Инженер бионик – Профессия Бионик. Описание профессии. Кто такой Бионик. Описание профессии

Содержание

Профессия: Бионик — описание, зарплата и где научиться

Бионики могут работать в разных областях. В научных исследованиях бионики анализируют особые сильные стороны животных с точки зрения телосложения и передвижения, кристаллизуют основополагающие принципы и переводят их в искусственные продукты. Или, исследуя техническую проблему, бионики ищут решения в природе. Они публикуют результаты исследований, обучают студентов в университетах, готовят лекции и семинары, проверяют письменную работу и принимают экзамены. Самостоятельная научная деятельность возможна только после получения степени магистра и доктора.

В отделах разработки в промышленности бионики внедряют результаты исследований вместе с инженерами, техниками и дизайнерами и используют биологические и инженерные методы и методы для разработки материалов, механизмов мобильности или методов строительства. Это приводит к таким продуктам, как самоочищающиеся фасадные краски на основе водоотталкивающей модели растения «Лотос» или купальные костюмы для профессиональных спортсменов, которые имитируют благоприятное поведение акульих шкур.

Уровень зарплаты, которую получают Бионики в Германии составляет

(по данным различных статистических бюро и служб занятости в Германии)

Задачи и обязанности Бионика в подробностях

В чем суть профессии Бионик?

Бионики исследуют природные решения, такие как сотовая технология или чрезвычайно устойчивый к разрывам шелк паука, делая их пригодными для технического применения или разработки сопоставимых материалов. В дополнение к науке и образованию, бионики могут быть вовлечены в разработку продукта или процессные технологии.

Бионики в Научных исследованиях и Образовании

В лабораториях бионики проводят измерения и тесты с использованием химических, биологических и генно-инженерных методов для изучения свойств и принципов природы. Бионики исследуют метаболические процессы, движения или поверхности моделей животных или растений и исследуют, могут ли эти принципы применяться к искусственным продуктам и приводить к новым материалам, компонентам или процессам, например, к сверхлегким компонентам для конструкции транспортных средств. В дополнение к природным принципам разработки, бионики также исследуют методы, процессы и передачу информации в природе и делают их пригодными для использования в процессах или информационных технологиях (бионика процессов или информационная бионика).

Бионики публикуют результаты исследований и делают их доступными для других ученых и студентов. На конференциях и конгрессах они говорят своих достижениях и открытиях. Бионики проводят лекции и семинары, руководят научной работой и принимают экзамены.

Для самостоятельной научной деятельности требуется степень магистра и докторская степень.

Бионики в разработке продуктов и процессов

Когда бионики анализируют свойства природы и используют их в качестве шаблона идеи для ранее неопределенных технических решений, это называется «восходящим процессом». Например, водоотталкивающие и самоочищающиеся свойства растения лотоса используются сегодня для фасадных красок, черепицы или текстиля. Купальники для профессионального спорта, поверхности самолетов или подводные покрытия были смоделированы на основе специальной поверхности кожи акулы.

И наоборот, в так называемом «нисходящем процессе» бионики специально ищут решения технических проблем в природе. Результаты своих исследований природы бионики затем передают в технические области применения. Таким образом, новые модели шин были созданы по модели разводящих кошачьих лап. Бионика формулирует расшифрованные биологические принципы и разрабатывает их для практического развития.

При разработке продуктов, а также процессов и производственных методов бионики междисциплинарно сотрудничают с другими учеными и специалистами в области проектирования, разработки, статики или материаловедения.

Для руководящих должностей часто требуется степень магистра.

ВСЕ ИЗОБРЕТЕНО ЗАДОЛГО ДО НАС! БИОНИКА.: yael_shoshany — LiveJournal

Человек, как известно, великий изобретатель: ни один другой вид на Земле не может похвастаться таким количеством технических приспособлений, позволяющих облегчить повседневную жизнь. Но такие ли уж мы умные на самом деле? Единственные, кто «обскакал» нас в вопросах изобретательности это неразлучная парочка естественный отбор и эволюция.

Живая природа — гениальный конструктор, инженер, технолог, великий зодчий и строитель, непревзойденный метеоролог. В ходе эволюционного развития в живых организмах сформировались многие весьма тонкие органы чувств, высокосовершенные механизмы обмена веществ, преобразования энергии и информации. Эти «биоинженерные системы» природы функционируют очень точно, надежно и экономично, отличаются поразительной целесообразностью и гармоничностью действий, способностью реагировать на ничтожные, едва уловимые изменения многочисленных факторов внешней и внутренней среды, запоминать эти изменения, отвечать на них многообразными приспособительными реакциями.

Какую бы задачу мы не решали, какую подсистему, устройство или механизм не разрабатывали, обязательно будет найдено уже имеющееся аналогичное творение универсальной мастерской — природы. И в подавляющем большинстве они далеко превосходят все то, что создано до недавнего времени инженерным творчеством человека .

Практичное человечество давно научилось копировать природу для создания различных вещей. Это явление называется в науке биомиметика (или бионика) – создание чего либо, используя принципы которые мы «подсматриваем» у природы.

Что изучает бионика?

Объектом её изучения являются процессы, происходящие внутри биологических систем. Теоретическая бионика занимается изучением тех принципов, которые были замечены в природе, и на их основе создаёт теоретическую модель, в дальнейшем применяемую в технологиях.

Практическая (техническая) бионика – это применение теоретических моделей на практике. Так сказать, практическое внедрение природы в технический мир.

Отцом бионики называют великого Леонардо да Винчи. В записях этого гения можно найти первые попытки технического воплощения природных механизмов.

Утверждение бионики как самостоятельной науки произошло лишь в 1960 году на научном симпозиуме в Дайтоне. Развитие компьютерной техники и математического моделирования позволяют современным ученым намного быстрее и с большей точностью воплощать подсказки природы.

Бионические разработки используются в промышленности, медицине, робототехнике,архитектуре, инженерии и во многих других областях.

Но что поражает, так это обстоятельство, когда кажется, что в природе трудно найти что-либо отсутствующее из того, что создал человек! Двигатель внутреннего сгорания? С ним имеет полнейшее сходство слюнная железа клопа: и здесь и там цилиндр, поршень, клапаны, только в одном случае они хитиновые, а мы привыкли иметь дело с металлом.

Лет через 30, когда принцип ультразвуковой локации у летучей мыши был, наконец, признан, Деннис Габор изобрел голографию. Прошел еще десяток лет, прежде чем произвел сенсацию лазер, и голограмма реально вошла в практику нашей науки и техники. А через год зоологи объявили, что акустический локатор летучей мыши дает голографическую картину. И это объяснимо. Летучая мышь, как и мы, любит видеть не плоское, а объемное изображение.

Мощное защитное оружие жука-бомбардира давно привлекало внимание исследователей. Самое легкое прикосновение к его телу вызывает сокращение мускульных стенок и двух секреторных желез, вырабатывающих химическое соединение сложного состава. Эти компоненты попадают в общую смесительную камеру, где вступают в бурную реакцию с образованием чрезвычайно едкого вещества — бензохинона и выделением большого количества тепла. Давление в камере резко повышается, и кипящая струя вырывается через отверстие в подбрюшье жука. Таким образом, природа предвосхитила не что иное, как бинарное химическое оружие: два соединения, порознь безвредные, при реакции дают настоящее боевое отравляющее вещество.

А совсем недавно были открыты еще более удивительные подробности работы «метательного механизма» бомбардира. Химик и эколог Томас Эйснер из Корнеллского университета (США) ухитрился зафиксировать все детали «выстрела» с помощью специально разработанных микродатчиков давления и высокоскоростной киносъемки. Как выяснилось, животное выпускает не сплошную струю, а отдельные порции бензохинона с интервалом всего 2 мс. Дело в том, что на выходе обеих секреторных желез стоят обратные запорные клапаны пассивного действия. Как только давление в камере подскакивает, они закрываются, и первая порция боевого вещества выбрасывается наружу. Упавшее давление позволяет клапанам вновь открыться под напором реагентов — и цикл повторяется. Так вот: весь этот механизм в точности соответствует принципу действия… двигателей реактивных самолетов-снарядов ФАУ-1, которыми нацисты обстреливали Лондон в дни второй мировой войны.

Ниже фото с описаниями некоторых бионических разработок.

В1926 году был выдан советский патент на самозатачивающиеся резцы .

Самозатачивающийся режущий инструмент, рабочая часть которого состояла из нескольких металлических слоёв разной твёрдости, разработал А.М. Игнатьев, по подобию строения зубов грызунов

Прекрасные лотосы древние индийцы недаром считали воплощением божества. Ведь они ухитрялись оставаться абсолютно чистыми в самых грязных водоемах, кишащих кишечной и прочими палочками. Все из-за особой структуры поверхности листа этого водного растения, с которого капли воды скатываются как шарики ртути: она не гладкая, а состоит из микроскопических иголочек, снижая площадь соприкосновения с каплей воды или грязи до минимума.

Ученые долго изучали свойства лотоса и, в итоге, создали краску, с которой вода и грязь скатываются даже лучше, чем с гуся. Покрашенные ею предметы можно мыть раз в пять лет, а то и реже – поверхности вообще не загрязняются из-за микроструктуры краски после засыхания.

В XVIII веке крупный французский учёный Реомюр первым обнаружил «изобретение» ос. До этого люди изготавливали бумагу из тряпок, а Реомюр предложил использовать также деревянные щепки. Принцип производства бумаги не изменился, человек только модифицировал его, чтобы получать бумагу разных сортов
Материал для строительства гнёзд осы добывают преимущественно из старых деревьев, пней и деревоматериалов. Осы, пятясь назад, соскребают челюстями частички волокон древесины. На соскребаемое место оса предварительно выпускает капельку слюны, которая размягчает древесину. Собрав комочек древесных волокон, оса переносит его к месту строительства гнезда. Здесь комочек повторно пережёвывается осой и обильно смачивается слюной. Далее оса садится на край ячейки гнезда и, прижав комочек к стенке гнезда, пятясь назад, раскатывает его в полоску. Затем, взяв полоску краями челюстей, начинает растягивать ее в длину. В дальнейшем такие полоски прикрепляются одна к другой, формируя бумажную стенку.

Достоверно неизвестно, знал ли об этом изобретатель первой в мире застежки-молнии, но принцип «зиппера» уже миллионы лет используют птицы для того, чтобы «латать» свои перышки. Наверняка у многих из вас в детстве было подобранное на улице перо какой-нибудь птицы. И мало кто мог устоять перед соблазном проткнуть его, а потом как ни в чем не бывало погладить двумя пальцами: перо на глазах становилось целым.

Так вот птицы, как и производители джинсов и курток, использую микро-крючочки для создания гладкой и легко восстанавливающейся поверхности.

Специалисты знают, что одна из самых больших инженерных проблем, с которой сталкиваются производители высокомощных процессоров, – это энергоэффективная система охлаждения. Чего только ни придумали, начиная от вентиляторов и заканчивая фреонами, чтобы искусственные «мозги» не перегревались. Но все равно ничего лучше, чем то, что заложила в наши организмы природа, не изобрели.

Пару лет назад корпорация IBM представила новую технологию охлаждения процессоров и производительных компьютерных плат, основанную на принципе кровотока. Новинка получила название Cool Blue и работает следующим образом: в системе под очень большим давлением циркулирует специальная жидкость, которая распределяется по 50 тысячам микроскопических каналов на поверхности процессора.

Если вы еще не поняли, как это, погуглите по запросу «капилляры» – сразу все станет ясно. Охлаждаться процессоры будущего станут по тому же принципу, что и краснеют от мороза ваши щеки.

Производители одежды для пловцов давно восхищались умением разного рода морских созданий плавать с невероятной скоростью, многократно превышающей мышечные возможности, за счет превращения турбулентного водного потока в латеральный. Исследовали всех: начиная от дельфинов и заканчивая мелкими рыбешками, но только у акул нашли способ, который можно было воплотить в плавательном костюме.

Дело в том, что на коже акулы при ближайшем рассмотрении можно заметить крохотные рифлёные чешуйки, которые «гасят» сопротивление воды. И вот в 2000 году компания Speedo представила костюм с этим эффектом и произвела фурор: спортсмены, выступавшие купальниках этого типа, завоевали на Олимпийских играх в Сиднее в общей сложности 83 процента от всех медалей и установили 12 мировых рекордов.

Но чаще всего бионика используется, пожалуй, даже не в технике и изобретательстве, а в архитектуре. Скелеты животных становятся прообразами каркасов для сложных конструкций, а обыкновенное яйцо – куполом одного из самых красивых соборов в мире. Именно по аналогии с ним, и это документально подтвержденный факт, построил гигантский купол флорентийского собора гениальный архитектор эпохи Возрождения Филиппо Брунеллески.

Собор стоит и по сей день и не протекает, а современные мастера, несмотря на все достижения науки и натурный прототип перед глазами, до сих пор повторить не могут. Впрочем, у них осталось еще много объектов для копирования.

Природные прототипы технических изобретений.

Самым простым примером проявления науки бионики является изобретение шарниров. Всем знакомое крепление, основанное на принципе вращения одной части конструкции вокруг другой. Такой принцип используют морские ракушки, для того чтобы управлять двумя своими створками и по надобности открывать их или закрывать. Тихоокеанские сердцевидки-великаны достигают размеров 15-20 см. Шарнирный принцип в соединении их ракушек хорошо просматривается невооружённым взглядом. Мелкие представители этого вида применяют такой же способ фиксации створок.

В быту мы часто используем разнообразные пинцеты. Природным аналогом такого прибора становится острый и клещеобразный клюв веретенника. Эти птицы применяют тонкий клюв, втыкая его в мягкую почву и доставая оттуда мелких жуков, червяков и прочее.

Открытие эхолокации связано с именем итальянского естествоиспытателя Ладзаро Спалланцани. Он обратил внимание на то, что летучие мыши свободно летают в абсолютно тёмной комнате (где оказываются беспомощными даже совы), не задевая предметов. В своём опыте он ослепил несколько животных, однако и после этого они летали наравне со зрячими. Коллега Спалланцани Ж. Жюрин провёл другой опыт, в котором залепил воском уши летучих мышей, — и зверьки натыкались на все предметы. Отсюда учёные сделали вывод, что летучие мыши ориентируются по слуху. Однако эта идея была высмеяна современниками, поскольку ничего большего сказать было нельзя — короткие ультразвуковые сигналы в то время ещё было невозможно зафиксировать.
Впервые идея об активной звуковой локации у летучих мышей была высказана в 1912 году Х. Максимом. Он предполагал, что летучие мыши создают низкочастотные эхолокационные сигналы взмахами крыльев с частотой 15 Гц].
Об ультразвуке догадался в 1920 году англичанин Х. Хартридж, воспроизводивший опыты Спалланцани. Подтверждение этому нашлось в 1938 году благодаря биоакустику Д. Гриффину и физику Г. Пирсу. Гриффин предложил название эхолокация (по аналогии с радиолокацией) для именования способа ориентации летучих мышей при помощи ультразвука. На основании этого был разработаны:
Радар
Сонар (гидролокатор)
Эхолот
Дефектоскоп

Многие современные приборы и приспособления оснащены присосками. Например, их используют для усовершенствования конструкций ножек различных кухонных приспособлений, чтобы избежать их скольжения во время работы. Также присосками оснащают специальную обувь мойщиков окон высотных зданий для обеспечения их безопасной фиксации. Это нехитрое приспособление тоже позаимствовано у природы. Квакша, имея на ногах присоски, необычайно ловко держится на гладких и скользких листьях растений, а осьминогу они необходимы для тесного контакта со своими жертвами.

В каких известных творениях была использована наука бионика? Примеры таких сооружений несложно отыскать. Взять хотя бы процесс создания Эйфелевой башни. Долгое время ходили слухи, что этот 300-метровый символ Франции построен по чертежам неизвестного арабского инженера. Позже была выявлена полная её аналогия со строением большой берцовой кости человека.

Когда начались работы по конструированию подземохода, во всех проектах машина отбрасывала грунт назад в отличие от крота, оставляющего за собой туннель. Инженер Александр Требелев в ящик с утрамбованной землей запустил крота и просвечивал ящик рентгеном. Оказалось, что крот все время вертит головой, вдавливая грунт в стенки туннеля. «Искусственный крот» стал точно повторять движения живого и оказался весьма удачным созданием. Во всяком случае, именно с его помощью «прокалывают» грунт под полотном железнодорожных путей, под шоссейными дорогами и в других местах, где нельзя нарушать ранее возведенные сооружения.

Построенный Пьером Нерви в 1958 году в Париже выставочный зал имел формы, которые были наиболее рациональны с точки зрения распределения нагрузок в этой конструкции. Такие конструкции называют покрытиями-оболочками. Только представьте: при ширине пролёта в 220 метров (соизмеримо с футбольным стадионом «Лужники»), он перекрыт оболочкой толщиной всего в 12 сантиметров. Принцип взят из расчетов математической модели формы лепестка цветка, которые при большой тонкости выдерживают вес насекомых и удары капель дождя

Высота пшеницы в 200—300 раз больше диаметра ее стебля. Секрет сохранения растением гибкости и прочности в его строении. У стебля пшеницы междоузлие полое, а узлы заполнены тканями. Благодаря такому строению стебель гнется, но не ломается.

По такому принципу построена Останкинская телевизионная башня , сконструированная инженером Н. В. Никитиным. В ее форме и в натянутых по периферии стальных вантах, скрытых в толще бетона и стягивающих отдельные барабаны ствола башни, отразились конструктивные принципы строения стебля растений пшеницы. Форма-гравитационный конус- позаимствован у ствола дерева.

Основание ее утолщено, вершина — остроконечная. Ее общая высота 540 м. Это 8-е в мире по высоте свободно стоящее сооружение.

Масса 55 тыс. тонн. При сильном ветре башня может раскачиваться, как стебель пшеницы, до 10 м в сторону от своего нормального вертикального положения, сохраняя при этом прочность. Она выдерживает ветер в 15 баллов и землетрясения в 8. Надежность рассчитана на 300 лет.

Ямкоголовые змеи знамениты тем, что у змей этого семейства были найдены на морде непонятные ямки, которые оказались необыкновенными теплолокаторами. Эти теплолокаторы, видимо, произвели на людей такое сильное впечатление, что они создали теплолокатор, построенный по аналогии с таким же устройством у змеи

Когда Джозеф Пакстон, в молодости страстный садовод, принял участие в конкурсе на разработку павильона для Всемирной выставки в Лондоне (1851), его побуждало честолюбивое желание затмить конкурентов. Он хотел создать нечто, рождающее при гигантских размерах ощущение почти невесомости создания. Это должна была быть конструкция, позволяющая экономно расходовать строительные материалы и широко применять стекло, стекло и еще раз стекло. В то же время она должна была быть достаточно прочной. В архитектуре не было аналогов для подобного проекта, ибо новое не имеет образцов для подражания.
Пакстон занялся изучением строения огромных листьев водного растения Виктория амазонская (Victoria amazonica), эти занятия подсказали ему идеи для строительства Хрустального дворца.

Иногда идею для создания робота подсказывает природа. А если нужно скопировать какое-нибудь животное, зачем долго размышлять? Лучший выбор — кенгуру! Примерно так мыслили инженеры немецкой компании Festo, создавшие BionicKangaroo, бионического робота, который сочетает в себе любопытную внешность и продвинутые технологии.
Точно так же, как и у настоящего кенгуру, у робота есть специальное «сухожилие», помогающее прыгать и амортизирующее приземления. Пружина «сухожилия» сжимается под действием пневматического устройства и затем распрямляется, позволяя роботу совершить прыжок.

В воздухе ноги меняют положение, хвост поворачивается так, чтобы сохранить балансировку и приземлившийся BionicKangaroo снова готов к прыжку.
80-сантиметровый робот весит около 7 килограмм. Одним прыжком в длину он покрывает расстояние до 80 сантиметров, максимальная высота прыжка достигает 40 сантиметров.

Совершенно не нов принцип медицинского шприца. Всякий, кого хоть раз кусала пчела или оса, знает об этом «инженерном» достижении природы.

Первым посчастливилось испытать бионический протез датчанину Деннису Аабо. Он потерял половину руки, но сейчас имеет возможность воспринимать предметы на ощупь с помощью изобретения медиков. Его протез подключён к нервным окончаниям пострадавшей конечности. Сенсоры искусственных пальцев способны собирать информацию о прикосновении к предметам и передавать её в мозг. Конструкция на данный момент ещё не доработана, она очень громоздкая, что затрудняет её использование в быту, но уже сейчас можно назвать такую технологию настоящим открытием. Все исследования в данном направлении полностью основываются на копировании природных процессов и механизмов и их техническом исполнении. Это и есть медицинская бионика. Отзывы учёных гласят, что в скором времени их труды дадут возможность менять износившиеся живые органы человека и вместо них использовать механические прототипы. Это действительно станет величайшим прорывом в медицине

Инфразвуковые колебания, возникающие в штормовом районе за сотни километров от местонахождения медуз, чутко улавливаются их органами равновесия. Медузы не очень хорошие пловцы. Почуяв приближение шторма, они стараются загодя, с большим запасом времени, уйти подальше от прибрежных вод, чтобы не погибнуть в прибойной зоне. Изучив принцип действия «инфрауха» медузы, сотрудники кафедры биофизики МГУ им. М. В. Ломоносова Б. Иванов, Л. Воробьев, Г. Новинский создали электронный аппарат — автоматический предсказатель бурь.

Опираясь на былой опыт в архитектуре и строительстве, можно сказать, что все сооружения человека непрочны и недолговечны, если они не используют законы природы. Бионические здания, помимо удивительных форм и смелых архитектурных решений, обладают стойкостью, способностью выдерживать неблагоприятные природные явления и катаклизмы. В экстерьере зданий, построенных в этом стиле, могут просматриваться элементы рельефов, форм, контуров, умело скопированные инженерами-проектировщиками с живых, природных объектов и виртуозно воплощенные архитекторами-строителями. Если вдруг при созерцании архитектурного объекта покажется, что вы смотрите на произведение искусства, с большой вероятностью перед вами строение в стиле бионика. Примеры таких конструкций можно увидеть практически во всех столицах стран и больших технологически развитых городах мира.

Бионика в нашей жизни | Статья в журнале «Юный ученый»


 


Работа посвящена исследованию объектов бионики, которые человечество создало благодаря самой природе. В работе рассматриваются множество примеров объектов бионики в жизни человека. Например, описание о текстурах с необыкновенными сцепляющими свойствами, которые к тому же способны «переклеиваться» бесчисленное число раз, как лапы ящерицы геккона. Показывается, что общего между глазами кошки и дорожными отражателями, которые сейчас можно встретить повсюду. А также, работа познакомит вас с нашими изобретениями бионики, которые мы придумали сами.


Ключевые слова: бионика, объекты живой природы, биология, техника.


 


Человек часто учится от природы, создавая инструменты и приборы, которыми природа пользуется на протяжении многих лет, оттачивая свое мастерство в процессе эволюции. Мы часто пользуемся такими инструментами как клещи, молотки, расчески, щетки и многое другое и не задумываемся, как они появились.


Первоначально этим создателем была природа. Это она имеет множество инструментов, только они сделаны еще лучше, качественней и являются наиболее точными, чем инструменты техники. Они изготовлены не из металла, например, из хитина, как у насекомых. Природа — гениальный конструктор, инженер, художник и великий строитель. Любое творение природы — это надежность, прочность, экономичность. Большинство человеческих изобретений уже “запатентовано” природой. И доказательства этой мысли можно встретить на каждом шагу.


Природа создала необыкновенно совершенные живые механизмы. Ученых привлекает скорость и принцип передвижения дельфинов, искусство полета птиц, особенности органов зрения мух, лягушек, органов слуха медузы, термолокаторов гремучих змей и т. д.


Гипотеза: Мы предположили, что человек часто использует в своей повседневной жизни инструменты, созданные природой, и не может без них обойтись.


Цель работы:


1. Рассмотреть устройство живых организмов в природе, которые человека использует в своей жизни.



2. Выяснить, как человек использует науку в своей жизни.


Задачи исследования:


1.Узнать, что такое бионика и изучить разнообразные живые организмы.


2. Выяснить, для каких целей человек использует живые организмы в жизни.


Объект исследования: объекты, используемые человеком.


Предмет исследования: знания о природе, используемые человеком, при создании объектов бионики в жизни человека.


Методы исследования: анализа и синтеза, самостоятельное создание объекта бионики.


Изучая науку — Бионику — возникали вопросы. А многие ли знают про эту науку? А какими приборами и инструментами, созданными природой, мы пользуемся дома? Может ли человек обойтись без этих инструментов?


Проведя небольшой опрос среди учеников нашего 2–2 класса Самарского медико-технического лицея, выявили, что большинство из наших одноклассников не знали о такой науке, как бионика.


Бионика — это наука, которая тесно связана с живой природой. Свое название бионика получила от греческого слова bion — элемент жизни. И это не случайно, потому что наука занимается изучением живых организмов.


Лозунг бионики — Природа знает лучше!!! На основе наблюдения за их особенностями создаются технические модели, которые по своей структуре прототипы природным процессам. Сегодня современная бионика получила колоссальное развитие.



Наука бионика — сформировалась во второй половине 20-го века. Бионика — наука, пограничная между биологией и техникой, решающая инженерные задачи на основе моделирования структуры и жизнедеятельности организма. Бионика — это наука, которая применяет знания о живой природе для решения бытовых, инженерных, архитектурных задач и многих других.


Сегодня бионика как наука имеет несколько направлений. Архитектурно-строительная бионика изучает законы формирования и структурообразования живых тканей, занимается анализом конструктивных систем живых организмов по принципу экономии материала, энергии и обеспечения надежности. Нейробионика изучает работу мозга, исследует механизмы памяти. Интенсивно изучаются органы чувств животных, внутренние механизмы реакции на окружающую среду и у животных, и у растений.


Круг вопросов, которые бионика изучает, очень широк, и это требует объединенных усилий многих наук. Большой интерес к бионике обусловлен значительной практической направленностью этой науки, изучающей принципы построения и функционирования биологических систем и прежде всего с целью создания новых машин, приборов, механизмов, строительных конструкций и технологических процессов, характеристики которых были бы столь же совершенными и высокоэффективными, как в живых системах.


Идея применения знаний о живой природе для решения инженерных задач принадлежит Леонардо да Винчи, который пытался построить летательный аппарат с машущими крыльями, как у птиц: орнитоптера. После внимательного изучения полета птиц, Леонардо да Винчи спроектировал свою первую (1485–1487 гг.).


Бионика как самостоятельная наука относительно молода. Она зародилась в 1960 г. на международном симпозиуме в Дейтоне (США) на тему «Живые прототипы искусственных систем — ключ к новой технике», а первые работы по бионике начали появляться в США и СССР в начале 70-х годов.


У бионики есть символ: скрещенные скальпель, паяльник и знак интеграла.


Одним из первых памятников архитектурной бионики является Эйфелева башня, бионический принцип которой воплощен в ее конструкции. Конструкция Эйфелевой башни имеет сходное строение с берцовой костью человека, и благодаря этому обладает достаточной прочностью.


Основоположником бионики можно считать Антонио Гауди, ещё в 19 столетии построивший первые уникальные дома. Именно Гауди первым стал не просто привносить в архитектурные сооружения декоративные элементы природы, а придал постройкам характер окружающей среды. Его знаменитые работы, до сих пор радуют людей. Одной из них это: Дом Мила в Каталонии, (Барселоне, Испания, 1910 г.), напоминает морскую пещеру или как его привыкли называть каталонцы «Каменоломня».


Благодаря изучению живых существ были сделаны очень важные и значительные открытия в технике, медицине, электронике и других науках. Многие даже не догадываются, как многим они обязаны именно животным, и растениям. Собираясь утром в школу и на работу, мы, не задумываясь, застёгиваем молнии, «липучки».


Приведем некоторые примеры объектов бионики.


  1.               Липучка.


Швейцарский инженер Джордж де Местраль часто гулял со своей собакой и заметил, что к ее шерсти постоянно прилипают какие-то непонятные растения. Устав постоянно чистить собаку, инженер решил выяснить причину, по которой сорняки прилипают к шерсти. Исследовав в 1955 году феномен, он определил, что прилипание возможно благодаря маленьким крючкам на плодах дурнишника (так называется этот сорняк, репейника). В результате инженер осознал важность сделанного открытия и через восемь лет запатентовал удобную «липучку». В результате инженер осознал важность сделанного открытия и через восемь лет запатентовал удобную «липучку» Velcro, которая сегодня широко используется при изготовлении одежды.



2. Застёжка-молния.


Такое изобретение XX века, как застежка «молния», было сделано на основе строения пера птицы. Бородки пера различных порядков, оснащенные крючками, обеспечивают надежное сцепление. Считается, что первый прототип «молнии» разработал американский инженер-изобретатель Уиткомб Лео Джадсон, запатентовав его 7 ноября 1891 года за номером 504038 как «застёжку для обуви». Публике это изобретение было представлено в 1893 году, однако оно оказалось сложным в изготовлении и ненадёжным. В нашей жизни застежка «молния» закрепилась прочно и каждый из нас имеет одежду с такой застежкой.


3. Лотос и суперкраска.


Наверняка вы иногда замечали, что лепестки лотоса всегда чистые и красивые. Это происходит из-за специального покрытия на лепестках, которое не позволяют частицам грязи и пыли прилипнуть к цветку. Немецкая компания ISPO, производящая краски, потратила несколько лет на изучение данного феномена, после чего создала инновационную продукцию. Если вы решите покрасить дом такой краской, то навсегда забудете о его мойке. Впервые эффект лотоса открыл немецкий ботаник, профессор Боннского университета Вильгельм Бартлотт в 1990-х годах.


 


Литература:


 


  1. Вопросы бионики. Сб. ст., отв. ред. М. Г. Гаазе-Рапопорт, М.: 1967.

  2. Воронцова З. С. Мастерская природы. — М.: «Изобразительное искусство», 1981.

  3. Доктор Карл Шукер. Удивительные способности животных. О.В.. Иванова, И. Г. Лебедев, перевод на русский язык, 2000. ООО “ТД Изд-во Мир книги”, 2006.

  4. И. И. Гармаш. Тайны бионики. Киев: 1985.

  5. Крайзмер Л. П., Сочивко В. П., Бионика, 2 изд., М.: 1968.

  6. Мартека В., Бионика, пер. с англ., М.: 1967.

чему люди могут научиться у тараканов, ящериц и морских раковин? — T&P

Бионика — наука об использовании свойств, функций и структур живой природы в технических устройствах — известна еще со времен Леонардо да Винчи, который пытался сконструировать летательный аппарат, имитирующий полет птицы. Многие ученые обращаются к природе в надежде найти решение сложных вопросов, стоящих перед человечеством. Живая природа предлагает множество готовых решений — необходимо лишь адаптировать их для конкретных технологических проблем. Результаты своих исследований на эту тему представили в рамках конференций TEDGlobal Маркус Фишер, Жанин Бенюз и Роберт Фулл.

Летающий робот-птица


Многие роботы способны летать, но ни один из них не летает, как настоящая птица. Так было до тех пор, пока инженер Маркус Фишер и его команда из немецкой компании Festo не сконструировали по образу и подобию чайки сверхлегкого робота, самостоятельно летающего с помощью крыльев. Целью этого исследования было создание сверхлегких энергоэффективных механизмов, изучение свойств воздуха и воздушных потоков применительно к таким механизмам.

Робот-птица называется СмартБерд, весит 450 г, длина крыла составляет — 1,6 метра, а размах крыльев — около 2 метров. Робот изготовлен из углеродного волокна, оснащен мотором и передаточным механизмом. Кроме того, он имеет особую конструкцию крыльев, разделенных на две части, за счет чего достигается высокая аэродинамическая эффективность. Потребление энергии составляет 25 ватт для взлета и 16-18 ватт во время полета. Птица обладает отличными аэродинамическими характеристиками и способна самостоятельно летать, взмахивая крыльями.

12 ключевых идей из мира живой природы


Жанин Бенюз, биолог, автор книги «Бионика: инновации, вдохновленные природой», изучает возможности использования явлений живой природы в технологической сфере и в дизайне. Ее исследования вызывают большой интерес среди архитекторов, дизайнеров и инженеров, осознавших, сколько гениальных идей можно почерпнуть, наблюдая за тем, как функционируют живые организмы и биологические системы. 12 наиболее интересных и перспективных идей помогут, по мнению ученого, решить многие научно-технические проблемы.

Самосборка. Этот термин часто употребляется применительно к нанотехнологиям. Что касается живой природы, достаточно вспомнить морские раковины. Морская раковина — это самособирающийся материал. Перламутр также формируется сам по себе из морской воды. Это многослойная структура, очень прочная — во много раз прочнее высокотехнологичной керамики, произведенной в специальных печах. Возможность использования этого явления открывает перспективы создания высокотехнологичной керамики и других твердых материалов с гораздо меньшими затратами энергии и ресурсов.

Биологический силикон. Клетки диатомовых водорослей имеют панцирь, состоящий из кремнезема. Изучение механизма его образования перспективно для получения материалов на основе диоксида кремния и решения проблемы канцерогенных отходов при производстве микрочипов.

Использование углекислого газа в качестве исходного сырья. Для растений СО2 не представляет угрозу существованию. Растения перерабатывают углекислый газ в крахмал и глюкозу. Уже сейчас существуют технологии переработки углекислого газа в поликарбонат — вещество, из которого производят биологически разлагаемый пластик.

Трансформация солнечной энергии. Идет изучение механизмов поглощения солнечной энергии внутри пурпурной бактерии. Кроме того, обнаружен железосодержащий фермент под названием гидрогеназа, способный образовывать водород из протона и электронов. Этот фермент может также вызывать диссоциацию водорода. В топливных элементах этот процесс происходит благодаря платиновому катализатору. В природе это происходит с помощью обычного железа.

Жанин Бенюз — автор книги [«Биомимикрия: инновации, на которые вдохновляет природа»](http://www.amazon.com/Biomimicry-Innovation-Inspired-Janine-Benyus/dp/0060533226), в которой она объясняет очевидную и поэтому совершенно забытую вещь: «самый умный, элегантный и гибкий дизайн уже создан природой. Мир невероятно сложен, взаимосвязан и при этом великолепно продуман».

Форма. Мы знаем, что плавники кита покрыты бугорками. Точно такие же бугорки, расположенные на кромке самолета, повышают его эффективность на 32%, что влечет за собой огромную экономию природного топлива. Возможно ли образование цвета без красящих пигментов? Перо павлина, имея сложную слоистую структуру, синтезирует цвет благодаря своей форме. Свет проходит через одни слои и отражается от других. Это явление называется тонкопленочной интерференцией. Листья лотоса имеют особую структуру поверхности, благодаря которой загрязнения не могут закрепиться на ней. Этот принцип используется при производстве самоочищающейся фасадной краски Lotusan, которая при высыхании имитирует неровности на поверхности листа лотоса. Это позволяет стенам здания легко очищаться — грязь стекает вместе с дождевыми каплями.

Сбор пресной воды. Намибийский жук подсказал людям решение проблемы нехватки пресной воды в пустыне: жук добывает воду из тумана. А мокрица способна «улавливать» воду в воздухе. Установки по отбору воды из воздуха в Атланте и из тумана в Монтерее используют технологии, основанные на изучении этих представителей живой природы.

Выделение. Оказывается, возможно добывать металл без трудоемкой работы на рудниках. Микроорганизмы способны «выхватывать» металл из водного потока. Этот принцип используется в конструкции фильтров, применяющихся для выделения руды из обломочных потоков. Постепенно «зеленая» химия приходит на смену промышленной. Основной средой для этой эко-науки является вода и органические растворы, при этом используются лишь некоторые элементы периодической системы химических элементов.

Запрограммированное разложение. Мидии прикрепляются к скалам с помощью нитей, которые начинают растворяться по истечении двух лет. Эта идея могла бы найти свое воплощение в производстве упаковочных материалов.

Здоровье. Существует проблема обязательного хранения вакцин в холодильниках во время транспортировки. Холодильники часто ломаются, и вакцины не доходят до больных. Решение можно позаимствовать у тихоходки, организма, относящегося к типу микроскопических беспозвоночных. При неблагоприятных условиях тихоходка способна на многие месяцы впадать в состояние анабиоза за счет высушивания, а затем, при наступлении благоприятных условий, оживать. Уже существует способ высушивать вакцины, чтобы их можно было транспортировать без охлаждения.

Обмен информацией. В мире происходит 3,6 миллиона автомобильный аварий в год, а 80 миллионов особей саранчи, движущихся в пределах 1 кв. км, никогда не сталкиваются друг с другом. Почему? Ученые из Ньюкасла выяснили, что избегать столкновений саранче помогает особый крупный нейрон, и сейчас работают над внедрением принципов работы этого нейрона в системы безопасности автомобилей.

Увеличение плодородия. Проблема деградации фермерства и истощения почвы может быть решена с использованием опыта функционирования целостных экосистем, которые сами создают условия, благоприятные для живых существ. Например, растительный мир прерий улучшает состояние почвы; стадо местных копытных животных улучшает состояние пастбища; болота не только очищают воду, но и способствуют увеличению продуктивности. Живые организмы сами создают условия для продолжения жизни: улучшают почву, очищают воздух и воду, производят газы, необходимые нам, чтобы дышать. При этом они полностью удовлетворяют свои потребности — одно не исключает другого. Вот чему нам необходимо научиться в первую очередь — удовлетворять свои потребности, не разрушая среду обитания, в которой будут жить наши потомки.

Насекомые вдохновляют создателей роботов-спасателей


Биолог из Калифорнийского университета Роберт Фулл изучает движение живых существ и затем использует полученную информацию в конструировании роботов. Темой его недавнего исследования является стопа и ее функции. Наблюдая за пауками, тараканами, осьминогом и другими обитателями живыми существами, Роберт Фулл пришел к выводу, что у всех них функции стопы при движении по неровной поверхности распределены по всей длине ноги или даже по всей длине тела. Это позволяет им с легкостью преодолевать сложные препятствия или передвигаться по непривычным поверхностям с привычной скоростью. Данный принцип был использован при создании робота RHex, передвигающегося на шести ногах, имеющих полукруглую форму.

Другое интересное наблюдение: лапки тараканов покрыты маленькими иголочками, которые легко сгибаются в одном направлении, чтобы насекомое могло вытащить лапку, которая застряла между неровностями, а в противоположном направлении эти иголочки не сгибаются, чтобы лапка лишний раз никуда не проваливалась при беге. Роберт Фулл протестировал эти иголочки на крабах, и эффект был точно такой же. Краб, который был не способен бежать по сетке, с иголочками смог без проблем быстро передвигаться по сетчатой поверхности. Иголочки были добавлены на ноги робота, и он стал еще более ловким — смог перелезть через гладкие стальные рельсы, которые раньше представляли для него большую трудность.

Наблюдения за ящерицами показали, что при беге по сухому песку и по воде их лапы действуют как ласты, позволяя передвигаться с большой скоростью. Этот принцип лежит в основе создания робота Aqua RHex — очень ловкого водоплавающего родственника робота RHex.

Следующим рубежом для робота стала возможность взбираться по вертикальным поверхностям. Некоторые насекомые, например муравьи, используют специальное клейкое вещество, благодаря которому они прикрепляются к поверхности. Но еще более интересный механизм есть у ящериц гекконов. Внутренняя поверхность их лап покрыта очень мелкими волосками, кончики которых расщеплены на множество еще более мелких волосков. Каждая лапка имеет около миллиарда таких расщепленных кончиков размером в 200 нанометров, что позволяет им очень тесно соприкасаться с поверхностью и прикрепляться к ней только за счет силы межмолекулярного притяжения. Этот механизм используется для разработки самоочищающейся клейкой ленты из полиуретана, которая обладает уникальными свойствами: она воздухопроницаема, легко отклеивается, не вызывает раздражения, может использоваться в воде.

Роберт Фулл также делится подробностями создания поисково-спасательного робота, который мог бы передвигаться в горной местности. Робот называется Rise, имеет 6 ног и хвост. В конструкции его стопы используются все упомянутые выше приспособления.

Rise действительно способен карабкаться по гладкой вертикальной стене, и Роберт убежден, что со временем роботу покорятся и более сложные поверхности.

Оставьте комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *