео,

«Напечатанные» на 3D-принтере органы уже здесь

Врачи предлагали семье два решения: пожизненный диализ или создание нового мочевого пузыря из сегмента кишки. Это гарантировало бы Люку несколько лет жизни под медицинским присмотром и высокий риск развития рака.

Уролог, который вел мальчика, предложил семье Масела принять участие в экспериментальной программе: вырастить новый мочевой пузырь из его же собственных клеток. Тогда, в 2001 году, это звучало как научная фантастика: в самой программе до Люка приняли участие всего девять человек. Несмотря на это, его семья согласилась.

«Суть операции сводилась к двум этапам: сначала у меня взяли кусочек ткани мочевого пузыря и в течение двух последующих месяцев в лаборатории растили клетки, чтобы из них вырастить новый здоровый пузырь», — рассказывает Люк.

Автор фото, Masela family archive

Подпись к фото,

Люк Масела через 17 лет после операции по пересадке искусственного мочевого пузыря

Дальше была операция по пересадке, которая, по его словам, длилась 16 часов. «Я открыл глаза и увидел разрез через весь мой живот, из меня торчали трубки всех возможных размеров, кроме них — четыре капельницы и аппарат искусственного вскармливания, — вспоминает он. — Я оставался в больнице еще месяц, мне был прописан постельный режим, после этого я еще месяц лежал дома».

Операцию делал доктор Энтони Атала — детский регенеративный хирург. За два месяца из ста клеток пациента ученые создали полтора миллиарда. Дальше на каркасе из коллагена была создана инженерная конструкция: мочевой пузырь «лепили», как двухслойный пирог, сердцевина которого со временем растворилась, и он заработал, как обычный орган, прижившись благодаря клеткам самого Люка.

После выписки из больницы Люк и доктор Атала не виделись 10 лет . Когда-то умирающий ребенок стал чемпионом школьной команды по вольной борьбе и поступил в колледж.

Профессор за эти 10 лет возглавил институт регенеративной медицины Wake Forest в Северной Каролине, но о Люке он не забывал ни на минуту: его мочевой пузырь был одним из самых сложных и самых успешных проектов в его ранней практике .

К 2018 году Атала стал лауреатом премии Кристофора Колумба — за «работу над открытием, которое окажет существенное влияние на общество»; журналы Times и Scientific American в разное время называли его «врачом года», он также был признан «одним из 50 ученых планеты, которые в ближайшие 10 лет изменят наш образ жизни и работы».

Как напечатать новое лицо

В середине 2000-х годов команда Аталы обратила внимание на обыкновенный бытовой 3D-принтер и написала для него специальное программное обеспечение, позднее для лаборатории были созданы специализированные машины. Теперь в лаборатории «выращивают» до 30 различных видов клеток и органов, а также хрящи и кости.

Одни из последних достижений команды — уши и носы, выращенные вне тела человека.

Главный заказчик и спонсор разработок Аталы — американское министерство обороны, а многие пациенты — военные, пострадавшие в результате боевых действий.

Работает это так: сперва делается компьютерная томография уха или носа. Один из ассистентов Аталы, Джошуа Корпус, шутит: на этом этапе люди нередко просят «улучшить» форму носа, если свой им казался слишком широким или крючковатым, и ушей, если те были уж очень развесисты.

После этого пишется специальный компьютерный код, и начинается печать основы органов.

Для этого используется саморассасывающийся полимер — поликапролактам. Одновременно и гибкий, и прочный, в теле человека он распадается в течение четырех лет.

После печати слои поликапролактама напоминают кружево, их место после трансплантации уже через несколько лет займут собственные хрящевые ткани человека.

Затем поликапролактам насыщают созданным из клеток пациента гелем, охлажденным до -18 градусов Цельсия — таким образом клетки, по словам ученых, не повреждаются, они «живы и счастливы».

Подпись к фото,

Печать испытательного образца почки на биопринтере

Чтобы конструкция из полимера и геля приобрела форму и превратилась во что-то более прочное, в лаборатории используют ультрафиолет — он не повреждает клетки.

Будущий имплантат печатается 4-5 часов, затем окончательно формируется и вставляется под эпидермис.

Выращивать можно и кожу: первыми в ранних испытаниях Аталы принимали участие пострадавшие в пожарах дети — после «распечатки» кожи ученые еще несколько лет наблюдали за пациентами. Новая кожа не трескалась, не лопалась и росла вместе с детьми.

Самая сложная работа, по словам ученого, — раны лица: мало просто натянуть кожу, нужно точно рассчитать геометрию, выверить припухлости, строение костей, и понять, как после этого будет выглядеть человек.

Кроме кожи и ушей, Атала может «напечатать» кости челюстей, вырастить кровеносные сосуды и клетки некоторых органов — печени, почек, легких.

Эту технологию особенно ценят онкологи: на основе клеток пациентов можно воссоздать реакцию организма на разные виды химиотерапии и наблюдать за реакцией на тот или иной тип лечения в лабораторных условиях, а не на живом человеке.

А вот печень, почки, легкие и сердце — все еще на стадии испытаний. Атала говорит, что вырастил их в миниатюре, но создание органов из различных тканей и в настоящую величину требует множества дополнительных исследований.

Зато, по его словам, в лаборатории вырастили клетки и создали вагину для девочки, родившейся несколько лет назад с врожденной деформацией половых органов — с момента пересадки прошло уже несколько лет.

Подпись к фото,

Основа для ушного имплантата из поликапролактама, отпечатанная на биопринтере

Атала улыбается и добавляет: над созданием работоспособного пениса его команда тоже работает. Это исследования продолжаются уже несколько лет, и больше всего хлопот ученым доставляют сложная структура тканей и специфическая чувствительность самого органа.

В числе прочих над этим в лабораторных условиях трудится россиянин, аспирант Первого Московского государственного медицинского университета (МГМУ) имени Сеченова Игорь Васютин. Он — клеточный биолог, правая рука Аталы.

В США Васютин около года — приехал по обмену. О поведении стволовых клеток он готов рассуждать часами, но становится менее многословен, когда речь заходит о российской науке.

В альма-матер Васютина до массовой регенерации человеческих органов не дошли и пока тренируются на животных: местные ученые «распечатали» на 3D-принтере щитовидную железу мыши.

Исследованием человеческих органов там, впрочем, тоже занимаются. По словам руководителя Института регенеративной медицины при МГМУ Дениса Бутнара, несколько лет назад в Институте воссоздали специальную инженерную конструкцию слизистой оболочки щеки. Она отлично функционировала первые полгода, но впоследствии пришлось сделать повторную операцию.

Подпись к фото,

Испытательный образец ушного имплантата под воздействием ультрафиолета

В России, впрочем, на протяжении нескольких последних лет практиковал итальянский хирург-трансплатолог Паоло Маккиарини — человек, первым в истории сделавший операцию по пересадке синтетического органа — пластиковой трубки, заменившей пациенту трахею.

Однако семь из девяти его пациентов умерли, а имплантированные оставшимся двоим дыхательные трубки впоследствии пришлось заменить донорскими.

На него было заведено несколько уголовных дел, в том числе по обвинениям в давлении на пациентов и мошенничестве, а ведущие медики мира называли операции Маккиарини «этическим Чернобылем».

Заменят ли напечатанные органы доноров?

В зените своей карьеры Маккиарини утверждал, что перед человечеством открывается новая перспектива: можно «распечатать» на принтере любой человеческий орган, создать из него инженерную конструкцию, обогащенную стволовыми клетками пациента, и получить идеальный протез.

Как бы там ни было, сложные человеческие органы — печень, почки, сердце, легкие — пока не удалось вырастить ни одному регенеративному хирургу.

Биопечать так называемых простых органов, впрочем, уже доступна в США, Швеции, Испании и Израиле — на уровне клинических испытаний и специальных программ.

Американское правительство активно инвестирует в подобные программы — кроме Wake Forest, сотрудничающей с Пентагоном, на воссоздание работы печени, сердца и легких значительные суммы получает и Массачусетский технологический институт.

Подпись к фото,

Тест нанесения кожи на обожженную рану

По мнению профессора Хорхе Ракелы, гастроэнтеролога в исследовательском центре Mayo Clinic, «биопечать — одна из самых потрясающих отраслей современной медицины, за ней огромный потенциал, и переломный момент самых важных открытий уже близок».

Между тем Пит Басильер, руководитель отдела по научно-исследовательской работе аналитической компании Gartner, настаивает: технологии развиваются намного быстрее, чем понимание тех последствий, которые может повлечь за собой 3D-печать.

Подобные разработки, по словам Басильера, даже созданные с самыми благими намерениями, рождают набор вопросов: что случится, когда будут созданы «улучшенные» органы, основой которых станут не только человеческие клетки — будут ли они обладать «суперспособностями»? Будет ли создан контролирующий орган, следящий за их производством? Кто будет проверять качество этих органов?

Согласно докладу Национальной медицинской библиотеки США, в очередь на пересадку органов каждый год встают больше 150 тыс. американцев. Донорские органы получит только 18% из них; каждый день в Штатах, так и не дождавшись трансплантации, умирают 25 человек. Пересадка органов и последующая реабилитация только в 2012 году обошлись страховым компаниям и пациентам в 300 млрд долларов.

При этом большинство американцев — потенциальные доноры: при получении водительских прав они добровольно отвечают на вопрос о том, согласны ли поделиться своими органами в случае автокатастрофы или другого опасного инцидента. В случае согласия в углу документа появляется маленькое «сердечко» и слово «донор».

Такое красуется и на водительском удостоверении профессора Аталы — несмотря на все свои достижения и веру в «органы печати», он готов поделиться с окружающими своими.

Ни сам профессор, ни его подчиненные не скрывают — «напечатать» органы для тысяч нуждающихся в пересадке прямо сейчас наука пока не в состоянии. По его словам, на то, чтобы на уровне массового рынка заменить донорские органы выращенными, уйдет несколько десятков лет.

Работа Аталы и других специалистов в области регенеративной медицины остается скорее испытательной, чем массовой, и все еще «заточенной» под каждого отдельного пациента.

Как работают 3D-принтеры?

Даже лучшие художники изо всех сил пытаются показать нам, какие объекты реального мира
выглядят во всей своей трехмерной (3D) красе. Большую часть времени
это не имеет значения — просмотр фотографии или эскиза дает нам
хорошая идея. Но если вы занимаетесь разработкой новых
продукты, и вам нужно показать их клиентам или покупателям,
ничто не сравнится с прототипом: модель, которую можно потрогать, подержать и
Чувствовать.Беда только в том, что на изготовление моделей вручную уходит много времени.
машины, которые могут создавать «быстрые прототипы», стоят целое состояние (до
полмиллиона долларов). Ура, значит для 3д принтеров , которые немного работают
как струйные принтеры, и создавайте 3D-модели слой за слоем до 10 раз
скорость и пятая стоимость. Как именно они работают? Давайте
внимательнее!

Фото: 3D-печать в действии: это печатающая головка принтера Invent3D,
медленно создавая объект, слой за слоем, брызгая расплавленным синим пластиком из его точно движущегося сопла.Фото капрала. Джастин Апдеграфф любезно предоставлен Корпусом морской пехоты США.

От ручных прототипов до быстрого прототипирования

Фото: Качественный скоростной прототип космического самолета, сделанный из воска.
из чертежа САПР НАСА.
Фото любезно предоставлено Исследовательским центром НАСА в Лэнгли (NASA-LaRC).

Раньше были такие вещи, как автоматизированное проектирование (САПР) и
лазеры, модели и прототипы были кропотливо вырезаны из дерева или
склеены из кусочков картона или пластика.Они могли взять
дней или даже недель, чтобы заработать и обычно стоит целое состояние. Получающий
внесение изменений или дополнений было трудным и требовало много времени,
особенно если использовалась сторонняя модельная компания, и
это может оттолкнуть дизайнеров от внесения улучшений или принятия
комментарии на борту в последнюю минуту: «Слишком поздно!»

С появлением более совершенных технологий,
идея под названием быстрое прототипирование (RP) зародилась в 1980-х.
как решение этой проблемы: это означает разработку моделей и
прототипы более автоматизированными методами, обычно за часы или дни.
чем недели, на которые раньше уходило традиционное прототипирование.3D печать
является логическим продолжением этой идеи, в которой дизайнеры продукта делают
свои собственные быстрые прототипы, за часы, с использованием сложных машин
похожи на струйные принтеры.

Как работает 3D-принтер?

Artwork: Один из первых в мире трехмерных принтеров FDM,
разработан С. Скоттом Крампом в 1980-х годах. В этом дизайне модель (розовая, 40) напечатана.
на опорной плите (темно-синий, 10), которая перемещается в горизонтальном (X – Y) направлениях, в то время как печать
головка и сопло (2 и 4, оранжевые) перемещаются в вертикальном (Z) направлении.В качестве сырья для печати используется пластиковый стержень (желтый, 46), оплавленный печатающей головкой. Процесс нагрева тщательно регулируется
термопара (электрический датчик тепла), подключенная к регулятору температуры (фиолетовый, 86). Стержень выдавливается с помощью сжатого воздуха из большого резервуара и
компрессор справа (зеленый, 60/62). С тех пор все немного изменилось, но основной принцип (создание объекта путем плавления и осаждения пластика под трехмерным контролем) остается прежним.Иллюстрация из патента США 5,121,329: Устройство и метод для создания трехмерных объектов, автор С. Скотт Крамп, Stratasys Ltd, 9 июня 1992 г., любезно предоставлено Управлением по патентам и товарным знакам США.

Представьте, что вы строите обычный деревянный прототип автомобиля. Ты бы
начните с бруска из цельного дерева и вырежьте внутрь, как
скульптор, постепенно раскрывая «спрятанный» внутри предмет. Или если
вы хотели сделать модель дома по архитектурному проекту, вы бы построили
это как настоящий сборный дом, наверное, вырезая миниатюрные
копии стен из картона и их склейка.Теперь
лазер может легко вырезать из дерева форму, и это не выходит за рамки
области возможностей научить робота приклеивать картон
вместе — но 3D-принтеры не работают ни одним из этих способов!

Типичный 3D-принтер очень похож на струйный принтер.
с компьютера. Он создает 3D-модель по одному слою за раз из
снизу вверх, путем многократной печати на одной и той же области методом, известным как
моделирование методом сплавленного осаждения (FDM) . Работая полностью автоматически, принтер создает модель в течение нескольких часов, поворачивая 3D CAD.
втягивание в партии двухмерных, поперечных
слои — эффективно разделяют 2D-отпечатки, расположенные один поверх
другой, но без бумаги между ними.Вместо того, чтобы использовать чернила, которые никогда не накапливаются
объем, принтер наносит слои расплавленного пластика или порошка и
соединяет их вместе (и с существующей структурой) с помощью клея или ультрафиолета.

Q: Какие «чернила» используются в 3D-принтере? A: Пластик!

Там, где струйный принтер распыляет жидкие чернила, а лазерный принтер использует твердый порошок, 3D-принтер не использует ни того, ни другого: вы не можете построить 3D-модель, накапливая цветную воду или черную пыль! Вы можете моделировать
пластик.3D-принтер
по сути работает, выдавливая расплавленный пластик через крошечное сопло, которое он перемещает точно под компьютером
контроль. Он печатает один слой, ждет, пока он высохнет, а затем печатает следующий слой поверх. В зависимости от качества
принтера, то вы получите либо потрясающе выглядящую трехмерную модель, либо множество двухмерных пластиковых линий, грубо лежащих друг на друге — как глазурь для торта с плохо нанесенным трубопроводом! Очевидно, что пластик, из которого печатаются модели, имеет огромное значение.

Фото: 3D-принтер Lulzbot.Вы можете увидеть маленькую катушку из сырого красного пластика.
(«нить»), которая подается в печатающую головку сверху. Фото Стефана Белчера любезно предоставлено
ВМС США.

Когда мы говорим о пластике, мы обычно имеем в виду «пластик»: если вы прилежный переработчик, вы знаете, что существует много типов пластика, все они разные, как химически (по их молекулярному составу), так и физически (в их поведение по отношению к теплу, свету и т. д.).
Неудивительно, что в 3D-принтерах используются термопласты , (пластмассы, которые плавятся при нагревании и превращаются в твердые, когда снова охлаждают), и обычно либо ABS (акрилонитрилбутадиенстирол), PLA (полимолочная кислота), либо ПЭТГ (полиэтиленгерефталат гликоль).

Пожалуй, наиболее знакомый материал, из которого изготавливаются кирпичи LEGO®, ABS также широко используется в интерьере автомобилей (иногда во внешних частях, таких как колпаки), для изготовления внутренних частей холодильников и в пластиковых деталях компьютеров (вполне вероятно, мышь и клавиатура, которые вы используете сейчас, сделаны из АБС-пластика). Так почему этот материал используется для 3D-печати? На самом деле это смесь твердого и прочного пластика (акрилонитрил) с синтетическим каучуком (бутадиенстирол). Он идеально подходит для 3D-печати, потому что он твердый при комнатной температуре и плавится при температуре чуть выше 100 ° C (220 ° F), что достаточно прохладно, чтобы плавиться внутри принтера без слишком сильного нагрева, и достаточно горячее, чтобы модели, напечатанные с его помощью, выиграли ». тают, если их оставить на солнце.После схватывания его можно отшлифовать или покрасить; Еще одно полезное свойство ABS — это то, что он имеет бело-желтый цвет в необработанном виде, но могут быть добавлены пигменты (химические вещества цвета в краске), чтобы придать ему практически любой цвет. В зависимости от типа принтера, который вы используете, вы подаете на него пластик в виде маленьких шариков или нитей (например, пластиковых ниток).

PLA проще в использовании, чем ABS, и немного более экологичен, хотя он более мягкий и менее прочный. PETG — это промежуточный вариант, близкий к прочности ABS, его легко формовать и относительно легко перерабатывать.

Вам не обязательно печатать в 3D с помощью пластика: теоретически вы можете печатать объекты, используя любой расплавленный материал, который достаточно быстро затвердевает и затвердевает. В июле 2011 г. исследователи из
Английский университет Эксетера представил прототип пищевого принтера, который может печатать 3D-объекты из расплавленного шоколада!

Преимущества и недостатки

Фото: B9Creator ™ — типичный недорогой 3D-принтер своими руками.
Первоначально он был доступен в виде комплекта по цене 2495 долларов; теперь он приходит в собранном виде
в трех разных версиях по цене от 6000 до 12000 долларов.Фото любезно предоставлено Винделлом Х. Оскей, www.evilmadscientist.com,
опубликовано на Flickr в 2012 г.
под лицензией Creative Commons.

Производители 3D-принтеров заявляют, что они в 10 раз быстрее, чем
другими методами и в 5 раз дешевле, поэтому они дают большие преимущества для
люди, которым нужны быстрые прототипы за часы, а не дни. Несмотря на то что
высокопроизводительные 3D-принтеры они по-прежнему дороги (обычно около 25 000–50 000 долларов), они
часть стоимости более сложных машин RP (которые входят в
от 100 000 до 500 000 долларов), а гораздо более дешевые машины
также есть в наличии (вы можете купить комплект 3D-принтера Tronxy примерно за 100–200 долларов).Они также достаточно маленькие, безопасные, простые в использовании и
надежны (функции, которые сделали их все более популярными в таких местах, как
проектные / инженерные школы).

С другой стороны, отделка моделей, которые они производят, обычно
уступает тем, которые производятся на станках с РП более высокого класса. Выбор
материалы часто ограничиваются одним или двумя, цвета могут быть грубыми,
и текстура может не очень хорошо отражать предполагаемую отделку продукта. Как правило, модели, напечатанные на 3D-принтере
может быть лучше для предварительной визуализации новых продуктов; более
сложные машины RP могут быть использованы позже в процессе, когда
проекты близки к доработке и такие вещи, как точная поверхность
текстуры важнее.

Приложения

Для чего можно использовать 3D-принтер? Это немного похоже на вопрос «Как
много способов использовать копировальный аппарат? »Теоретически единственным ограничением является ваше
воображение. На практике пределы — это точность
модель, с которой вы печатаете, точность вашего принтера и
материалы, которыми вы печатаете. Современная 3D-печать была изобретена около 25 лет назад,
но по-настоящему он начал набирать обороты только в последнее десятилетие. Довольно
технология все еще относительно новая; даже в этом случае диапазон использования 3D-печати
довольно удивительно.

Медицина

Фото: пластиковые сердца, напечатанные на 3D-принтере, позволяют хирургам проводить операции без риска.
Модель доктора Мэтью Брамлета. Фотография, являющаяся общественным достоянием, опубликована на Flickr благодаря галерее изображений NIH США и 3D Print Exchange.

Жизнь — это путешествие в один конец; склонные к ошибкам, стареющие люди со складками,
осыпающиеся тела, естественно, видят большие перспективы в технологии, которая
возможность создания заменяющих частей тела и тканей. Вот почему
врачи были одними из первых, кто начал изучать 3D-печать.Уже у нас
видел 3D-печатные уши (от индийской компании Novabeans), руки и ноги
(от Limbitless Solutions, Biomechanical Robotics Group и
Bespoke) и мускулы (от Корнельского университета). 3D-принтеры имеют
также использовались для производства искусственной ткани (Organovo), клеток
(Samsara Sciences) и кожа (в партнерстве косметических
гиганты L’Oreal и Organovo). Хотя мы еще далеки от того, чтобы
полные 3D-печатные заменяющие органы (например, сердце и печень),
все быстро движется в этом направлении.Один проект, известный как
Тело на чипе,
управляется Институтом регенеративной медицины Уэйк Форест в Северной Каролине,
печатает миниатюрные человеческие сердца, легкие и кровеносные сосуды, помещает их на микрочип и проверяет их
искусственной крови.

Помимо сменных частей тела, все чаще используется 3D-печать.
используется для медицинского образования и обучения. В детском доме Никлауса
Больница в Майами, Флорида, хирурги практикуют операцию на
3D-копии детских сердечек.В другом месте то же самое
Техника используется для репетиции операции на головном мозге.

Аэрокосмическая и оборонная промышленность

Разработка и испытание самолетов — дело сложное и дорогое: Боинг
Внутри Dreamliner около 2,3 миллиона компонентов! Несмотря на то что
компьютерные модели могут быть использованы для проверки многих аспектов того, как самолеты
вести себя, точные прототипы еще нужно сделать для таких вещей, как
испытания в аэродинамической трубе. А 3D-печать — простой и эффективный способ
сделай это. В то время как коммерческие самолеты строятся в больших количествах, военные
самолеты, скорее всего, будут сильно индивидуализированы, а 3D-печать
позволяет проектировать, испытывать и производить мелкосерийные или единичные детали как
быстро и экономично.

Фото: ВМС США с тех пор тестируют 3D-принтеры на кораблях.
один был установлен на USS Essex в 2014 году. Теоретически бортовой принтер делает корабль более самодостаточным,
с меньшими затратами на запасные части и материалы, особенно в военное время. Это подводное беспроводное зарядное устройство, напечатанное на 3D-принтере.
типично для объектов, которые могут быть напечатаны во время миссии в море. Фото Девина Писнера любезно предоставлено
ВМС США.

Космические аппараты даже сложнее самолетов и имеют дополнительные
недостаток в том, что они «производятся» в крошечных
количества — иногда бывает только один.Вместо того, чтобы идти на все расходы
изготовления уникальных инструментов и производственного оборудования, он может многое
Разумнее печатать на 3D-принтере одноразовые компоненты. Но зачем вообще делать
части космоса на Земле? Доставка сложных и тяжелых конструкций в
пространство сложно, дорого и требует много времени; способность к
производить вещи на Луне или на других планетах, может оказаться
бесценный. Легко представить космонавтов (или даже роботов) в 3D.
принтеры для производства любых предметов, которые им нужны (включая запасные
частей), вдали от Земли, когда они им нужны.Но даже
обычные космические проекты, порожденные Землей, могут извлечь выгоду из
скорость, простота и дешевизна 3D-печати. Последние, поддерживаемые людьми
NASA Rover использует детали, напечатанные на 3D-принтере, созданные с помощью Stratasys.

Фото: Запасные части и ремонт — без проблем. 3D-принтер Lulzbot Taz 6, используемый для изготовления запасных частей на борту военного корабля США, крупным планом.
Фото Кристофера А. Велойказы любезно предоставлено ВМС США.

Визуализация

Создание прототипов самолетов или космических ракет является примером
гораздо более широкое применение для 3D-печати: визуализация того, как новые дизайны будут
смотреть в трех измерениях.Мы можем использовать такие вещи, как
виртуальная реальность для
это, конечно, но люди часто предпочитают то, что видят и
трогать. Все чаще 3D-принтеры используются для быстрого и точного
архитектурное моделирование. Хотя мы (пока) не можем печатать 3D в материалах
такие как кирпич и бетон, есть широкий ассортимент пластмасс
доступны, и их можно раскрасить, чтобы они выглядели как реалистичные здания
отделка. Точно так же 3D-печать теперь широко используется для
прототипирование и тестирование промышленных и потребительских товаров. Поскольку многие
повседневные вещи вылеплены из пластика, 3D-печатная модель может выглядеть
очень похож на готовый продукт — идеально подходит для фокус-группы
тестирование или исследование рынка.

Персонализированные товары

Современная жизнь — от пластиковых зубных щеток до фантиков.
здесь-сегодня, ушел-завтра — удобно, недорого и одноразово.
Однако не все ценят серийное массовое производство.
вот почему так популярны дорогие «дизайнерские этикетки». в
в будущем многие из нас смогут пользоваться преимуществами
доступные, персонализированные продукты, изготовленные на заказ в точном соответствии с нашими требованиями
Технические характеристики. Ювелирные изделия и модные аксессуары
уже печатается на 3D-принтере.Так же, как веб-сайт Etsy создал
всемирное сообщество ремесленников, поэтому Zazzy воспроизвел
что с использованием технологии 3D-печати. Благодаря простым онлайн-сервисам вроде
Shapeways, каждый может сделать свои собственные ник-нэки на 3D-принтере для себя или для себя.
продавать другим людям без затрат и хлопот, связанных с использованием собственного 3D-принтера
(даже Staples теперь предлагает услуги 3D-печати в некоторых своих магазинах).

«Товары по индивидуальному заказу» — это не просто вещи, которые мы покупаем и используем:
еда, которую мы едим, тоже может попасть в эту категорию.На приготовление нужно время,
умение и терпение, потому что готовится аппетитный
еда выходит далеко за рамки смешивания ингредиентов и нагревания их на плите.
Поскольку большинство продуктов можно выдавливать (выдавливать через сопла), они могут
(теоретически) также можно напечатать в 3D. Несколько лет назад,
Зло Безумный
Scientist Laboratories в шутку напечатали какие-то странные предметы из
сахар. В 2013 году New York Times
обозреватель А.Дж. Джейкобс поставил перед собой задачу
распечатайте всю еду, включая тарелку и столовые приборы. в
Он случайно натолкнулся на работу Ход Липсона из Корнельского университета,
кто верит, что еда может быть когда-нибудь лично, напечатана на 3D-принтере, чтобы соответствовать
точные потребности вашего организма в питании.Что аккуратно переносит нас в будущее …

Фото: Теоретически вы можете делать 3D-отпечатки из любого сырья, в которое вы можете подавать.
ваш принтер. Вот несколько фантастических 3D-объектов, напечатанных из сахарного песка
«CandyFab 4000» (взломанный старый плоттер HP) от всегда занятных людей
в лабораториях злых безумных ученых. Фотография любезно предоставлена ​​Винделлом Х. Оскей, www.evilmadscientist.com, опубликована на Flickr в 2007 году по лицензии Creative Commons License.

Будущее 3D-печати

Многие люди верят, что 3D-печать возвещает не только о приливной волне
дерзких пластиковых уловок, но революция в обрабатывающей промышленности
и мировая экономика, которой он управляет.Хотя 3D-печать будет
безусловно, позволяет нам делать наши собственные вещи, есть
ограничить то, что вы можете достичь самостоятельно с помощью дешевого принтера и
трубка из пластика. Реальные экономические выгоды могут быть получены тогда, когда
3D-печать повсеместно принята крупными компаниями в качестве центрального
столп обрабатывающей промышленности. Во-первых, это позволит
производители предлагают гораздо больше возможностей настройки существующих продуктов,
поэтому доступность серийного массового производства будет
в сочетании с привлекательностью одноразового ремесла, сделанного на заказ.Во-вторых, 3D-печать — это, по сути, роботизированная технология, поэтому она будет
снизить стоимость производства до такой степени, что однажды
опять же, экономически выгодно производить товары в Северной Америке и
Европа, которую в настоящее время собирают дешево (плохо оплачиваемыми людьми)
в таких местах, как Китай и Индия. Наконец, 3D-печать повысит производительность
(поскольку для того, чтобы делать то же самое, потребуется меньше людей), снижение
общие затраты на производство, что должно привести к снижению цен и
больший спрос — и это всегда хорошо для потребителей, для
производители и экономика.

Фотография: два вида печатающей головки (иногда называемой «головкой инструмента») 3D-принтера.
Фото Эшли Маклафлин любезно предоставлено
Корпус морской пехоты США.

3D-печать для чайников: как они работают? | The Independent

Кажется, что все, от Белого дома до Amazon.com, в наши дни говорят о 3D-печати, но что именно? Вот краткое руководство по поводу того, о чем идет речь…

Что такое 3D-принтер?

3D-принтеры — это новое поколение машин, которые могут изготавливать повседневные вещи.Они замечательны тем, что могут изготавливать разные виды предметов из разных материалов на одной машине.

3D-принтер может изготавливать практически все, от керамических чашек до пластиковых игрушек, металлических деталей машин, керамических ваз, причудливых шоколадных тортов или даже (когда-нибудь скоро) частей человеческого тела.

Они заменяют традиционные фабричные производственные линии одной машиной, точно так же, как домашние струйные принтеры заменяют бутылки с чернилами, печатный станок, горячее железо и сушилку.

Почему это называется печатью?

Если вы внимательно посмотрите (в микроскоп) на страницу с текстом на домашнем принтере, вы увидите, что буквы не просто окрашивают бумагу, они на самом деле немного сидят на поверхности страницы. .

Теоретически, если вы напечатаете одну и ту же страницу несколько тысяч раз, в конечном итоге чернила наложат друг на друга достаточно слоев, чтобы создать твердую трехмерную модель каждой буквы. Идея создания физической формы из крошечных слоев — вот как работали первые 3D-принтеры.

Как работают 3D-принтеры?

Вы начинаете с проектирования 3D-объекта на обычном домашнем ПК, подключаете его к 3D-принтеру, нажимаете «печать», а затем садитесь и смотрите. Процесс немного похож на приготовление буханки нарезанного хлеба, но в обратном порядке. Представьте, что вы выпекаете каждый отдельный ломтик хлеба, а затем склеиваете их в целую буханку (в отличие от того, чтобы сделать целую буханку, а затем нарезать ее, как это делает пекарь). Это в основном то, что делает 3D-принтер.

В процессе 3D-печати весь объект превращается в тысячи крошечных кусочков, а затем создается снизу вверх, фрагмент за фрагментом.Эти крошечные слои слипаются, образуя твердый объект. Каждый слой может быть очень сложным, то есть 3D-принтеры могут создавать движущиеся части, такие как шарниры и колеса, как части одного и того же объекта. Вы можете напечатать весь велосипед — руль, седло, раму, колеса, тормоза, педали и цепь — в собранном виде, без использования каких-либо инструментов. Вопрос просто в том, чтобы оставить пробелы в нужных местах.

Какие возможности?

Вы когда-нибудь ломали что-то, но обнаруживали, что оно больше не продается и вы не можете его заменить? 3D-печать означает, что вы можете просто напечатать новую.Этот мир, в котором можно сделать практически все, что угодно, очень отличается от того, в котором мы живем сегодня. Это мир, в котором не нужны грузовики для доставки товаров или склады для их хранения, где ничего не бывает на складе и где меньше отходов, упаковки и загрязнения.

Это также мир, в котором предметы повседневного обихода изготавливаются по индивидуальному заказу и в соответствии с вашими требованиями. Это означает, что мебель создана для вашего дома, обувь — по ноге, дверные ручки — по руке, блюда — напечатаны по вашему вкусу одним нажатием кнопки.Даже лекарства, кости, органы и кожа, предназначенные для лечения ваших травм.

Вы можете получить некоторые из этих вещей сейчас, если вы богаты, но 3D-печать обеспечивает доступное производство на заказ для масс. Если это звучит как чистая фантазия, попробуйте поискать в Google «персонализированные 3D-печатные продукты» и убедитесь в этом сами. В конце концов, идея делать покупки в супермаркете на iPad напоминала что-то из «Звездного пути» 20 лет назад.

Какие ограничения?

Хотя покупка 3D-принтера намного дешевле, чем создание фабрики, стоимость каждой единицы, которую вы производите, выше, поэтому экономичность 3D-печати еще не превосходит традиционное массовое производство.Он также не может сравниться с гладкой поверхностью промышленных машин, а также предлагать разнообразие материалов или широкий диапазон размеров, доступных в промышленных процессах. Но, как и многие бытовые технологии, цены снизятся, а возможности 3D-принтера со временем улучшатся.

Это следующая большая вещь?

Да, если вы дизайнер или инженер, но для большинства людей нет.

Как и все новые технологии, шумиха в отрасли на несколько лет опережает потребительскую реальность.Это развивающаяся технология, которая означает, что, как и домашние компьютеры или мобильные телефоны, большинство людей скептически относятся к тому, что они нужны, пока они не появятся у всех… и тогда мы все удивимся, как мы вообще обходились без них.

@Killdozer

Как точно работает 3D-печать?

3D-печать — это универсальный метод производства и быстрого прототипирования. За последние несколько десятилетий он стал популярным во многих отраслях по всему миру.

3D-печать является частью семейства производственных технологий, называемых аддитивным производством.Это описывает создание объекта путем добавления материала к объекту слой за слоем. На протяжении всей своей истории аддитивное производство носило различные названия, включая стереолитографию, трехмерное наслоение и трехмерную печать, но трехмерная печать является самой известной.

Так как же работают 3D-принтеры?

СВЯЗАННЫЕ С: НАЧНИТЕ СОБСТВЕННЫЙ БИЗНЕС ПО 3D-ПЕЧАТИ: 11 ИНТЕРЕСНЫХ СЛУЧАЕВ КОМПАНИЙ, ИСПОЛЬЗУЮЩИХ 3D-ПЕЧАТЬ

Как работает 3D-принтер?

Процесс 3D-печати начинается с создания графической модели печатаемого объекта.Обычно они разрабатываются с использованием пакетов программного обеспечения автоматизированного проектирования (САПР), и это может быть наиболее трудоемкой частью процесса. Для этого используются программы TinkerCAD, Fusion360 и Sketchup.

Для сложных продуктов эти модели часто тщательно тестируются в имитационном моделировании на предмет потенциальных дефектов в конечном продукте. Конечно, если объект для печати носит чисто декоративный характер, это менее важно.

Одним из основных преимуществ 3D-печати является то, что она позволяет быстро создавать прототипы практически всего.Единственное реальное ограничение — это ваше воображение.

На самом деле, есть объекты, которые слишком сложны для создания в более традиционных процессах производства или прототипирования, таких как фрезерование или формование с ЧПУ. Это также намного дешевле, чем многие другие традиционные методы производства.

После проектирования следующим этапом является цифровая нарезка модели для ее печати. Это жизненно важный шаг, поскольку 3D-принтер не может концептуализировать 3D-модель так же, как вы или я. Процесс нарезки разбивает модель на множество слоев.Затем дизайн каждого слоя отправляется в печатающую головку для печати или укладки по порядку.

Процесс нарезки обычно завершается с помощью специальной программы для резки, такой как CraftWare или Astroprint. Это программное обеспечение для срезов также будет обрабатывать «заливку» модели, создавая решетчатую структуру внутри твердотельной модели для дополнительной устойчивости, если это необходимо.

Это также область, в которой 3D-принтеры преуспевают. Они могут печатать очень прочные материалы с очень низкой плотностью за счет стратегического добавления воздушных карманов внутри конечного продукта.

Программное обеспечение слайсера также добавит столбцы поддержки, где это необходимо. Это необходимо, потому что пластик не может быть уложен в воздухе, а колонны помогают принтеру заполнять промежутки. Затем эти столбцы при необходимости удаляются.

После того, как программа слайсера сработала, данные отправляются на принтер для заключительного этапа.

Отсюда сам 3D-принтер берет верх. Он начнет распечатывать модель в соответствии с конкретными инструкциями программы слайсера, используя разные методы, в зависимости от типа используемого принтера.Например, прямая 3D-печать использует технологию, аналогичную струйной технологии, в которой сопла перемещаются вперед и назад, вверх и вниз, распределяя густой воск или пластмассовые полимеры, которые затвердевают, образуя каждое новое поперечное сечение 3D-объекта. В многоструйном моделировании используются десятки работающих одновременно струй для более быстрого моделирования.

При трехмерной печати связующим сопла для струйной печати наносят тонкий сухой порошок и жидкий клей или связующее, которые вместе образуют каждый напечатанный слой. Принтеры для переплета делают два прохода для формирования каждого слоя.Первый проход наносит тонкий слой порошка, а второй проход использует сопла для нанесения связующего.

При фотополимеризации капли жидкого пластика подвергаются воздействию лазерного луча ультрафиолетового света, который превращает жидкость в твердое тело.

Спекание — это еще одна технология 3D-печати, которая включает плавление и сплавление частиц вместе для печати каждого последующего слоя. Связанное с этим селективное лазерное спекание основано на использовании лазера для плавления огнестойкого пластикового порошка, который затем затвердевает, образуя печатный слой.Спекание также можно использовать для изготовления металлических предметов.

Процесс 3D может занять часы или даже дни, в зависимости от размера и сложности проекта.

«В отрасли есть несколько более быстрых технологий, например, Carbon M1, в котором используются лазеры, выстреливаемые в слой жидкости и вытягивающие из него отпечатки, что значительно ускоряет процесс. Но таких принтеров много. в раз сложнее, намного дороже и пока работаю только с пластиком ». — Howtogeek.com.

Независимо от того, какой тип 3D-принтера используется, общий процесс печати обычно одинаков.

  • Шаг 1: Создайте 3D-модель с помощью программного обеспечения САПР.
  • Шаг 2: Чертеж САПР преобразуется в формат стандартного языка тесселяции (STL). Большинство 3D-принтеров используют файлы STL в дополнение к другим типам файлов, таким как ZPR и ObjDF.
  • Шаг 3: Файл STL передается на компьютер, который управляет 3D-принтером.Там пользователь указывает размер и ориентацию для печати.
  • Шаг 4: Сам 3D-принтер настроен. У каждой машины свои требования к настройке, такие как заправка полимеров, связующих и других расходных материалов, которые будет использовать принтер.
  • Шаг 5: Запустите машину и дождитесь завершения сборки. В течение этого времени машину следует регулярно проверять, чтобы убедиться в отсутствии ошибок.
  • Шаг 6: Напечатанный объект удален из устройства.
  • Шаг 7: Последний шаг — постобработка. Многие 3D-принтеры требуют некоторой последующей обработки, такой как удаление остатков порошка щеткой или промывка печатного объекта для удаления водорастворимых подложек. Новый объект также может нуждаться в лечении.

Что умеет делать 3D-принтер?

Как мы уже видели, 3D-принтеры невероятно универсальны. Теоретически они могут создать практически все, о чем вы можете подумать.

Но они ограничены видами материалов, которые они могут использовать для «чернил», и их размером.Для очень больших объектов, например дома, вам нужно будет распечатать отдельные части или использовать очень большой 3D-принтер .

3D-принтеры могут печатать в пластике, бетоне, металле и даже в клетках животных. Но большинство принтеров предназначены для использования только одного типа материала.

Некоторые интересные примеры объектов, напечатанных на 3D-принтере, включают, но не ограничиваются: —

  • Протезы конечностей и других частей тела
  • Дома и другие здания
  • Продукты питания
  • Медицина
  • Огнестрельное оружие
  • Жидкие структуры
  • Стекло продукты
  • Акриловые предметы
  • Реквизит для фильмов
  • Музыкальные инструменты
  • Одежда
  • Медицинские модели и устройства

3D-печать находит применение во многих отраслях промышленности.

Какие существуют типы программного обеспечения для 3D-печати?

В разных программах САПР используются различные форматы файлов, но некоторые из наиболее распространенных:

  • STL — стандартный язык тесселяции или STL — это формат 3D-рендеринга, который обычно может обрабатывать только один цвет. Обычно это формат файла, который используют большинство настольных 3D-принтеров.
  • VRML — Язык моделирования виртуальной реальности, файл VRML — это новый формат файла.Они обычно используются для принтеров с более чем одним экструдером и позволяют создавать многоцветные модели.
  • AMF — формат файла аддитивного производства, это открытый стандарт на основе .xml для 3D-печати. Он также может поддерживать несколько цветов.
  • GCode — GCode — это еще один формат файла, который может содержать подробные инструкции для 3D-принтера, которым он должен следовать при укладке каждого фрагмента.
  • Другие форматы — Другие производители 3D-принтеров также имеют свои собственные форматы файлов.

Каковы преимущества 3D-печати?

Как мы уже упоминали выше, 3D-печать может иметь различные преимущества по сравнению с более традиционными производственными процессами, такими как литье под давлением или фрезерование с ЧПУ.

3D-печать — это аддитивный процесс, а не вычитающий, как фрезерование с ЧПУ. 3D-печать строит вещи слой за слоем, в то время как позже постепенно удаляет материал из твердого блока, чтобы создать продукт. Это означает, что в некоторых случаях 3D-печать может быть более ресурсоэффективной, чем ЧПУ.

Другой пример традиционных производственных процессов, литье под давлением, отлично подходит для изготовления большого количества предметов в больших объемах. Хотя его можно использовать для создания прототипов, литье под давлением лучше всего подходит для крупномасштабного массового производства утвержденного дизайна продукта. Однако 3D-печать лучше подходит для мелкосерийного, ограниченного производства или создания прототипов.

В зависимости от использования, 3D-печать имеет ряд других преимуществ по сравнению с другими производственными процессами. К ним относятся, но не ограничиваются:

  • Более быстрое производство — Хотя время от времени 3D-печать медленная, она может быть быстрее, чем некоторые традиционные процессы, такие как литье под давлением и субтрактивное производство.
  • Легко доступный — 3D-печать существует уже несколько десятилетий и резко выросла примерно с 2010 года. В настоящее время доступно большое количество принтеров и пакетов программного обеспечения (многие из которых имеют открытый исходный код), что позволяет практически любому научитесь это делать.

Источник: Pixabay

  • Продукция более высокого качества — 3D-печать обеспечивает неизменно высокое качество продукции. Если модель точна и соответствует назначению, и используется один и тот же тип принтера, конечный продукт, как правило, всегда будет одинакового качества.
  • Отлично подходит для проектирования и тестирования продукции — 3D-печать — один из лучших инструментов для проектирования и тестирования продукции. Он предлагает возможности для проектирования и тестирования моделей, позволяющих с легкостью дорабатывать их.
  • Рентабельность — 3D-печать, как мы видели, может быть рентабельным средством производства. После создания модели процесс обычно автоматизируется, а отходы сырья имеют тенденцию к ограничению.
  • Дизайн изделий почти бесконечен — Возможности 3D-печати практически безграничны.Пока он может быть разработан в САПР, а принтер достаточно большой, чтобы его напечатать, нет предела.
  • 3D-принтеры могут печатать с использованием различных материалов — Некоторые 3D-принтеры действительно могут смешивать материалы или переключаться между ними. В традиционной печати это может быть сложно и дорого.

Как работают 3D-принтеры | Министерство энергетики

На этой неделе мы празднуем запуск новой серии на Energy.gov: Как работает энергия.

Три года назад печать трехмерных объектов дома могла бы звучать как вещь из The Jetsons .Но всего за несколько коротких лет 3D-печать резко выросла, превратившись из нишевой технологии в революционную инновацию, которая захватывает воображение как крупных производителей, так и любителей.

3D-печать может произвести революцию в производстве, позволяя компаниям (и частным лицам) разрабатывать и производить продукты по-новому, а также сокращать отходы материалов, экономить энергию и сокращать время, необходимое для вывода продуктов на рынок.

Что такое 3D-печать?

Технология 3D-печати, впервые изобретенная в 1980-х годах инженером и физиком Чаком Халлом, прошла долгий путь.3D-печать, также называемая аддитивным производством, представляет собой процесс создания объекта путем нанесения материала по одному крошечному слою за раз.

Основная идея аддитивного производства может быть найдена в горных породах глубоко под землей (капающая вода откладывает тонкие слои минералов, формируя сталактиты и сталагмиты), но более современным примером является обычный настольный принтер. Подобно тому, как струйный принтер добавляет отдельные точки чернил для формирования изображения, 3D-принтер добавляет материал только там, где это необходимо, на основе цифрового файла.

Для сравнения, многие традиционные производственные процессы, которые недавно были названы «субтрактивным производством», требуют вырезания лишних материалов для изготовления желаемой детали. Результат: согласно данным Национальной лаборатории Окриджа Министерства энергетики США, субтрактивное производство может тратить до 30 фунтов материала на каждый фунт полезного материала в некоторых частях.

В некоторых процессах 3D-печати около 98 процентов сырья используется для изготовления готовой детали.Не говоря уже о том, что 3D-печать позволяет производителям создавать новые формы и более легкие детали, которые используют меньше сырья и требуют меньшего количества этапов производства. В свою очередь, это может привести к снижению энергопотребления для 3D-печати — до 50 процентов меньше энергии для определенных процессов по сравнению с традиционными производственными процессами.

Хотя возможности аддитивного производства безграничны, сегодня 3D-печать в основном используется для создания небольших, относительно дорогих компонентов с использованием пластмасс и металлических порошков.Тем не менее, поскольку цены на настольные 3D-принтеры продолжают падать, некоторые новаторы экспериментируют с различными материалами, такими как шоколад и другие продукты питания, воск, керамика и биоматериалы, подобные человеческим клеткам.

Как работает 3D-принтер?

Технологии аддитивного производства бывают разных форм и размеров, но независимо от типа 3D-принтера или материала, который вы используете, процесс 3D-печати следует одним и тем же основным этапам.

Все начинается с создания трехмерного чертежа с использованием программного обеспечения для автоматизированного проектирования (обычно называемого САПР).Создатели ограничены только своим воображением. Например, 3D-принтеры использовались для производства всего, от роботов и протезов до нестандартной обуви и музыкальных инструментов. Национальная лаборатория Ок-Ридж даже сотрудничает с компанией, чтобы создать первый автомобиль, напечатанный на 3D-принтере, с использованием крупномасштабного 3D-принтера, а America Makes — президентский институт экспериментальных производственных инноваций, специализирующийся на 3D-печати — недавно объявил, что предоставляет финансирование для новый недорогой 3D-принтер по металлу.

После создания 3D-чертежа необходимо подготовить принтер. Это включает повторное наполнение сырья (например, пластмассы, металлические порошки или связующие растворы) и подготовку платформы для сборки (в некоторых случаях вам может потребоваться очистить ее или нанести клей, чтобы предотвратить движение и деформацию от тепла во время процесса печати) .

Как только вы нажмете кнопку «Печать», машина автоматически построит желаемый объект. Хотя процессы печати различаются в зависимости от типа технологии 3D-печати, экструзия материала (которая включает в себя ряд различных типов процессов, таких как моделирование методом наплавления) является наиболее распространенным процессом, используемым в настольных 3D-принтерах.

Экструзия материала работает как клеевой пистолет. Печатный материал — обычно пластиковая нить — нагревается до жидкого состояния и выдавливается через сопло для печати. Используя информацию из цифрового файла — дизайн разделен на тонкие двухмерные поперечные сечения, чтобы принтер точно знал, куда положить материал — сопло наносит полимер тонкими слоями, часто толщиной 0,1 миллиметра. Полимер быстро затвердевает, связываясь с нижележащим слоем, прежде чем платформа сборки опустится, а печатающая головка добавит еще один слой.В зависимости от размера и сложности объекта весь процесс может занять от нескольких минут до нескольких дней.

После завершения печати каждый объект требует небольшой постобработки. Это может варьироваться от отклеивания объекта от платформы сборки до удаления поддерживающих структур (временный материал, напечатанный для поддержки выступов на объекте) и удаления излишков порошка.

Типы 3D-принтеров

С годами индустрия 3D-печати резко выросла, создав новые технологии (и новый язык для описания различных процессов аддитивного производства).Чтобы упростить этот язык, ASTM International — международная организация по стандартизации — выпустила в 2012 году стандартную терминологию, в которой технологии аддитивного производства были разделены на семь широких категорий. Ниже приведены краткие сведения о различных типах 3D-печати (с экструзией материала, описанной в предыдущем разделе).

  • Распыление материала : Как и в стандартном настольном принтере, при струйном нанесении материала материал откладывается через головку струйного принтера. В этом процессе обычно используется пластик, который требует света для его затвердевания (так называемый фотополимер), но он также может печатать воски и другие материалы.Хотя с помощью струйной печати можно производить точные детали и включать несколько материалов за счет использования дополнительных сопел для струйных принтеров, машины относительно дороги, а время сборки может быть медленным.
  • Распыление связующего : При распылении связующего тонкий слой порошка (это может быть что угодно, от пластика или стекла до металла или песка) катится по платформе сборки. Затем головка принтера распыляет связующий раствор (похожий на клей), чтобы соединить порошок только в местах, указанных в цифровом файле.Процесс повторяется до тех пор, пока объект не будет готов к печати, а лишний порошок, который поддерживал объект во время сборки, будет удален и сохранен для дальнейшего использования. Распыление связующего можно использовать для создания относительно больших деталей, но это может быть дорогостоящим, особенно для больших систем.
  • Плавление в порошковом слое : Плавление в порошковом слое аналогично распылению связующего, за исключением того, что слои порошка соединяются вместе (плавятся или спекаются — процесс, в котором используется тепло или давление для образования твердой массы материала без его плавления) с помощью источника тепла, такого как лазер или электронный луч.Хотя процессы в порошковом слое позволяют производить высококачественные, прочные полимерные и твердые металлические детали, выбор сырья для этого типа аддитивного производства ограничен.
  • Направленное отложение энергии : Направленное отложение энергии может иметь множество форм, но все они следуют базовому процессу. Проволока или порошковый материал наносится тонкими слоями и плавится с использованием источника высокой энергии, такого как лазер. Системы направленного осаждения энергии обычно используются для ремонта существующих деталей и создания очень больших деталей, но с этой технологией эти детали часто требуют более обширной постобработки.
  • Ламинирование листов : Системы ламинирования листов связывают тонкие листы материала (обычно бумаги или металла) вместе с помощью клея, низкотемпературных источников тепла или других форм энергии для создания трехмерного объекта. Системы ламинирования листов позволяют производителям печатать с использованием материалов, чувствительных к нагреву, таких как бумага и электроника, и предлагают самые низкие материальные затраты по сравнению с любым аддитивным процессом. Но этот процесс может быть немного менее точным, чем некоторые другие типы систем аддитивного производства.
  • Фотополимеризация в ванне : Фотополимеризация — самый старый тип 3D-принтеров — использует жидкую смолу, которая отверждается с помощью специальных ламп для создания 3D-объекта. В зависимости от типа принтера, он использует лазер или проектор для запуска химической реакции и упрочнения тонких слоев смолы. Эти процессы позволяют создавать очень точные детали с мелкими деталями, но выбор материалов ограничен, а машины могут быть дорогими.
Создание страны производителей

Хотя 3D-печать не нова, недавние достижения в этой технологии (наряду с ростом популярности таких сайтов, как Esty и Kickstarter) вызвали возрождение творческого производства — когда любой, кто имеет доступ к принтер является производителем, и настройка продукта практически не ограничена.

3D-принтеры и другие производственные технологии превращают потребителей в творцов — или производителей вещей. Это движение, часто называемое Движением Создателей, помогает стимулировать инновации и создавать совершенно новый способ ведения бизнеса. Продукты больше не нужно производить массово — они могут изготавливаться небольшими партиями, распечатываться на месте или адаптироваться к индивидуальным потребностям.

Этот новый образ мышления проникает и в класс через доступ к 3D-принтерам.Студенты не ограничиваются придумыванием крутых, новых идей — они могут воплотить их в жизнь, и это вдохновляет их заниматься STEM (наука, технология, инженерия и математика). Чтобы познакомить студентов с аддитивным производством и его потенциалом, Министерство энергетики, Национальная лаборатория Ок-Ридж и компания America Makes пожертвовали почти 450 3D-принтеров командам, участвующим в конкурсе FIRST Robotics в этом году.

Подъем Движения Создателей, которое поддерживают как молодые, так и старые, представляет огромные возможности для Соединенных Штатов.Он может создать основу для новых продуктов и процессов, которые помогут оживить американское производство. Чтобы отметить этот потенциал, президент Обама организовал в Белом доме первую ярмарку Maker Faire, которая позволила новаторам и предпринимателям всех возрастов показать, что они сделали, и поделиться тем, чему они научились.

Будущее 3D-печати

Аддитивное производство не только влияет на движение производителей, но и меняет способы ведения бизнеса компаниями и федеральными агентствами.

Компании обращаются к аддитивному производству, чтобы создавать детали, которые раньше были невозможны. Многие указывают на то, что компания GE использует 3D-принтеры для создания топливных форсунок для нового реактивного двигателя, которые прочнее и легче обычных деталей. а федеральные агентства изучают способы использования этой технологии для более эффективного выполнения своих задач.Министерство здравоохранения и социальных служб США создало биржу 3D-печати NIH, чтобы лучше делиться биомедицинскими моделями для 3D-печати среди медицинского сообщества, в то время как НАСА изучает, как 3D-печать работает в космосе.

Тем не менее, это только верхушка айсберга, когда речь идет о потенциале аддитивного производства. Для производителей аддитивное производство позволит создать широкий спектр новых продуктов, которые могут повысить конкурентоспособность отрасли, снизить энергопотребление в отрасли и способствовать развитию экономики экологически чистой энергии.

От помощи в финансировании America Makes, государственно-частного партнерства, призванного сделать США лидером в области 3D-печати, до создания производственного демонстрационного центра в лаборатории Oak Ridge Lab, Министерство энергетики предоставляет компаниям доступ к технологиям 3D-печати и обучает их. — и будущие инженеры — о возможностях технологии. Чтобы обеспечить развитие технологий, национальные лаборатории Департамента сотрудничают с промышленностью для создания новой технологии 3D-печати.Национальная лаборатория Лоуренса Ливермора недавно объявила о сотрудничестве в области разработки новых материалов, оборудования и программного обеспечения для 3D-печати, а Национальная лаборатория Ок-Ридж сотрудничает с целью разработки новой коммерческой системы аддитивного производства, которая в 200-500 раз быстрее и может печатать пластиковые компоненты в 10 раз больше, чем современные коммерческие 3D-принтеры.

По мере того, как цены падают, а технологии становятся быстрее и точнее, 3D-печать готова изменить то, как компании и потребители думают о производстве — примерно так же, как первые компьютеры привели к быстрому доступу к знаниям, которые мы сейчас берем. как должное.

Чтобы узнать больше о 3D-печати Министерства энергетики, посетите веб-сайт Advanced Manufacturing Office.

Бесплатное руководство для новичков — индустрия 3D-печати

Истоки 3D-печати в «Rapid Prototyping» были основаны на принципах промышленного прототипирования как средства ускорения самых ранних этапов разработки продукта с помощью быстрого и простого способа производства прототипов, который позволяет создавать несколько итераций продукта. быстрее и эффективнее при выборе оптимального решения.Это экономит время и деньги на начальном этапе всего процесса разработки продукта и обеспечивает уверенность перед производственными инструментами.

Прототипирование по-прежнему, вероятно, является самым крупным, хотя иногда и упускаемым из виду, применением 3D-печати сегодня.

Развитие и усовершенствование процесса и материалов, с момента появления 3D-печати для прототипирования, привело к тому, что процессы были приняты для приложений на более поздних этапах цепочки процесса разработки продукта. Приложения для оснастки и литья были разработаны с использованием преимуществ различных процессов.Опять же, эти приложения все чаще используются и внедряются в промышленных секторах.

Аналогично для конечных производственных операций, улучшения продолжают способствовать внедрению.

С точки зрения вертикальных промышленных рынков, которые получают большие выгоды от промышленной 3D-печати во всех этих приложениях широкого спектра, следующая базовая разбивка:

Медицинский сектор рассматривается как один из первых, кто начал применять 3D-печать, но также как сектор с огромным потенциалом для роста благодаря возможностям настройки и персонализации технологий и способности улучшать жизнь людей по мере улучшения процессов и разработаны материалы, соответствующие медицинским стандартам.

Технологии 3D-печати используются для множества различных приложений. Помимо создания прототипов для поддержки разработки новых продуктов для медицинской и стоматологической промышленности, эти технологии также используются для изготовления шаблонов для последующего металлического литья зубных коронок и при производстве инструментов, поверх которых в вакууме формируется пластик для изготовления зубных выравнивателей. . Эта технология также используется непосредственно для производства как стандартных товаров, таких как имплантаты бедра и колена, так и индивидуальных продуктов для пациентов, таких как слуховые аппараты, ортопедические стельки для обуви, индивидуальные протезы и одноразовые имплантаты для пациентов, страдающих заболеваниями. такие как остеоартрит, остеопороз и рак, а также жертвы несчастных случаев и травм.Напечатанные на 3D-принтере хирургические шаблоны для конкретных операций также являются новым приложением, которое помогает хирургам в их работе и пациентам в их выздоровлении. Также разрабатываются технологии для 3D-печати кожи, костей, тканей, фармацевтических препаратов и даже человеческих органов. Однако до коммерциализации этих технологий еще далеко.

Как и медицинский сектор, аэрокосмический сектор одним из первых начал применять технологии 3D-печати в их самых ранних формах для разработки продуктов и создания прототипов.Эти компании, обычно работающие в партнерстве с академическими и научно-исследовательскими институтами, были на острие в плане или расширении границ технологий для производственных приложений.

Из-за критического характера разработки самолетов, исследования и разработки требуют больших усилий, стандарты имеют решающее значение, а системы 3D-печати промышленного уровня подвергаются испытанию. При разработке процессов и материалов был разработан ряд ключевых приложений для аэрокосмического сектора, а некоторые некритические детали уже полностью готовы к полетам на самолетах.

Среди известных пользователей — GE / Morris Technologies, Airbus / EADS, Rolls-Royce, BAE Systems и Boeing. Хотя большинство из этих компаний действительно придерживаются реалистичного подхода к тому, что они делают сейчас с технологиями, и большая часть этого — НИОКР, некоторые действительно настроены оптимистично в отношении будущего.

Еще одним повсеместным первооткрывателем технологий быстрого прототипирования — самого раннего воплощения 3D-печати — стал автомобильный сектор. Многие автомобильные компании — особенно передовые в автоспорте и Формуле-1 — пошли по той же траектории, что и аэрокосмические компании.Сначала (и до сих пор) используют технологии для создания прототипов приложений, но разрабатывают и адаптируют свои производственные процессы для включения преимуществ улучшенных материалов и конечных результатов для автомобильных деталей.

Многие автомобильные компании теперь также изучают потенциал 3D-печати для выполнения послепродажных функций с точки зрения производства запасных частей по запросу, а не для хранения огромных запасов.

Традиционно процесс проектирования и производства ювелирных изделий всегда требовал высокого уровня знаний и опыта, включая специальные дисциплины, включая изготовление, изготовление пресс-форм, литье, гальванику, ковку, ковку серебра и золота, резку камня, гравировку и полировку.Каждая из этих дисциплин развивалась на протяжении многих лет, и каждая из них требует технических знаний при производстве ювелирных изделий. Одним из примеров является литье по выплавляемым моделям, истоки которого насчитывают более 4000 лет.

Для ювелирного сектора 3D-печать оказалась особенно разрушительной. Существует большой интерес и популярность, основанная на том, как 3D-печать может и будет способствовать дальнейшему развитию этой отрасли. От новой свободы дизайна, обеспечиваемой 3D CAD и 3D-печатью, за счет совершенствования традиционных процессов производства ювелирных изделий до прямого производства 3D-печати, устраняющего многие традиционные шаги, 3D-печать оказала и продолжает оказывать огромное влияние в этом секторе. .

Искусство / Дизайн / Скульптура

Художники и скульпторы используют 3D-печать множеством различных способов, чтобы исследовать форму и функционирование способами, которые ранее были невозможны. Будь то просто найти новое оригинальное выражение или учиться у старых мастеров, это очень напряженный сектор, который все чаще находит новые способы работы с 3D-печатью и представляет результаты миру. Есть множество художников, которые сегодня сделали себе имя, специально работая с технологиями 3D-моделирования, 3D-сканирования и 3D-печати.

  • Джошуа Харкер
  • Дизингоф
  • Джессика Розенкранц в нервной системе
  • Пиа Хинце
  • Ник Эрвинк
  • Лайонел Дин
  • И многие другие.

Дисциплина 3D-сканирования в сочетании с 3D-печатью также привносит новое измерение в мир искусства, однако теперь художники и студенты имеют проверенную методологию воспроизведения работ мастеров прошлого и создания точных копий древних (и др. недавние) скульптуры для внимательного изучения — произведения искусства, с которыми они никогда не смогли бы взаимодействовать лично.Работа Космо Венмана особенно поучительна в этой области.

Архитектурные модели долгое время были основным приложением процессов 3D-печати для создания точных демонстрационных моделей видения архитектора. 3D-печать предлагает относительно быстрый, простой и экономически жизнеспособный метод создания подробных моделей непосредственно из 3D CAD, BIM или других цифровых данных, используемых архитекторами. Многие успешные архитектурные фирмы в настоящее время обычно используют 3D-печать (дома или в качестве услуги) как важную часть своего рабочего процесса для расширения инноваций и улучшения коммуникации.

В последнее время некоторые дальновидные архитекторы рассматривают 3D-печать как прямой метод строительства. Исследования в этой области ведутся рядом организаций, в первую очередь в Университете Лафборо, Контурном ремесле и Архитектуре Вселенной.

Поскольку процессы 3D-печати улучшились с точки зрения разрешения и более гибких материалов, одна отрасль, известная своими экспериментами и возмутительными заявлениями, вышла на первый план. Речь, конечно же, о моде!

напечатанных на 3D-принтере аксессуаров, включая обувь, головные уборы, головные уборы и сумки, вышли на мировые подиумы.А еще более дальновидные модельеры продемонстрировали возможности этой технологии для высокой моды — платья, накидки, длинные платья и даже нижнее белье дебютировали на различных модных площадках по всему миру.

Ирис ван Херпен заслуживает особого упоминания как ведущего пионера в этом направлении. Она создала ряд коллекций по образцу подиумов Парижа и Милана, в которых используется 3D-печать, чтобы взорвать «обычные правила», которые больше не применяются к дизайну одежды.Многие пошли и продолжают идти по ее стопам, часто с совершенно оригинальными результатами.

Несмотря на то, что продукты питания опоздали на вечеринку по 3D-печати, они представляют собой одно из новых приложений (и / или материалов для 3D-печати), которое очень воодушевляет людей и может по-настоящему сделать эту технологию мейнстримом. В конце концов, нам всем и всегда нужно есть! 3D-печать становится новым способом приготовления и подачи еды.

Первые набеги на продукты для 3D-печати были с шоколадом и сахаром, и эти разработки быстро продолжаются, и на рынке появляются определенные 3D-принтеры.Некоторые другие ранние эксперименты с едой, включая 3D-печать «мяса» на уровне клеточного белка. Совсем недавно паста — еще одна группа продуктов питания, которая исследуется на предмет 3D-печати продуктов питания.

Взгляд в будущее 3D-печать также рассматривается как полноценный метод приготовления пищи и способ сбалансировать питательные вещества всесторонним и здоровым образом.

Святой Грааль для поставщиков 3D-печати — это потребительская 3D-печать. Существует широко распространенная дискуссия о том, возможно ли это будущее.В настоящее время потребительский интерес низок из-за проблем с доступностью, которые существуют на начальном уровне (потребительские машины). В этом направлении продвигаются вперед крупные компании по 3D-печати, такие как 3D Systems и Makerbot, как дочерняя компания Stratasys, поскольку они пытаются сделать процесс 3D-печати и вспомогательные компоненты (программное обеспечение, цифровой контент и т. Д.) Более доступными и доступными для пользователей. -дружелюбный. В настоящее время существует три основных способа взаимодействия человека с улицы с технологией 3D-печати для потребительских товаров:

  • дизайн + печать
  • выбрать + распечатать
  • выбрать + выполнение услуги 3D-печати

Откройте для себя 3D-принтер!

Самовоспроизводящийся настольный 3D-принтер — интересная концепция, но, в конце концов, мы могли бы напечатать 3D-принтеры для более впечатляющих приложений.Самый интересный — это, конечно, пространственное исследование.

Действительно, многие ученые пытаются найти способ 3D-печати 3D-принтера прямо в космосе. Одна из этих машин будет отправлена ​​на Луну (в качестве первого шага), а затем воссоздается из лунных материалов. В настоящее время над этим работает группа исследователей из отдела механической и аэрокосмической инженерии Карлтонского университета в Оттаве. Их цель — затем напечатать на 3D-принтере целые лунные базы, а также заняться производством спутников в космосе.

Эта самовоспроизводящаяся машина 3D печатает смесь материалов, таких как пластик и железо, в различных пропорциях, в зависимости от необходимой детали. Сырье, необходимое для создания подобной смеси, могло быть извлечено из лунного реголита, материала, покрывающего почти всю лунную поверхность.

Одной из самых сложных деталей при 3D-печати 3D-принтера является двигатель. Алекс Эллери, возглавляющий проект, сказал в июне, что команда была близка к тому, чтобы напечатать полностью работающий электродвигатель из материала, аналогичного тому, который можно получить на Луне, что является настоящей революцией.

Но есть еще одно условие для полного самовоспроизведения: электроника. Эллери объяснил, что это может занять гораздо больше времени. Как только появится возможность использовать одни и те же 3D-принтеры для создания двигателей и электроники, эти машины позволят создавать любые производственные машины, такие как 3D-принтеры, фрезерные станки, сверла или землеройные машины. Таким образом, они будут не только самовоспроизводиться, но и способствовать созданию пространственных производственных центров.А отправка только одного из этих 3D-принтеров в космос позволит создавать огромные фабрики.

Кроме того, возможности аддитивного производства из космоса многочисленны. В самом деле, можно было бы также напечатать космические солнечные панели на спутниках, которые будут преобразовывать солнечный свет в энергию, а затем отправить эту солнечную энергию на Землю. Или даже построить космические щиты для 3D-печати, чтобы защитить Землю от солнечной радиации и бороться с глобальным потеплением.

Что такое 3D-печать — 3D-принтеры — Как работает 3D-печать

Набор устройств для аддитивного производства в Массачусетском технологическом институте. США надеются, что такие технологии могут дать толчок их производственному сектору. (Изображение предоставлено: 2010 г., любезно предоставлено Нилом Гершенфельдом, Центр битов и атомов, Массачусетский технологический институт)

3D-принтер не может создавать какие-либо объекты по запросу, как репликаторы из научной фантастики из «Звездного пути». Но растущее количество машин для 3D-печати уже начало революцию в производстве вещей в реальном мире.

3D-принтеры работают, следуя цифровым инструкциям компьютера, чтобы «напечатать» объект с использованием таких материалов, как пластик, керамика и металл. Процесс печати включает создание объекта по одному слою за раз, пока он не будет завершен. Например, некоторые 3D-принтеры выбрасывают поток нагретого полужидкого пластика, который затвердевает, когда головка принтера перемещается, создавая очертания каждого слоя внутри объекта.

Один из 3-D принтеров, работающих в группе Mediated Matter в лаборатории СМИ Массачусетского технологического института.(Изображение предоставлено MIT Melanie Gonick)

Инструкции, используемые 3D-принтерами, часто принимают форму файлов автоматизированного проектирования (CAD) — цифровых чертежей для создания различных объектов. Это означает, что человек может спроектировать объект на своем компьютере с помощью программного обеспечения для 3D-моделирования, подключить компьютер к 3D-принтеру и наблюдать, как 3D-принтер строит объект прямо на его или ее глазах.

История 3D-печати

Производители незаметно использовали технологию 3D-печати, также известную как аддитивное производство, для создания моделей и прототипов продуктов в течение последних 20 лет.Чарльз Халл изобрел первый коммерческий 3D-принтер и в 1986 году предложил его для продажи через свою компанию 3D Systems. В аппарате Халла использовалась стереолитография — метод, основанный на использовании лазера для отверждения чувствительного к ультрафиолету полимерного материала везде, где его касается.

Эта технология оставалась относительно неизвестной широкой публике до второго десятилетия 21 века. Сочетание государственного финансирования США и коммерческих стартапов с тех пор создало новую волну беспрецедентной популярности идеи 3D-печати.

Во-первых, администрация президента Барака Обамы выделила 30 миллионов долларов на создание в 2012 году Национального института инноваций в аддитивном производстве (NAMII), чтобы помочь оживить производство в США. NAMII действует как зонтичная организация для сети университетов и компаний, которая стремится усовершенствовать технологию 3D-печати для быстрого развертывания в производственном секторе.

Во-вторых, новая волна стартапов сделала идею 3D-печати популярной в рамках так называемого движения «Maker», которое делает упор на самостоятельные проекты.Многие из этих компаний предлагают услуги 3D-печати или продают относительно дешевые 3D-принтеры, которые могут стоить всего сотни, а не тысячи долларов.

Будущее 3D-печати

3D-печать, вероятно, не заменит многие из обычных методов сборки стандартных продуктов на конвейере. Вместо этого технология предлагает преимущество изготовления индивидуальных, специально адаптированных деталей по запросу — что-то более подходящее для создания специализированных деталей для военных самолетов США, а не для изготовления тысяч мусорных баков для продажи в Wal-Mart.Компания Boeing уже использовала 3D-печать для изготовления более 22 000 деталей, используемых сегодня в гражданских и военных самолетах.

Инженер-механик Ларри Бонассар держит искусственное ухо, напечатанное на 3D-принтере в своей лаборатории в Weill Hall Корнельского университета. (Изображение предоставлено Линдси Франс / Фотография Корнельского университета)

Медицинская промышленность также воспользовалась способностью 3D-печати создавать уникальные объекты, которые в противном случае было бы сложно построить с использованием традиционных методов. U.Хирурги S. имплантировали напечатанный на 3D-принтере кусок черепа, чтобы заменить 75 процентов черепа пациента во время операции в марте 2013 года. Исследователи также создали напечатанный на 3D-принтере слепок уха, который послужил основой для биоинженерного уха с живыми клетками.

Распространение технологии 3D-печати по всему миру может также сократить географические расстояния как для домовладельцев, так и для предприятий. Интернет-магазины уже позволяют людям загружать дизайны объектов для 3D-печати и продавать их в любой точке мира.Вместо того, чтобы платить огромные сборы за доставку и налоги на импорт, продавцы могут просто организовать печать проданного продукта на любом предприятии для 3D-печати, которое находится ближе всего к покупателю.

В ближайшем будущем такие услуги 3D-печати могут не ограничиваться специализированными магазинами или компаниями. Магазины Staples планируют предлагать услуги 3D-печати в Нидерландах и Бельгии, начиная с 2013 года.

Компании не будут единственными, кто извлечет выгоду из возможности 3D-печати «печать по запросу в любом месте». Американские военные развернули лаборатории 3D-печати в Афганистане, чтобы ускорить темпы инноваций на поле боя и быстро построить на месте все, что может понадобиться солдатам.НАСА изучило возможность 3D-печати для изготовления запасных частей на борту Международной космической станции и создания космических кораблей на орбите.

Большинство 3D-принтеров не выходят за рамки размеров бытовой техники, такой как холодильник, но 3D-печать может даже увеличиваться в размерах, чтобы создавать объекты размером с дом. Отдельный проект НАСА исследовал возможность строительства лунных баз для будущих астронавтов с использованием лунной «грязи», известной как реголит.

Ограничения 3D-печати

Но у 3D-печати все еще есть свои ограничения.Большинство 3D-принтеров могут печатать объекты только с использованием определенного типа материала — серьезное ограничение, которое не позволяет 3D-принтерам создавать сложные объекты, такие как Apple iPhone. Тем не менее, исследователи и коммерческие компании начали разрабатывать обходные пути. Компания Optomec, базирующаяся в Альбукерке, штат Нью-Мексико, уже создала 3D-принтер, способный печатать электронные схемы на объектах.

Оставьте комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *