Флеш объем памяти: Флеш-память — Википедия – Как выбрать USB флешку (2018) | Периферия | Блог

Содержание

Как выбрать USB флешку (2018) | Периферия | Блог

Часто на форумах звучит вопрос о том, какую флешку выбрать и на что необходимо обратить особое внимание. В торговых сетях представлены, кажется, тысячи вариантов этого девайса. Разобраться в конфигурациях несложно, главное понимать цель приобретения. Она и будет основой для подбора нужной USB флешки.

Стандарт USB

Прежде чем остановить свой выбор на той или иной флешке, изучите устройство, в которое вы собираетесь её подключать. В настоящее время на рынке USB флешек присутствует несколько интерфейсов.

2.0 – это устаревший стандарт, чья пропускная способность весьма скромная – менее 400 Мбит/с, но это теоретически, а на деле она в разы ниже — скорость таких флешек 30-35 Мбит/с. Тем не менее, многие устройства снабжены именно такими разъемами, что является их узким местом.

3.0 – более современный стандарт. Здесь пропускная способность на порядок выше. Разъем отличается от предыдущего несколькими дополнительными контактными группами.

3.1 и 3.1 Type C – интерфейсы более свежего поколения. Стандарт 3.1 имеет обратную совместимость с интерфейсами 2.0 и 3.0, а вариант Type C ещё и совершенно отличный от предыдущих разъем. Обратите на это внимание, так как при отсутствии подобного входа вам придется покупать переходник. Стандарт 3.1 обладает заявленной скоростью, вдвойне превышающую 3.0 — до 10 Гбит/c. Но на практике лучше смотреть в описании товара, у продавца либо на коробке товара.

Какой бы стандарт USB вы ни приобрели, нужно понимать, что оптимизация скорости чтения и записи будет происходить только при подключении к соответствующему порту. Если присоединить 3.0 к 2.0, то показатели будут чуть выше, но не на таком уровне как при соединении устройства с родным разъемом 3.0.

Основные характеристики USB флешки

Объём памяти

Что греха таить, большинство из нас, выбирая флешку, обращают внимание только на эту характеристику. Сначала срабатывает жадность — хочется взять устройство с самым большим объёмом памяти. Сегодня существуют флешки от 4 ГБ до 2 ТБ. Многие еще помнят времена, когда накопитель меньше гигабайта считался крутым, но технический прогресс в области компьютерных технологий настолько стремительный, что сегодня, увидев стоимость 8-16-гигабайтного устройства, мозг срабатывает на «а не посмотреть ли побольше?».

Можно условно разделить все флешки на несколько групп по стоимости:

4–8 ГБ — бюджетные, но малообъемные;

16–64 ГБ— доступные;

128 ГБ и выше – стоимость высокая, но для определенных целей пригодится. А если позволяют средства, то совсем хорошо – можно брать.

Самое главное здесь — понять, что большой объём не всегда оправдан и совсем не синоним качества и быстродействия прибора.

Максимальная пропускная способность

Именно максимальная скорость чтения, с которой устройство считывает информацию, позволяет беспрепятственно смотреть фильмы непосредственно с флешки или быстро перекачивать информацию на компьютер. Доступная величина этого показателя может колебаться от 5 до 420 Мбит/c и выше. Если скорость чтения слишком низкая, то не получится использовать флеш-накопитель в качестве съемного диска — рекомендуется сначала перекачать информацию на жесткий диск стационарного устройства, а потом работать уже с него. При низких скоростях фильмы воспроизводятся «толчками», бухгалтерские и графические программы тормозят так, что работа превращается в ад.

Максимальная скорость записи позволит не тратить уйму времени при копировании файлов на флешку. Представьте, что вы зашли к товарищу записать новый фильм и «зависли» у него вместе с флеш-накопителем на несколько часов. Сегодня USB флешки различаются по этому показателю в пределах от 2,5 до 380 Мбит/c и выше. Это практическая скорость, теоретическая возможная величина бывает выше.

На коробках у серьезных брендов вы можете встретить оба показателя. Не стоит доверять не проверенным производителям, так как неизвестно, на что нарветесь при покупке. Особенно остерегайтесь объемных флешек с указанными солидными величинами скорости чтения и записи, но с низкой стоимостью – скорее всего, заявленные параметры не будут соответствовать действительности.

Поддержка ОТG – это универсальное устройство, которое можно подключить и к компьютеру, и к смартфону, что очень удобно. То есть оно имеет два разъема с двух сторон. В остальном его показатели выбираются так же, как и у обычной флешки.

Особенности конструктивного исполнения

Если кажется, что ничего сложного в выборе корпуса нет, то вы правы только отчасти. Флешка имеет доступную рабочую область для механических повреждений или попадания влаги. Существуют несколько основных типов USB-разъемов:

Корпус соединяется с колпачком — самый практичный вид защиты. Колпачки обычно изготавливают из тех же материалов, что и корпус – резины, пластика или металла. Резиновые лучше фиксируются и защищают устройство от влаги и пыли.

Поворотный корпус – вся конструкция выглядит как скоба, которая зафиксирована снаружи и может поворачиваться из стороны в сторону, что дает возможность закрыть собой USB-разъем. Здесь защита весьма сомнительная и только от механических повреждений.

Выдвижной разъем – разъем прячется внутрь и извлекается при помощи подвижной клавиши. Главный недостаток — может сломаться фиксатор, и пользоваться накопителем будет неудобно. Здесь стоит упомянуть о слайдере с автозакрытием, это более современный вид выдвижного разъема, но недостатки те же.

Карабин – рабочая поверхность девайса прячется внутрь корпуса по принципу складного ножа. Недостатки защиты, как у поворотного корпуса.

Флешка с компактным корпусом не имеет защиты от ваги и механических повреждений, но удобная в использовании. Она может служить для работы, но не для длительного хранения файлов так как имеет открытые контакты.

Лучше всего приобретать устройство с влагозащищенной конструкцией, особенно если его приходится постоянно переносить с места на место или использовать как хранилище данных на длительный период.

Материал корпуса бывает разный: металл, пластик, резина, алюминий. Самый распространенный – пластик, а самый надежный и удобный – резина.

У флешки часто присутствует световой индикатор, который показывает, что устройство подключено правильно и работает, а также отверстие для крепления к брелоку или браслету.

Подарочный дизайн корпуса можно посоветовать только конкретно для подарка, причем человеку, чья деятельность не связана с частым использованием данного девайса. Различные модели, выполненные под внешний вид бутербродов, кошечек, миньонов и прочего милого дизайна, мало удобны. Если в соседнее гнездо необходимо подключить другое устройство – оно может просто не вместиться.

Советы по выбору

• Любителям смотреть с флешки фильмы высокого качества или слушать музыку лучше обратить внимание на устройства [url=»https://www.dns-shop.ru/catalog/ce3bebe8448b4e77/usb-flash/?order=1&stock=2&f=1rqu-1rqy-1rqx-80da-a76qj&f=401-420&f=250.1-380]объемом не менее 64 ГБ и скоростью передачи данных не менее 400 Мбит/с.

• Если флешка требуется для хранения текстовых файлов или фотографий, но зато вы хотите сохранить их надолго, то не стоит гнаться за большим объемом памяти – такие файлы не занимают много места. Зато выберите[url=»https://www.dns-shop.ru/catalog/ce3bebe8448b4e77/usb-flash/?order=1&stock=2&f=1rup-bihv&f=1ro9] влагозащитную функцию и обязательно корпус с колпачком из резины.

• Те, кто имеет достаточно средств и нуждается в большом хранилище для своей информации, приглядитесь к [url=»https://www.dns-shop.ru/catalog/ce3bebe8448b4e77/usb-flash/?order=2&stock=2&f=1rqy-1rqx-80da-a76qj&f=bl5t]устройствам от 128 ГБ и, конечно стандарта не менее чем 3.1, так как такие большие объемы нуждаются в хорошей скорости передачи данных

Флэш-память. Твердотельный накопитель. Типы флеш-памяти. Карта памяти

Флэш-память представляет собой тип долговечной памяти для компьютеров, у которой содержимое можно перепрограммировать или удалить электрическим методом. В сравнении с Electrically Erasable Programmable Read Only Memory действия над ней можно выполнять в блоках, которые находятся в разных местах. Флэш-память стоит намного меньше, чем EEPROM, поэтому она и стала доминирующей технологией. В особенности в ситуациях, когда необходимо устойчивое и длительное сохранение данных. Ее применение допускается в самых разнообразных случаях: в цифровых аудиоплеерах, фото- и видеокамерах, мобильных телефонах и смартфонах, где существуют специальные андроид-приложения на карту памяти. Кроме того, используется она и в USB-флешках, традиционно применяемых для сохранения информации и ее передачи между компьютерами. Она получила определенную известность в мире геймеров, где ее часто задействуют в промах для хранения данных по прогрессу игры.

Флэш память

Общее описание

Флэш-память представляет собой такой тип, который способен сохранять информацию на своей плате длительное время, не используя питания. В дополнение можно отметить высочайшую скорость доступа к данным, а также лучшее сопротивление к кинетическому шоку в сравнении с винчестерами. Именно благодаря таким характеристикам она стала настольно популярной для приборов, питающихся от батареек и аккумуляторов. Еще одно неоспоримое преимущество состоит в том, что когда флэш-память сжата в сплошную карту, ее практически невозможно разрушить какими-то стандартными физическими способами, поэтому она выдерживает кипящую воду и высокое давление.

Низкоуровневый доступ к данным

Способ доступа к данным, находящимся во флэш-памяти, сильно отличается от того, что применяется для обычных видов. Низкоуровневый доступ осуществляется посредством драйвера. Обычная RAM сразу же отвечает на призывы чтения информации и ее записи, возвращая результаты таких операций, а устройство флеш-памяти таково, что потребуется время на размышления.

Устройство и принцип работы

Твердотельный накопитель

На данный момент распространена флэш-память, которая создана на однотранзисторных элементах, имеющих «плавающий» затвор. Благодаря этому удается обеспечить большую плотность хранения данных в сравнении с динамической ОЗУ, для которой требуется пара транзисторов и конденсаторный элемент. На данный момент рынок изобилует разнообразными технологиями построения базовых элементов для такого типа носителей, которые разработаны лидирующими производителями. Отличает их количество слоев, методы записи и стирания информации, а также организация структуры, которая обычно указывается в названии.

На текущий момент существует пара типов микросхем, которые распространены больше всего: NOR и NAND. В обоих подключение запоминающих транзисторов производится к разрядным шинам – параллельно и последовательно соответственно. У первого типа размеры ячеек довольно велики, и имеется возможность для быстрого произвольного доступа, что позволяет выполнять программы прямо из памяти. Второй характеризуется меньшими размерами ячеек, а также быстрым последовательным доступом, что намного удобнее при необходимости построения устройств блочного типа, где будет храниться информация большого объема.

В большинстве портативных устройств твердотельный накопитель использует тип памяти NOR. Однако сейчас все популярнее становятся приспособления с интерфейсом USB. В них применяется память типа NAND. Постепенно она вытесняет первую.

Компьютер флешка

Главная проблема — недолговечность

Первые образцы флешек серийного производства не радовали пользователей большими скоростями. Однако теперь скорость записи и считывания информации находится на таком уровне, что можно просматривать полноформатный фильм либо запускать на компьютере операционную систему. Ряд производителей уже продемонстрировал машины, где винчестер заменен флеш-памятью. Но у этой технологии имеется весьма существенный недостаток, который становится препятствием для замены данным носителем существующих магнитных дисков. Из-за особенностей устройства флеш-памяти она позволяет производить стирание и запись информации ограниченное число циклов, которое является достижимым даже для малых и портативных устройств, не говоря о том, как часто это делается на компьютерах. Если использовать этот тип носителя как твердотельный накопитель на ПК, то очень быстро настанет критическая ситуация.

Связано это с тем, что такой накопитель построен на свойстве полевых транзисторов сохранять в «плавающем» затворе электрический заряд, отсутствие или наличие которого в транзисторе рассматривается в качестве логической единицы или ноля в двоичной системе исчисления. Запись и стирание данных в NAND-памяти производятся посредством туннелированных электронов методом Фаулера-Нордхейма при участии диэлектрика. Для этого не требуется высокое напряжение, что позволяет делать ячейки минимальных размеров. Но именно данный процесс приводит к физическому износу ячеек, так как электрический ток в таком случае заставляет электроны проникать в затвор, преодолевая диэлектрический барьер. Однако гарантированный срок хранения подобной памяти составляет десять лет. Износ микросхемы происходит не из-за чтения информации, а из-за операций по ее стиранию и записи, поскольку чтение не требует изменения структуры ячеек, а только пропускает электрический ток.

Естественно, производители памяти ведут активные работы в направлении увеличения срока службы твердотельных накопителей данного типа: они устремлены к обеспечению равномерности процессов записи/стирания по ячейкам массива, чтобы одни не изнашивались больше других. Для равномерного распределения нагрузки преимущественно используются программные пути. К примеру, для устранения подобного явления применяется технология «выравнивания износа». При этом данные, часто подвергаемые изменениям, перемещаются в адресное пространство флеш-памяти, потому запись осуществляется по разным физическим адресам. Каждый контроллер оснащается собственным алгоритмом выравнивания, поэтому весьма затруднительно сравнивать эффективность тех или иных моделей, так как не разглашаются подробности реализации. Поскольку с каждым годом объемы флешек становятся все больше, необходимо применять все более эффективные алгоритмы работы, позволяющие гарантировать стабильность функционирования устройств.

SD карта памяти

Устранение проблем

Одним из весьма эффективных путей борьбы с указанным явлением стало резервирование определенного объема памяти, за счет которого обеспечивается равномерность нагрузки и коррекция ошибок посредством особых алгоритмов логической переадресации для подмены физических блоков, возникающих при интенсивной работе с флешкой. А для предотвращения утраты информации ячейки, вышедшие из строя, блокируются или заменяются на резервные. Такое программное распределение блоков дает возможность обеспечения равномерности нагрузки, увеличив количество циклов в 3-5 раз, однако и этого мало.

Карта памяти и другие виды подобных накопителей характеризуются тем, что в их служебную область заносится таблица с файловой системой. Она предотвращает сбои чтения информации на логическом уровне, например, при некорректном отключении либо при внезапном прекращении подачи электрической энергии. А так как при использовании сменных устройств системой не предусмотрено кэширование, то частая перезапись оказывает самое губительное воздействие на таблицу размещения файлов и оглавление каталогов. И даже специальные программы для карт памяти не способны помочь в данной ситуации. К примеру, при однократном обращении пользователь переписал тысячу файлов. И, казалось бы, только по одному разу применил для записи блоки, где они размещены. Но служебные области переписывались при каждом из обновлений любого файла, то есть таблицы размещения прошли эту процедуру тысячу раз. По указанной причине в первую очередь выйдут из строя блоки, занимаемые именно этими данными. Технология «выравнивания износа» работает и с такими блоками, но эффективность ее весьма ограничена. И тут не важно, какой вы используете компьютер, флешка выйдет из строя ровно тогда, когда это предусмотрено создателем.

Стоит отметить, что увеличение емкости микросхем подобных устройств привело лишь к тому, что общее количество циклов записи сократилось, так как ячейки становятся все меньше, поэтому требуется все меньше и напряжения для рассеивания оксидных перегородок, которые изолируют «плавающий затвор». И тут ситуация складывается так, что с увеличением емкости используемых приспособлений проблема их надежности стала усугубляться все сильнее, а class карты памяти теперь зависит от многих факторов. Надежность работы подобного решения определяется его техническими особенностями, а также ситуацией на рынке, сложившейся на данный момент. Из-за жесткой конкуренции производители вынуждены снижать себестоимость продукции любым путем. В том числе и благодаря упрощению конструкции, использованию комплектующих из более дешевого набора, ослаблению контроля за изготовлением и иными способами. К примеру, карта памяти «Самсунг» будет стоить дороже менее известных аналогов, но ее надежность вызывает гораздо меньше вопросов. Но и здесь сложно говорить о полном отсутствии проблем, а уж от устройств совсем неизвестных производителей сложно ожидать чего-то большего.

Объемы флешек

Перспективы развития

При наличии очевидных достоинств имеется целый ряд недостатков, которыми характеризуется SD-карта памяти, препятствующих дальнейшему расширению ее области применения. Именно поэтому ведутся постоянные поиски альтернативных решений в данной области. Конечно, в первую очередь стараются совершенствовать уже существующие типы флеш-памяти, что не приведет к каким-то принципиальным изменениям в имеющемся процессе производства. Поэтому не стоит сомневаться только в одном: фирмы, занятые изготовлением этих видов накопителей, будут стараться использовать весь свой потенциал, перед тем как перейти на иной тип, продолжая совершенствовать традиционную технологию. К примеру, карта памяти Sony выпускается на данный момент в широком диапазоне объемов, поэтому предполагается, что она и будет продолжать активно распродаваться.

Однако на сегодняшний день на пороге промышленной реализации находится целый комплекс технологий альтернативного хранения данных, часть из которых можно внедрить сразу же при наступлении благоприятной рыночной ситуации.

Ferroelectric RAM (FRAM)

Технология ферроэлектрического принципа хранения информации (Ferroelectric RAM, FRAM) предлагается с целью наращивания потенциала энергонезависимой памяти. Принято считать, что механизм работы имеющихся технологий, заключающийся в перезаписи данных в процессе считываниям при всех видоизменениях базовых компонентов, приводит к определенному сдерживанию скоростного потенциала устройств. А FRAM – это память, характеризующаяся простотой, высокой надежностью и скоростью в эксплуатации. Эти свойства сейчас характерны для DRAM – энергонезависимой оперативной памяти, существующей на данный момент. Но тут добавится еще и возможность длительного хранения данных, которой характеризуется SD карта памяти. Среди достоинств подобной технологии можно выделить стойкость к разным видам проникающих излучений, что может оказаться востребованным в специальных приборах, которые используются для работы в условиях повышенной радиоактивности либо в исследованиях космоса. Механизм хранения информации здесь реализуется за счет применения сегнетоэлектрического эффекта. Он подразумевает, что материал способен сохранять поляризацию в условиях отсутствия внешнего электрического поля. Каждая ячейка памяти FRAM формируется за счет размещения сверхтонкой пленки из сегнетоэлектрического материала в виде кристаллов между парой плоских металлических электродов, формирующих конденсатор. Данные в этом случае хранятся внутри кристаллической структуры. А это предотвращает эффект утечки заряда, который становится причиной утраты информации. Данные в FRAM-памяти сохраняются даже при отключении напряжения питания.

Устройство флеш памяти

Magnetic RAM (MRAM)

Еще одним типом памяти, который на сегодняшний день считается весьма перспективным, является MRAM. Он характеризуется довольно высокими скоростными показателями и энергонезависимостью. Элементарной ячейкой в данном случае служит тонкая магнитная пленка, размещенная на кремниевой подложке. MRAM представляет собой статическую память. Она не нуждается в периодической перезаписи, а информация не будет утрачена при выключении питания. На данный момент большинство специалистов сходится во мнении, что этот тип памяти можно назвать технологией следующего поколения, так как существующий прототип демонстрирует довольно высокие скоростные показатели. Еще одним достоинством подобного решения является невысокая стоимость чипов. Флэш-память изготавливается в соответствии со специализированным КМОП-процессом. А микросхемы MRAM могут производиться по стандартному технологическому процессу. Причем материалами могут послужить те, что используются в обычных магнитных носителях. Производить крупные партии подобных микросхем гораздо дешевле, чем всех остальных. Важное свойство MRAM-памяти состоит в возможности мгновенного включения. А это особенно ценно для мобильных устройств. Ведь в этом типе значение ячейки определяется магнитным зарядом, а не электрическим, как в традиционной флеш-памяти.

Class карты памяти

Ovonic Unified Memory (OUM)

Еще один тип памяти, над которым активно работают многие компании, — это твердотельный накопитель на базе аморфных полупроводников. В его основу заложена технология фазового перехода, которая аналогична принципу записи на обычные диски. Тут фазовое состояние вещества в электрическом поле меняется с кристаллического на аморфное. И это изменение сохраняется и при отсутствии напряжения. От традиционных оптических дисков такие устройства отличаются тем, что нагрев происходит за счет действия электрического тока, а не лазера. Считывание в данном случае осуществляется за счет разницы в отражающей способности вещества в различных состояниях, которая воспринимается датчиком дисковода. Теоретически подобное решение обладает высокой плотностью хранения данных и максимальной надежностью, а также повышенным быстродействием. Высок здесь показатель максимального числа циклов перезаписи, для чего используется компьютер, флешка в этом случае отстает на несколько порядков.

Chalcogenide RAM (CRAM) и Phase Change Memory (PRAM)

Эта технология тоже базируется на основе фазовых переходов, когда в одной фазе вещество, используемое в носителе, выступает в качестве непроводящего аморфного материала, а во второй служит кристаллическим проводником. Переход запоминающей ячейки из одного состояния в другое осуществляется за счет электрических полей и нагрева. Такие чипы характеризуются устойчивостью к ионизирующему излучению.

Information-Multilayered Imprinted CArd (Info-MICA)

Работа устройств, построенных на базе такой технологии, осуществляется по принципу тонкопленочной голографии. Информация записывается так: сначала формируется двумерный образ, передаваемый в голограмму по технологии CGH. Считывание данных происходит за счет фиксации луча лазера на краю одного из записываемых слоев, служащих оптическими волноводами. Свет распространяется вдоль оси, которая размещена параллельно плоскости слоя, формируя на выходе изображение, соответствующее информации, записанной ранее. Начальные данные могут быть получены в любой момент благодаря алгоритму обратного кодирования.

Этот тип памяти выгодно отличается от полупроводниковой за счет того, что обеспечивает высокую плотность записи, малое энергопотребление, а также низкую стоимость носителя, экологическую безопасность и защищенность от несанкционированного использования. Но перезаписи информации такая карта памяти не допускает, поэтому может служить только в качестве долговременного хранилища, замены бумажного носителя либо альтернативы оптическим дискам для распространения мультимедийного контента.

память — это… Что такое Флеш-память?

У этого термина существуют и другие значения, см. Флеш.

Флеш-память (англ. flash memory) — разновидность полупроводниковой технологии электрически перепрограммируемой памяти (EEPROM). Это же слово используется в электронной схемотехнике для обозначения технологически законченных решений постоянных запоминающих устройств в виде микросхем на базе этой полупроводниковой технологии. В быту это словосочетание закрепилось за широким классом твердотельных устройств хранения информации.

Благодаря компактности, дешевизне, механической прочности, большому объёму, скорости работы и низкому энергопотреблению, флеш-память широко используется в цифровых портативных устройствах и носителях информации.

История

Предшественниками технологии флеш-памяти можно считать ультрафиолетово и электрически стираемые ПЗУ (EEPROM). Эти приборы также имели матрицу транзисторов с плавающим затвором, в которых инжекция электронов в плавающий затвор («запись») осуществлялась созданием большой напряженности электрического поля в тонком диэлектрике. Однако площадь разводки компонентов в матрице резко увеличивалась, если требовалось создать поле обратной напряженности для снятия электронов с плавающего затвора («стирания»). Поэтому и возникло два класса устройств: в одном случае жертвовали цепями стирания, получая память высокой плотности с однократной записью, а в другом случае делали полнофункциональное устройство с гораздо меньшей емкостью.

Соответственно усилия инженеров были направлены на решение проблемы плотности компоновки цепей стирания. Они увенчались успехом изобретением инженера компании Toshiba Фудзио Масуокой в 1984 году. Название «флеш» было придумано также в Toshiba коллегой Фудзио, Сёдзи Ариидзуми, потому что процесс стирания содержимого памяти ему напомнил фотовспышку (англ. flash). Масуока представил свою разработку на IEEE 1984 International Electron Devices Meeting (IEDM), проходившей в Сан-Франциско, Калифорния.

В 1988 году Intel выпустила первый коммерческий флеш-чип NOR-типа.

NAND-тип флеш-памяти был анонсирован Toshiba в 1989 году на International Solid-State Circuits Conference.

Принцип действия[1]

Принцип работы полупроводниковой технологии флеш-памяти основан на изменении и регистрации электрического заряда в изолированной области («кармане») полупроводниковой структуры.

Изменение заряда («запись» и «стирание») производится приложением между затвором и истоком большого потенциала, чтобы напряженность электрического поля в тонком диэлектрике между каналом транзистора и карманом оказалась достаточна для возникновения туннельного эффекта. Для усиления эффекта тунеллирования электронов в карман при записи применяется небольшое ускорение электронов путем пропускания тока через канал полевого транзистора (эффект Hot carrier injection (англ.)).

Чтение выполняется полевым транзистором, для которого карман выполняет роль затвора. Потенциал плавающего затвора изменяет пороговые характеристики транзистора, что и регистрируется цепями чтения.

Эта конструкция снабжается элементами, которые позволяют ей работать в большом массиве таких же ячеек.

  • Разрез транзистора с плавающим затвором

  • Программирование флеш-памяти

  • Стирание флеш-памяти

NOR- и NAND-приборы

Различаются методом соединения ячеек в массив и алгоритмами чтения-записи.

Конструкция NOR использует классическую двумерную матрицу проводников, в которой на пересечении строк и столбцов установлено по одной ячейке. При этом проводник строк подключался к стоку транзистора, а столбцов — ко второму затвору. Исток подключался к общей для всех подложке. В такой конструкции было легко считать состояние конкретного транзистора, подав положительное напряжение на один столбец и одну строку.

Конструкция NAND — трёхмерный массив. В основе та же самая матрица, что и в NOR, но вместо одного транзистора в каждом пересечении устанавливается столбец из последовательно включенных ячеек. В такой конструкции получается много затворных цепей в одном пересечении. Плотность компоновки можно резко увеличить (ведь к одной ячейке в столбце подходит только один проводник затвора), однако алгоритм доступа к ячейкам для чтения и записи заметно усложняется.

Технология NOR позволяет получить быстрый доступ индивидуально к каждой ячейке, однако площадь ячейки велика. Наоборот, NAND имеют малую площадь ячейки, но относительно длительный доступ сразу к большой группе ячеек. Соответственно, различается область применения: NOR используется как непосредственная память программ микропроцессоров и для хранения небольших вспомогательных данных.

Названия NOR и NAND произошли от ассоциации схемы включения ячеек в массив со схемотехникой микросхем КМОП-логики.

Существовали и другие варианты объединения ячеек в массив, но они не прижились.

  • Компоновка шести ячеек NOR flash

  • Структура одного столбца NAND flash

SLC- и MLC-приборы

Различают приборы, в которых элементарная ячейка хранит один бит информации и несколько бит. В однобитовых ячейках различают только два уровня заряда на плавающем затворе. Такие ячейки называют одноуровневыми (англ. single-level cell, SLC). В многобитовых ячейках различают больше уровней заряда; их называют многоуровневыми (англ. multi-level cell, MLC[2]). MLC-приборы дешевле и более ёмкие, чем SLC-приборы, однако с большим временем доступа и меньшим максимальным количеством перезаписей.

Обычно под MLC понимают память с 4 уровнями заряда (2 бита), память с 8 уровнями (3 бита) называют TLC[3], с 16 уровнями (4 бита) — 16LC.[4]

Аудиопамять

Естественным развитием идеи MLC ячеек была мысль записать в ячейку аналоговый сигнал. Наибольшее применение такие аналоговые флеш-микросхемы получили в воспроизведении звука. Такие микросхемы получили широкое распространение во всевозможных игрушках, звуковых открытках и т. д.[5]

Многокристальные микросхемы

Часто в одну микросхему флеш-памяти упаковывается несколько полупроводниковых пластин (кристаллов), до 8-16 штук.[6]

Технологические ограничения

Запись и чтение ячеек сильно различаются в энергопотреблении: устройства флеш-памяти потребляют достаточно большой ток при записи для формирования высоких напряжений, тогда как при чтении затраты энергии относительно малы.

Ресурс записи

Изменение заряда сопряжено с накоплением необратимых изменений в структуре и потому количество записей для ячейки флеш-памяти ограничено (обычно до 10 тыс. раз для MLC-устройств и до 100 тыс. раз для SLC-устройств).

Одна из причин деградации — невозможность индивидуально контролировать заряд плавающего затвора в каждой ячейке. Дело в том, что запись и стирание производятся над множеством ячеек одновременно — это неотъемлемое свойство технологии флеш-памяти. Автомат записи контролирует достаточность инжекции заряда по референсной ячейке или по средней величине. Постепенно заряд отдельных ячеек рассогласовывается и в некоторый момент выходит за допустимые границы, которые может скомпенсировать инжекцией автомат записи и воспринять устройство чтения. Понятно, что на ресурс влияет степень идентичности ячеек. Одно из следствий этого — с уменьшением топологических норм полупроводниковой технологии создавать идентичные элементы все труднее, поэтому вопрос ресурса записи становится все острее.

Другая причина — взаимная диффузия атомов изолирующих и проводящих областей полупроводниковой структуры, ускоренная градиентом электрического поля в области кармана и периодическими электрическими пробоями изолятора при записи и стирании. Это приводит к размыванию границ и ухудшению качества изолятора, уменьшению времени хранения заряда.

Идут исследования технологии восстановления ячейки флеш-памяти путём локального нагрева изолятора затвора до 800°С в течении нескольких миллисекунд.[7]

Срок хранения данных

Изоляция кармана неидеальна, заряд постепенно изменяется. Срок хранения заряда, заявляемый большинством производителей для бытовых изделий — 10-20 лет.

Специфические внешние условия могут катастрофически сократить срок хранения данных. Например, повышенные температуры или радиационное облучение (гамма-радиация и частицы высоких энергий).

У современных микросхем NAND при чтении возможно повреждение данных на соседних страницах в пределах блока. Осуществление большого числа (сотни тысяч и более) операций чтения без перезаписи может ускорить возникновение ошибки.[8]

Иерархическая структура

Стирание, запись и чтение флеш-памяти всегда происходит относительно крупными блоками разного размера, при этом размер блока стирания всегда больше чем блок записи, а размер блока записи не меньше, чем размер блока чтения. Собственно, это — характерный отличительный признак флеш-памяти по отношению к классической памяти EEPROM.

Как следствие — все микросхемы флеш-памяти имеют ярко выраженную иерархическую структуру. Память разбивается на блоки, блоки состоят из секторов, секторы из страниц. В зависимости от назначения конкретной микросхемы глубина иерархии и размер элементов может меняться.

Например, NAND-микросхема может иметь размер стираемого блока в сотни кбайт, размер страницы записи и чтения 4 кбайт. Для NOR-микросхем размер стираемого блока варьируется от единиц до сотен кбайт, размер сектора записи — до сотен байт, страницы чтения — единицы-десятки байт.

Скорость чтения и записи

Скорость стирания варьируется от единиц до сотен миллисекунд в зависимости от размера стираемого блока. Скорость записи — десятки-сотни микросекунд.

Обычно скорость чтения для NOR-микросхем нормируется в десятки наносекунд. Для NAND-микросхем скорость чтения десятки микросекунд.

Особенности применения

Стремление достичь предельных значений емкости для NAND-устройств привело к «стандартизации брака» — праву выпускать и продавать микросхемы с некоторым процентом бракованных ячеек и без гарантии непоявления новых «bad-блоков» в процессе эксплуатации. Чтобы минимизировать потери данных, каждая страница памяти снабжается небольшим дополнительным блоком, в котором записывается контрольная сумма, информация для восстановления при одиночных битовых ошибках, информация о сбойных элементах на этой странице и количестве записей на эту страницу.

Сложность алгоритмов чтения и допустимость наличия некоторого количества бракованных ячеек вынудило разработчиков оснастить NAND-микросхемы памяти специфическим командным интерфейсом. Это означает, что нужно сначала подать специальную команду переноса указанной страницы памяти в специальный буфер внутри микросхемы, дождаться окончания этой операции, считать буфер, проверить целостность данных и, при необходимости, попытаться восстановить их.

Слабое место флеш-памяти — количество циклов перезаписи в одной странице. Ситуация ухудшается также в связи с тем, что стандартные файловые системы — то есть стандартные системы управления файлами для широко распространенных файловых систем — часто записывают данные в одно и то же место. Часто обновляется корневой каталог файловой системы, так что первые секторы памяти израсходуют свой запас значительно раньше. Распределение нагрузки позволит существенно продлить срок работы памяти. Подробнее про задачу равномерного распределения износа см.: Wear leveling (англ.).

Подробнее о проблемах управления NAND-памятью, вызванных разным размером страниц стирания и записи см.: Write amplification (англ.).

NAND-контроллеры

Для упрощения применения микросхем флеш-памяти NAND-типа они используются совместно со специальными микросхемами — NAND-контроллерами. Эти контроллеры должны выполнять всю черновую работу по обслуживанию NAND-памяти: преобразование интерфейсов и протоколов, виртуализация адресации (с целью обхода сбойных ячеек), проверка и восстановление данных при чтении, забота о разном размере блоков стирания и записи, забота о периодическом обновлении записанных блоков (есть и такое требование), равномерное распределение нагрузки на секторы при записи.

Однако задача равномерного распределения износа не обязательна, что зачастую приводит к экономии в дешевых изделиях. Такие флеш-карты памяти и USB-брелки быстро выйдут из строя при частой перезаписи. Если вам нужно часто записывать на флешку — старайтесь брать дорогие изделия с SLC-памятью и качественными контроллерами, а также старайтесь минимизировать запись в корневую директорию.

На дорогие NAND-контроллеры также может возлагаться задача «ускорения» микросхем флеш-памяти путем распределения данных одного файла по нескольким микросхемам. Время записи и чтения файла при этом сильно уменьшается.

Специальные файловые системы

Зачастую флеш-память подключается в устройстве напрямую — без контроллера. В этом случае задачи контроллера должен выполнять программный NAND-драйвер в операционной системе. Чтобы не выполнять избыточную работу по равномерному распределению записи по страницам, стараются эксплуатировать такие носители со специально придуманными файловыми системами (англ. Flash file system): JFFS2[9] и YAFFS[10] для Linux и др.

Применение

Существует два основных применения флеш-памяти: как мобильный носитель информации и как хранилище программного обеспечения («прошивки») цифровых устройств. Зачастую эти два применения совмещаются в одном устройстве.

Флеш-память позволяет обновлять прошивку устройств в процессе эксплуатации.

NOR

Применение NOR-флеши, устройства энергонезависимой памяти относительно небольшого объёма, требующие быстрого доступа по случайным адресам и с гарантией отсутствия сбойных элементов:

  • Встраиваемая память программ однокристальных микроконтроллеров. Типовые объёмы — от 1 кбайта до 1 Мбайта.
  • Стандартные микросхемы ПЗУ произвольного доступа для работы вместе с микропроцессором.
  • Специализированные микросхемы начальной загрузки компьютеров (POST и BIOS), процессоров ЦОС и программируемой логики. Типовые объёмы — единицы и десятки мегабайт.
  • Микросхемы хранения среднего размера данных, например DataFlash. Обычно снабжаются интерфейсом SPI и упаковываются в миниатюрные корпуса. Типовые объёмы — от сотен кбайт до технологического максимума.

NAND

Флеш-карты разных типов (спичка для сравнения масштабов)

Там, где требуются рекордные объёмы памяти — NAND-флеш вне конкуренции.

В первую очередь — это всевозможные мобильные носители данных и устройства, требующие для работы больших объёмов хранения. В основном, это USB-брелоки и карты памяти всех типов, а также мобильные медиаплееры.

Флеш-память типа NAND позволила миниатюризировать и удешевить вычислительные платформы на базе стандартных операционных систем с развитым программным обеспечением. Их стали встраивать во множество бытовых приборов: сотовые телефоны и телевизоры, сетевые маршрутизаторы и точки доступа, медиаплееры и игровые приставки, фоторамки и навигаторы.

Высокая скорость чтения делает NAND-память привлекательной для кэширования винчестеров. При этом часто используемые данные операционная система хранит на относительно небольшом твердотельном устройстве, а данные общего назначения записывает на дисковый накопитель большого объёма.[11]

Благодаря большой скорости, объёму и компактным размерам NAND-память активно вытесняет из обращения носители других типов. Сначала исчезли дискеты и дисководы гибких магнитных дисков[12], ушли в небытие накопители на магнитной ленте. Магнитные носители практически полностью вытеснены из мобильных и медиаприменений. Сейчас флеш-память активно теснит винчестеры в ноутбуках[13] и уменьшает долю записываемых оптических дисков.

Стандартизацией применения чипов флеш-памяти типа NAND занимается Open NAND Flash Interface Working Group (ONFI). Текущим стандартом считается спецификация ONFI версии 1.0[14], выпущенная 28 декабря 2006 года. Группа ONFI поддерживается конкурентами Samsung и Toshiba в производстве NAND-чипов: Intel, Hynix и Micron Technology.[15]

Достижения

Максимальное значение объёмов микросхем NOR — до 256 Мбайт. NAND имеет максимальное значение объёма на 8-кристальную микросхему 128 Гбайт (то есть объём кристалла 16 Гбайт).[16]

В 2005 году Toshiba и SanDisk представили NAND-чипы объёмом 1 Гб[17], выполненные по технологии многоуровневых ячеек, где один транзистор может хранить несколько бит, используя разный уровень электрического заряда на плавающем затворе.

Компания Samsung в сентябре 2006 года представила 4-гигабайтный чип, выполненный по 40-нм технологическому процессу.[18]

В конце 2007 года Samsung сообщила о создании MLC-чипа флеш-памяти типа NAND, выполненного по 30-нм технологическому процессу с ёмкостью чипа 8 Гб. В декабре 2009 года начато производство этой памяти объёмом 4 Гб (32 Гбит).[19]

На конец 2008 года лидерами по производству флеш-памяти являлись Samsung (31 % рынка) и Toshiba (19 % рынка, включая совместные заводы с Sandisk). (Данные согласно iSuppli на 4 квартал 2008 года).

В июне 2010 года Toshiba объявила о выпуске 128-Гб чипа, состоящего из 16 модулей по 8 Гб. Одновременно с ним в массовую продажу вышли и чипы в 64 Гб.[20][21]

Для увеличения объёма в устройствах часто применяется массив из нескольких чипов. К 2007 году USB-устройства и карты памяти имели объём от 512 Мб до 64 Гб. Самый большой объём USB-устройств составлял 4 терабайта.

В 2010 году Intel и Micron сообщили об успешном совместном освоении выпуска 3-битной (TLC) флеш-памяти типа NAND с использованием норм 25-нм техпроцесса.[2]

6 декабря 2011 года Intel и Micron анонсировали NAND-флеш-память по технологии 20 нм объёмом 128 Гбит.[22]

27 августа 2011 года Transcend совместно с институтом ITRI представили USB-накопитель с флеш-памятью ёмкостью 2 Тб и подключением по стандарту USB 3.0.[23]

См. также

Примечания

Ссылки

память — это… Что такое Флэш-память?

Сюда перенаправляется запрос Флэш-карты. На тему «Флэш-карты» нужна отдельная статья.

Флеш‐память (англ. Flash-Memory) — разновидность твердотельной полупроводниковой энергонезависимой перезаписываемой памяти.

Она может быть прочитана сколько угодно раз, но писать в такую память можно лишь ограниченное число раз (максимально — около миллиона циклов[1]). Распространена флеш-память, выдерживающая около 100 тысяч циклов перезаписи — намного больше, чем способна выдержать дискета или жёстких дисков, более надёжна и компактна.

Благодаря своей компактности, дешевизне и низком энергопотреблении флеш‐память широко используется в портативных устройствах, работающих на батарейках и аккумуляторах — цифровых фотокамерах и видеокамерах, цифровых диктофонах, MP3-плеерах, КПК, мобильных телефонах, а также смартфонах и коммуникаторах. Кроме того, она используется для хранения встроенного программного обеспечения в различных устройствах (маршрутизаторах, мини‐АТС, принтерах, сканерах), различных контроллерах.

Так же в последнее время широкое распространение получили «флешка», USB‐драйв, USB‐диск), практически вытеснившие дискеты и CD. Одним из первых флэшки JetFlash в 2002 году начал выпускать тайваньский концерн SSD накопителей объёмом 256 ГБ и более.

Ещё один недостаток устройств на базе флеш‐памяти по сравнению с жёсткими дисками — как ни странно, меньшая скорость. Несмотря на то, что производители SSD накопителей заверяют, что скорость этих устройств выше скорости винчестеров, в реальности она оказывается ощутимо ниже. Конечно, SSD накопитель не тратит подобно винчестеру время на разгон, позиционирование головок и т. п. Но время чтения, а тем более записи, ячеек флеш‐памяти, используемой в современных SSD накопителях, больше. Что и приводит к значительному снижению общей производительности. Справедливости ради следует отметить, что последние модели SSD накопителей и по этому параметру уже вплотную приблизились к винчестерам. Однако, эти модели пока слишком дороги.

Принцип действия

Программирование флеш-памяти

Стирание флеш-памяти

Флеш-память хранит информацию в массиве транзисторов с плавающим затвором, называемых ячейками (англ. cell). В традиционных устройствах с одноуровневыми ячейками (англ. single-level cell, SLC), каждая из них может хранить только один бит. Некоторые новые устройства с многоуровневыми ячейками (англ. multi-level cell, MLC) могут хранить больше одного бита, используя разный уровень электрического заряда на плавающем затворе транзистора.

NOR

В основе этого типа флеш-памяти лежит ИЛИ‑НЕ элемент (англ. NOR), потому что в транзисторе с плавающим затвором низкое напряжение на затворе обозначает единицу.

Транзистор имеет два затвора: управляющий и плавающий. Последний полностью изолирован и способен удерживать электроны до 10 лет. В ячейке имеются также сток и исток. При программировании напряжением на управляющем затворе создаётся электрическое поле и возникает туннельный эффект. Некоторые электроны туннелируют через слой изолятора и попадают на плавающий затвор, где и будут пребывать. Заряд на плавающем затворе изменяет «ширину» канала сток-исток и его проводимость, что используется при чтении.

Программирование и чтение ячеек сильно различаются в энергопотреблении: устройства флеш-памяти потребляют достаточно большой ток при записи, тогда как при чтении затраты энергии малы.

Для стирания информации на управляющий затвор подаётся высокое отрицательное напряжение, и электроны с плавающего затвора переходят (туннелируют) на исток.

В NOR архитектуре к каждому транзистору необходимо подвести индивидуальный контакт, что увеличивает размеры схемы. Эта проблема решается с помощью NAND архитектуры.

NAND

В основе NAND типа лежит И-НЕ элемент (англ. NAND). Принцип работы такой же, от NOR типа отличается только размещением ячеек и их контактами. В результате уже не требуется подводить индивидуальный контакт к каждой ячейке, так что размер и стоимость NAND чипа может быть существенно меньше. Так же запись и стирание происходит быстрее. Однако эта архитектура не позволяет обращаться к произвольной ячейке.

NAND и NOR архитектуры сейчас существуют параллельно и не конкурируют друг с другом, поскольку находят применение в разных областях хранения данных.

История

Флеш-память была изобретена Фудзи Масуока (Fujio Masuoka), когда он работал в 1984 году. Имя «флеш» было придумано также в Toshiba коллегой Фудзи, Сёдзи Ариизуми (Shoji Ariizumi), потому что процесс стирания содержимого памяти ему напомнил фотовспышку (англ. flash). Масуока представил свою разработку на IEEE 1984 International Electron Devices Meeting (IEDM), проходившей в Сан-Франциско, Калифорния. 1988 году выпустила первый коммерческий флеш-чип NOR-типа.

NAND-тип флеш-памяти был анонсирован Toshiba в 1989 году на International Solid-State Circuits Conference. У него была больше скорость записи и меньше площадь чипа.

На конец 2008 года, лидерами по производству флеш-памяти являются Samsung (31% рынка) и Toshiba (19% рынка, включая совместные заводы с Sandisk). (Данные согласно iSupply на Q4’2008). Стандартизацией чипов флеш-памяти типа NAND занимается Open NAND Flash Interface Working Group (ONFI). Текущим стандартом считается спецификация ONFI версии 1.0[2], выпущенная 28 декабря 2006 года. Группа ONFI поддерживается конкурентами Samsung и Toshiba в производстве NAND чипов: Hynix и Micron Technology.[3]

Характеристики

Скорость некоторых устройств с флеш-памятью может доходить до 100 Мб/с[4]. В основном флеш-карты имеют большой разброс скоростей и обычно маркируются в скоростях стандартного CD-привода (150 КБ/с). Так указанная скорость в 100x означает 100 × 150 КБ/с = 15 000 КБ/с= 14.65 МБ/с.

В основном объём чипа флеш-памяти измеряется от килобайт до нескольких гигабайт.

В 2005 году SanDisk представили NAND чипы объёмом 1 ГБ[5], выполненные по технологии многоуровневых ячеек, где один транзистор может хранить несколько бит, используя разный уровень электрического заряда на плавающем затворе.

Компания Samsung в сентябре 2006 года представила 8 ГБ чип, выполненный по 40-нм технологическому процессу[6]. В конце 2007 года Samsung сообщила о создании первого в мире MLC (multi-level cell) чипа флеш-памяти типа NAND, выполненного по 30-нм технологическому процессу. Ёмкость чипа также составляет 8 ГБ. Ожидается, что в массовое производство чипы памяти поступят в 2009 году.

Для увеличения объёма в устройствах часто применяется массив из нескольких чипов. К 2007 году USB устройства и карты памяти имели объём от 512 МБ до 64 ГБ. Самый большой объём USB устройств составлял 4 ТБ.

Файловые системы

Основное слабое место флеш-памяти — количество циклов перезаписи. Ситуация ухудшается также в связи с тем, что ОС часто записывает данные в одно и то же место. Например, часто обновляется таблица файловой системы, так что первые сектора памяти израсходуют свой запас значительно раньше. Распределение нагрузки позволяет существенно продлить срок работы памяти.

Для решения этой проблемы были созданы специальные файловые системы: JFFS2[7] и YAFFS[8] для GNU/Linux и Microsoft Windows.

SecureDigital и FAT.

Применение

Флеш-карты разных типов (спичка отображена для оценки размеров)

Флеш-память наиболее известна применением в USB флеш-носителях (англ. USB flash drive). В основном применяется NAND тип памяти, которая подключается через USB по интерфейсу USB mass storage device (USB MSC). Данный интерфейс поддерживается всеми ОС современных версий.

Благодаря большой скорости, объёму и компактным размерам USB флеш-носители полностью вытеснили с рынка дискеты. Например, компания 2003 года перестала выпускать компьютеры с дисководом гибких дисков[9].

В данный момент выпускается широкий ассортимент USB флеш-носителей, разных форм и цветов. На рынке присутствуют флешки с автоматическим шифрованием записываемых на них данных. Японская компания Solid Alliance даже выпускает флешки в виде еды[10].

Есть специальные дистрибутивы GNU/Linux и версии программ, которые могут работать прямо с USB носителей, например, чтобы пользоваться своими приложениями в интернет-кафе.

Технология Windows Vista способна использовать USB-флеш носитель или специальную флеш-память, встроенную в компьютер, для увеличения быстродействия[11]. На флеш-памяти также основываются карты памяти, такие как SecureDigital (SD) и Memory Stick, которые активно применяются в портативной технике (фотоаппараты, мобильные телефоны). Вкупе с USB носителями флеш-память занимает большую часть рынка переносных носителей данных.

NOR тип памяти чаще применяется в BIOS и ROM-памяти устройств, таких как DSL модемы, маршрутизаторы и т. д. Флеш-память позволяет легко обновлять прошивку устройств, при этом скорость записи и объём для таких устройств не так важны.

Сейчас активно рассматривается возможность замены жёстких дисков на флеш‑память. В результате увеличится скорость включения компьютера, а отсутствие движущихся деталей увеличит срок службы. Например, в XO-1, «ноутбуке за 100 $», который активно разрабатывается для стран третьего мира, вместо жёсткого диска будет использоваться флеш-память объёмом 1 ГБ[12]. Распространение ограничивает высокая цена за ГБ и меньший срок годности, чем у жёстких дисков из-за ограниченного количества циклов записи.

Типы карт памяти

Существуют несколько типов карт памяти, используемых в портативных устройствах:

MMC (MultiMedia Card): карточка в формате MMC имеет небольшой размер — 24×32×1,4 мм. Разработана совместно компаниями SanDisk и Siemens. MMC содержит контроллер памяти и обладает высокой совместимостью с устройствами самого различного типа. В большинстве случаев карты MMC поддерживаются устройствами со слотом SD.

RS-MMC (Reduced Size MultiMedia Card): карта памяти, которая вдвое короче стандартной карты MMC. Её размеры составляют 24×18×1,4 мм, а вес — около 6 г, все остальные характеристики не отличаются от MMC. Для обеспечения совместимости со стандартом MMC при использовании карт RS-MMC нужен адаптер.
DV-RS-MMC (Dual Voltage Reduced Size MultiMedia Card): карты памяти DV-RS-MMC с двойным питанием (1,8 и 3,3 В) отличаются пониженным энергопотреблением, что позволит работать мобильному телефону немного дольше. Размеры карты совпадают с размерами RS-MMC, 24×18×1,4 мм.
MMCmicro: миниатюрная карта памяти для мобильных устройств с размерами 14×12×1,1 мм. Для обеспечения совместимости со стандартным слотом MMC необходимо использовать переходник.

SD Card (Secure Digital Card): поддерживается фирмами Panasonic и

SD (Trans-Flash) и SDHC (High Capacity): Старые карты SD так называемые Trans-Flash и новые SDHC (High Capacity) и устройства их чтения различаются ограничением на максимальную ёмкость носителя, 2 ГБ для Trans-Flash и 32 ГБ для High Capacity (Высокой Ёмкости). Устройства чтения SDHC обратно совместимы с SDTF, то есть SDTF карта будет без проблем прочитана в устройстве чтения SDHC, но в устройстве SDTF увидится только 2 ГБ от ёмкости SDHC большей ёмкости, либо не будет читаться вовсе. Предполагается, что формат TransFlash будет полностью вытеснен форматом SDHC. Оба суб-формата могут быть представлены в любом из трёх форматов физ. размеров (Стандартный, mini и micro).
miniSD (Mini Secure Digital Card): От стандартных карт Secure Digital отличаются меньшими размерами 21,5×20×1,4 мм. Для обеспечения работы карты в устройствах, оснащённых обычным SD-слотом, используется адаптер.
microSD (Micro Secure Digital Card): являются на настоящий момент (2008) самыми компактными съёмными устройствами флеш-памяти (11×15×1 мм). Используются, в первую очередь, в мобильных телефонах, коммуникаторах, и т. п., так как, благодаря своей компактности, позволяют существенно расширить память устройства, не увеличивая при этом его размеры. Переключатель защиты от записи вынесен на адаптер microSD-SD.

MS Duo (Memory Stick Duo): данный стандарт памяти разрабатывался и поддерживается компанией

MS Duo (Memory Stick Duo): Данный формат является конкурентом формата microSD (по аналогичному размеру), сохраняя преимущества карт памяти Sony.

xD-Picture Card: используются в цифровых фотоаппаратах фирм Fuji и некоторых других.

Примечания

См. также

Ссылки

Wikimedia Foundation.
2010.

Что такое Flash Memory?

Что такое Flash Memory?

Flash Memory/USB-накопитель или флэш-память — это миниатюрное запоминающее устройство, применимое в качестве дополнительного носителя информации и ее хранения. Устройство подключается к компьютеру или другому считывающему устройству через интерфейс USB.

USB-накопитель предназначен для многократного прочитывания записанной на нем информации в течение установленного срока эксплуатации, который обычно составляет от 10 до 100 лет. Производить же запись на флэш-память можно ограниченное количество раз (около миллиона циклов).

Флеш-память считается более надежным и компактным по сравнению с жесткими дисками (HDD), поскольку не имеет подвижных механических частей. Данное устройство довольно широко используется при производстве цифровых портативных устройств: фото и видеокамер, диктофонов и MP3-плееров, КПК и мобильных телефонов. Наряду с этим, Flash Memory используется для хранения встроенного ПО в различном оборудовании, таком как модемы, мини-АТС, сканеры, принтеры или же маршрутизаторы. Пожалуй, единственным недостатком современных USB-накопителей является их относительно малый объем.

История Flash Memory

Первая флеш-память появилась в 1984 году, ее изобрел инженер компании Toshiba Фудзио Масуокой (Fujio Masuoka), коллега которого Сёдзи Ариидзуми (Shoji Ariizumi) сравнил принцип действия данного устройства с фотовспышкой и впервые назвал его «flash». Публичная презентация Flash Memory состоялась в 1984 году на Международном семинаре по электронным устройствам, проходившем в Сан-Франциско, штат Калифорния, где данным изобретением заинтересовалась компанию Intel. Спустя четыре года ее специалисты выпустили первый флеш-процессор коммерческого типа. Крупнейшими производителями флэш-накопителей в конце 2010 года стали компания Samsung, занимающей 32% данного рынка и Toshiba — 17%.

Принцип работы USB-накопителя

Вся информация, записанная на Flash-накопитель и сохраненная в его массиве, который состоит из транзисторов с плавающим затвором, именуемыми ячейками (cell). В обычных устройствах с одноуровневыми ячейками (single-level cell), любая из них «запоминает» только один бит данных. Однако некоторые новые чипы с многоуровневыми ячейками (multi-level cell или triple-level cell) способны запомнить и больший объем информации. При этом на плавающем затворе транзистора должен использоваться различный электрический заряд.

Основные характеристики USB-накопителя

Объем представленных в настоящее время флэш-накопителей измеряется от нескольких килобайт до сотен гигабайт.

В 2005 году специалисты компаний Toshiba и SanDisk провели презентацию NAND-процессора, общий объем которого составил 1 Гб. При создании данного устройства они применили технологию многоуровневых ячеек, когда транзистор способен хранить несколько бит данных, используя различный электрический заряд на плавающем затворе.

В сентябре следующего года компания Samsung представила общественности уже 4-гигабайтный чип, разработанный на основе 40-нм технологического процесса, а в конце 2009 года, технологи Toshiba заявили о создании 64 Гб флэш-накопителя, который был запущен в массвое производство уже в начале следующего года.

Летом 2010-го состоялась презентация первого в истории человечества USB-накопителя объемом 128 Гб, состоящий из шестнадцати модулей по 8 Гб.

В апреле 2011 года компании Intel и Micron объявили о создании MLC NAND флэш-чипа на 8 Гбайт, площадью 118 мм, почти вполовину меньше аналогичных устройств, серийное производство которого стартовало в конце 2011 года.

Типы карт памяти и Flash-накопителей

  CF/Compact Flash — один из первых и наиболее старейших стандартов флэш-памяти. Первая CF флеш-карта была разработана специалистами корпорации SanDisk в 1994 году, однако данный формат очень популярен и в настоящее время.

Применяется он в основном в профессиональном видео- и фото-оборудовании, поскольку имеет довольно большие размеры 43х36х3,3 мм, в результате чего довольно проблематично установить слот для Compact Flash в мобильные телефоны или MP3-плееры. При этом карта считается не очень надежной, а также не обладает высокой скоростью обработки данных. Максимально допустимый объём Compact Flash в настоящее время достигает 128 Гбайт, а скорость копирования данных выросла до 120 Мбайт/с.

MMC/Multimedia Card— карта памяти, обладающая относительно небольшим размером — 24х32х1,4 мм. Ее создателями считаются специалисты компании SanDisk и Siemens, которые в основу своего изобретения положили контроллер памяти с высокой совместимостью с устройствами различного типа с SD-слотом.

 

RS-MMC/Reduced Size Multimedia Card — карта памяти, которая в два раза по длине меньше стандартной карты MMC — 24х18х1,4 мм и весом около 6 гр. При этом сохранены все остальные характеристики и параметры обычной MMC-карты. Для использования карт RS-MMC необходимо использовать адаптер.

DV-RS-MMC/Dual Voltage Reduced Size Multimedia Card— карты памяти с двойным питанием — 1,8 и 3,3 В, которые отличаются низким энергопотреблением, в результате чего мобильный телефон или другое устройство может работать дольше. Размер карты совпадает с габаритами RS-MMC, которые составляют 24х18х1,4 мм.

 

MMCmicro — миниатюрная карта памяти с размерами всего 14х12х1,1 мм и предназначенная для мобильных устройств. Для ее применения необходимо использовать стандартный слот MMC и специальный переходник.

SD Card/Secure Digital Card – это более совершенная версия стандарта MMC, которая совместима с техникой SanDisk, Panasonic, Toshiba. Основным отличием SD Card от прототипа является наличие технологии защиты авторских прав, представленной в криптозащите от несанкционированного копирования, случайного стирания или механического переключения защиты от записи.

Несмотря на очень схожие с ММС-картой параметры и размеры 32х24х2,1 мм, данную карту нельзя использовать со стандартным слотом ММС.

SDHC/SD High Capacity — это SD-карта памяти высокой ёмкости, известные современным пользователям как SD 1.0, SD 1.1 и SD 2.0 (SDHC). Данный устройства различаются максимально допустимым объемом данных, который можно на них разместить. Так предусмотрены ограничения по емкости в виде 4 Гб для SD и 32 Гб для SDHC. При этом SDHC-карта обратно совместима с SD. Оба варианта могут быть представлены в трех форматах физических размеров: стандартный, mini и micro.

miniSD/Mini Secure Digital Card— данная карта памяти отличается от стандарта Secure Digital меньшими размерами — 21,5х20х1,4 мм. При этом, чтобы использовать ее в устройствах, в которых установлен стандартный SD-слот потребуется специальный адаптер.

 

microSD/Micro Secure Digital Card – это самое компактное по данным на 2011 год съёмное устройствами флеш-памяти, его размеры составляют 11х15х1 мм, что позволяет использовать его мобильных телефонах, коммуникаторах и т. д. Переключатель защиты от записи расположен на адаптере microSD-SD, а максимально возможный объём карты составляет 32 Гб.

Memory Stick Duo— стандарт памяти, разработанный компанией Sony. Размеры довольно прочного корпуса устройства составляют 20х31х1,6 мм.

 

Memory Stick Micro/M2 – карта памяти, формат которой конкурирует по размеру с microSD, но при этом преимущество остается за устройствами Sony.

Основы флэш-памяти

Флэш-память типа Boot Block служит для хранения обновляемых программ и данных в самых разных системах, включая сотовые телефоны, модемы, BIOS, системы управления автомобильными двигателями и многое другое. Используя флэш-память вместо EEPROM для хранения параметрических данных, разработчики добиваются снижения стоимости и повышения надежности своих систем.

Например, в разработках сотовых телефонов параметрические блоки флэш-памяти используются для хранения телефонных номеров, учета времени использования и идентификатора пользователя (SIM-карта). Производители автомобилей используют параметрические блоки флэш-памяти в системах управления двигателями для хранения кодов ошибок и параметров оптимальных режимов работы. В каждом из подобных примеров изготовители экономят как на ненужной микросхеме EEPROM, так и на расходах, связанных с необходимостью содержания складского запаса «прошитых» разными программами EEPROM, используя флэш-память Boot Block Flash Memory не только для хранения прикладных программ, но и параметров. Загрузка кода в чистую память может производиться в составе готовой системы на финальной стадии изготовления изделия. Кроме того, за счет снижения числа комплектующих и внешних контактов достигается более высокая надежность автомобильных систем в целом. И, наконец, повышается объем хранимых параметров и частота их изменения.

В настоящей статье обсуждается структура связных списков для хранения параметров в блочной флэш-памяти с применением схемы, эмулирующей перезапись байтов. Обзор основ флэш-памяти приводится для пояснения того, как используется флэш-память в системе, и описывает ограничения на реализацию схемы программирования. Основное внимание уделено передовой, в настоящий момент, технологии — SmartVoltage.

Основы технологии

Флэш-технология позволяет оснастить системную память уникальными свойствами. Подобно ОЗУ, флэш-память модифицируется электрически внутрисистемно, но подобно ПЗУ, флэш энергонезависима и хранит данные даже после отключения питания. Однако, в отличие от ОЗУ, флэш нельзя переписывать побайтно. Флэш-память читается и записывается байт за байтом и предъявляет новое требование: ее нужно стереть перед тем, как записывать новые данные.

Операции над флэш-памятью

Операция Минимальный сегмент Типичное время Максимальное время
Чтение Byte 60 нс 60 нс
Запись Byte 9 мкс не более 100 мкс
Стирание 8KB-Block 0.6 с 4.3 с
Примечание: по спецификации на ИС SmartVoltage 4Мbit Boot Block в 8-bit режиме при VCC=5.0V и VPP=5.0V

Запись (программирование) флэш-памяти — это процесс замены «1» на «0». Стирание — это процесс замены «0» на «1», где флэш стирается блок за блоком. Блоки — это области с фиксированными адресами, как показано на карте 4Мbit Boot Block микросхемы.

Карта памяти Boot Block

16KByte BOOT BLOCK
8KByte PARAMETER BLOCK
8KByte PARAMETER BLOCK
96KByte PARAMETER BLOCK
128KByte MAIN BLOCK
128KByte MAIN BLOCK
128KByte MAIN BLOCK

Когда блок стирается, стираются параллельно все ячейки внутри блока, независимо от других блоков этого прибора флэш-памяти.

Микросхемы Flash Memory Boot Block должны выдерживать не менее 100 тысяч циклов стирания при напряжении питания VCC=5V. Цикл считается законченным, если 8КВ одного из параметрических блоков успешно запрограммировано и после этого стерто. Этот параметр очень важный, так как от него зависит то, какой объем данных можно хранить и как часто их можно обновлять.

Поскольку флэш-память не допускает перезаписи отдельной ячейки без предварительного стирания всего блока памяти, то применяются программные методы эмуляции перезаписи байта с использованием двух 8КВ параметрических блоков, показанных на примере карты памяти.

Функционирование в системе

Кроме хранения параметрических данных, блочную флэш-память часто используют под хранение сменного кода программ. Часто в системах в заблокированном Boot-блоке хранится ядро кода, необходимого для инициализации системы и загрузки подпрограммы восстановления, на случай разрушения программы. В «бутовом» блоке обычно хранится также программа для программирования и стирания флэш-памяти. Так, флэш-память не допускает одновременное чтение ячейки с одним адресом и запись в ячейку с другим адресом в пределах одной микросхемы. Это означает, что любой код программы записи во флэш должен перегружаться в ОЗУ.

Воспользовавшись двумя параметрическими блоками флэш-памяти и программными методами, можно сохранять данные побайтно, а операцию стирания выполнять как фоновую задачу. Тем самым добиваются эмуляции перезаписи содержимого на байтной основе — схема программирования для эмуляции побайтной замены.

Структура параметрических данных

Структура данных в форме связных списков обеспечивает организацию данных, очень удобную для флэш-памяти. Например, предположим, что нужно сохранить 3 параметра, которые будут изменяться при условии, что каждый параметр хранится в виде записи. Каждая запись состоит из двух полей: Parameter_Value и Next_Record. В первом поле хранится значение параметра. Второе поле — это указатель, содержащий адрес следующей записи для этого параметра. ParameterX — это переменный указатель, содержащий адрес первой записи для этого параметра, поэтому Parameter1 представляет адрес. В ячейке с этим адресом хранится адрес первой записи параметра Parameter1, которая содержит первое значение Parameter1 и адрес второй записи Parameter1. Вторая запись содержит последнее значение этого параметра и адрес третьей записи, и т.д.. В последней записи в поле Next_Record содержится код FFh, указание на то, что записей больше нет. Код FFh выбран для указания, что записей больше нет, из-за того, что именно этот код представляет собой значение стертого байта флэш-памяти по умолчанию. При каждом изменении параметров программа ищет первую доступную ячейку в параметрическом блоке, записывает новое значение в поле значения новой записи, а потом обновляет поле Next_Record в предыдущей записи. Итак, каждая запись содержит значение и указатель, или связь со следующей записью. Такие структуры данных хорошо известны программистам, и называются связными списками, пользуясь которыми система может быстро найти последнее значение данного параметра.

Пример структуры связного списка

Адрес

Значение

Параметр

Parameter1 01H Parameter 1 Pointer Variable
Parameter2 03H Parameter 2 Pointer Variable
Parameter3 05H Parameter 3 Pointer Variable
01H F8H Parameter 1 Value = F8H
02H 07H Parameter 1 Next_Record = 07H
03H 22H Parameter 2 Value = 22H
04H 09H Parameter 2 Next_Record = 09H
05H 44H Parameter 3 Value = 44H
06H FFH Parameter 3 Next_Record = FFH = latest
07H 55H Parameter 1 Value = 55H
08H 0BH Parameter 1 Next_Record = 0BH
09H F2H Parameter 2 Value = F2H
0AH FFH Parameter 2 Next_Record = FFH = latest
0BH F4H Parameter 1 Value = F4H
0CH FFH Parameter 1 Next_Record = FFH = latest

Для простоты в примере использовано однобайтное поле для Parameter_Value и Next_Record. В действительности, для кодирования поля Next_Record потребуется как минимум два байта указателя на другую ячейку параметрического блока. Количество байтов, необходимых для кодирования поля Parameter_Value, зависит от специфики информации, хранимой в этом параметре.

Альтернативный подход к использованию связного списка состоит в применении поля parameter ID и поля статуса параметра, которое указывает, является ли текущая запись параметра самой поздней. В альтернативной схеме для того, чтобы получить последнее значение параметра, система считывает каждый параметр до тех пор, пока не найдет последнее значение данного параметра.

Запоминание параметров продолжается до тех пор, пока параметрический блок не заполнится или пока в параметрическом блоке хватает места для целой следующей записи. По достижении этой точки последние значения каждого параметра передаются во второй параметрический блок, а связный список продолжает формироваться во втором блоке параметров. Запись заголовка (Block_Header) в начале каждого параметрического блока показывает состояние блока. Состояние — это информация, например, о том, что параметрический блок активен, т.е. либо передает данные, либо стирается. Таким образом и осуществляются блочные передачи.

Стирание параметрического блока

После передачи действительных значений параметров из первого блока во второй, первый блок стирается. Вспомним, что стирание флэш-памяти занимает примерно 0,5s на каждый параметрический блок. Поскольку так много времени во время работы системы может не оказаться, во флэш-памяти используется команда приостановки стирания (Erase Suspend). По этой команде операцию стирания можно приостановить, чтобы система смогла считать данные из другого блока данного прибора памяти. Когда команда Erase Suspend поступает в микросхему, операция стирания останавливается, а память входит в «подвешенное» состояние, и тогда можно прочесть данные из другого блока. Когда снова будет можно стирать, команда Erase Resume прикажет прибору продолжить стирание с того места, где оно было прервано, что позволяет реализовать операцию стирания в пределах конечного программного цикла, используя несколько вызовов (Call). После полного стирания первого блока он снова готов к записи параметров, когда заполнится второй блок. Важно то, что никакие новые параметры нельзя записать, пока не закончится операция стирания блока. Текущие версии флэш-памяти Boot Block не допускают запись в моменты, когда стирание приостановлено.

Эмуляция побайтного обновления

Ступень 1. Резервирование параметрических записей в параметрическом блоке 1 (Parameter Block 1)
PARAMETER BLOCK 1
block_status record
parameter records
 
PARAMETER BLOCK 2
block_status record
erased
Ступень 2. Когда Parameter Block 1 заполнен, осуществляется передача последнего параметра записи в Parameter Block 2 и изменение block_status record.
PARAMETER BLOCK 1
block_status record
parameter records
 
 
PARAMETER BLOCK 2
block_status record
 
Ступень 3. Резервирование параметра записи в Parameter Block 2. Стирание Parameter Block 1, используя команду приостановки стирания (Erase Suspend) для возврата в фазу чтения флэша, когда это необходимо.
PARAMETER BLOCK 1
block_status record
erased
 
PARAMETER BLOCK 2
block_status record
parameter records

Требования к системе

Как отмечено выше, для исполнения программы в моменты программирования и стирания флэш-памяти требуется ОЗУ. Необходимый объем ОЗУ зависит от сложности базы данных параметров. Программа, которая должна быть загружена в ОЗУ, включает подпрограммы чтения, записи и стирания флэш-памяти. Размер ее кода лежит в диапазоне от 512 байт до одного килобайта. Кроме того, для хранения этой программы потребуется место внутри самой флэш-памяти. Образец программы занимает около 15KB, но только небольшая ее часть (около 1KB) выгружается в ОЗУ.

Другое системное требование — адекватное напряжение программирования (VPP) для записи и стирания. Большинство современных микросхем флэш-памяти требует подачи 12V для внутрисистемной записи и стирания. Например, микросхемы семейства SmartVoltage позволяют использовать напряжение 5 В для операций записи и стирания, если источник 12 В в системе отсутствует.

Кроме 12V и 5V SmartVoltage стандартов существует технология 3.3 В SmartVoltage — микросхемы Flash-памяти емкостью 4 Mбит, имеющие архитектуру Boot Block. Эти микросхемы дополняют существующий ряд и позволяют разработчикам оптимизировать производительность и энергопотребление запоминающих устройств, пользуясь только одним типом памяти. SmartVoltage — технология, соединяющая в себе свойства низкой потребляемой мощности, самого быстрого программирования и единственного напряжения питания в одном приборе. Архитектура Boot Block позволяет совместить функции ROM, Flash или EPROM и EEPROM памяти в одной микросхеме.

Данная память позволяет эффективно удовлетворить противоречивые требования к разработке изделия, используя напряжения программирования VPP уровней 5 В или 12 В, и VCC со значениями 3.3 В или 5 В в любой комбинации. Это позволяет оптимизировать время записи, выбирая напряжение VPP=l2 В, или цену устройства, выбрав единственное напряжение питания VСС=VPP=5 В. Данное семейство имеет самое низкое потребление энергии без потерь производительности. При потреблении 150 мВт на 6 Mгц, 3V-read режим на 40% более эффективен, чем 5V-only. Дополнительно, SmartVoltage Flash в 3V-read режиме обеспечивает доступ за 110 нс, что вдвое быстрее, чем лучшие 3V-EEPROM. Теперь же еще микросхемы имеют реконфигурируемую шину данных, поэтому их можно применять как с 16bit, так и с 8bit микропроцессорами.

Так, если соединить выводы VPP и VCC, то память предлагает самую высокую производительность при единственном напряжении питания. При питании от 5 В SmartVortage обеспечивает чтение данных за 60 нс, и запись за 13 мкс, что превосходит те же параметры у сопоставимых 5V-only изделий другой технологии. Кроме этого, 3.3 В SmartVoltage позволяет переходить от режима с единственным напряжением питания к более гибкому режиму 3V-read/5V-write в портативной аппаратуре без дополнительных затрат на сертификацию Flash-микросхем. Для максимальной скорости программирования в процессе производства, приборы SmartVoltage могу быть запрограммированы при VPP=12 В, что вдвое сокращает время записи и снижает затраты при изготовлении больших партий аппаратуры.

Так, «новые» микросхемы выпускаются в 44-выводных пластиковых корпусах (PSOP — Plastic Small Outline Package) и 48-выводных корпусах с уменьшенной толщиной (TSOP — Thin Small Outline Package), и имеют разводку выводов в соответствии со стандартом JEDEC, что позволяет разрабатывать платы, на которые можно установить микросхемы 2-8 Mбит. В настоящее время доступны микросхемы с типами упаковки, начиная «обычным» пластиковым вариантом двухстороннего расположения выводов (PDIP — Plastic Dual In-line Package) и заканчивая современным «масштабируемым» вариантом (SCP — Chip Scale Package), комбинируя для разных ситуаций степень упаковки, расстояние между выводами, габаритные размеры и, наконец, условия эксплуатации. Эти микросхемы имеют ту же проверенную длительной эксплуатацией технологию запоминающих матриц на транзисторах с плавающим затвором (технология ЕТОХ IV — EPROM Tunnel OXide), и поэтому имеют те же характеристики надежности и времени жизни, как и другие микросхемы Flash-памяти. Они предназначены для широкого круга применений, включая BIOS, сотовые телефоны, приводы жестких дисков, point-of-sale терминалы, а также блоки управления двигателем и другими автомобильными системами.

Интересным моментом является вопрос пропадания питания во время стирания или в процессе обновления значений параметров. С ситуацией исчезновения питания можно надежно справиться, добавив дополнительные поля как к параметрическим, так и к блочным записям. Например, в дополнение к полям Parameter_Value и Next_Record, которые ввели для параметрической записи, можно установить поле статуса (Parameter_Status). Один бит поля состояния указывает, что обновление параметра началось, а другой бит — что обновление параметра завершилось. Таким образом, если питание исчезнет в процессе модификации параметра, то когда питание восстановится, можно узнать состояние каждого параметра. К примеру, если питание появилось, и видно по битам состояния, что обновление параметра начато, но не закончено, то отсюда следует, что запись испорчена и должна быть исправлена. Эту же концепцию можно применить в отношении записи Block_Status, чтобы обрабатывать ошибки при стирании, вследствие прерывания процесса стирания из-за отказа питания, либо из-за пересылки параметров между блоками.

В процессе инициализации определяется состояние параметрических блоков. Считав запись Block_Status, можно установить, какой блок активен и нужно ли стирать какой-нибудь другой блок. В момент первой инициализации параметрические блоки можно стереть и сформировать для них записи Block_Status.

Ранее обсуждалось, как читать и программировать флэш-память на побайтной основе. Флэш-память, в действительности, допускает программирование на уровне битов (или группы битов) за один раз. Надо помнить, что программирование флэш-памяти — это процесс замены логических «1» на «0». Одиночные биты можно запрограммировать путем маскирования остальных битов в байте или слове «единицами». Пользуясь такой удобной особенностью, можно минимизировать затраты памяти, отводимой под разные поля состояния.

Пример 1
1111 1111
0111 1111
0111 1111
Содержание памяти
Программируемые данные
Результирующее состояние памяти
Пример 2
0111 1111
1011 1111
0011 1111
Содержание памяти
Программируемые данные
Результирующее состояние памяти
Пример 3
0011 1111
0001 1111
0001 1111
Содержание памяти
Программируемые данные
Результирующее состояние памяти

Временная диаграмма работы

Динамический анализ работы системы необходим, чтобы определить длительность времени, необходимого для чтения параметров, выгрузки кода программы Write/Erase в ОЗУ, записи параметров, передачи параметров в новый блок и стирания параметрического блока.

Точные значения временных параметров зависят от особенностей реализации системы. Кроме задержек самого прибора, нужно также учитывать программные задержки.

Время, необходимое для чтения параметров, зависит от длины записи каждого параметра и количества параметров, которые придется считать, прежде чем будет найдена действительная запись этого параметра. Умножив число байтов или слов на длительность цикла чтения системы, можно рассчитать общее время чтения действительного параметра.

При выполнении каждой операции записи или стирания (Write/Erase) флэш-памяти, нужно перегрузить из нее в ОЗУ код программы, содержащий драйверы программирования и стирания. Время, необходимое для этой перегрузки кода в ОЗУ, зависит от объема кода (обычно 1 Kбайт или меньше). Умножив размер кода на длительность цикла записи, определим длительность загрузки кода в ОЗУ.

Для определения максимального времени, требующегося для записи параметра, необходимо воспользоваться временем записи слова или байта для наихудшего случая, приведенным в спецификации на ИС флэш-памяти. Умножив максимальное время записи слова на количество слов в записи параметра, можно узнать наихудшее время записи параметра.

Понятно, что время передачи действительных параметров из одного блока (параметрического) в другой зависит от количества хранимых параметров. Если эта операция выполняется как задача переднего плана, то на нее потребуется блок времени, состоящий из времени чтения действительных параметров и времени записи этих параметров в новый блок. Эту операцию можно также рассматривать как часто выполняемую фоновую задачу. Для тех применений, где известна длительность выполнения основного программного цикла, операция передачи может выполняться исходя из наличного времени в пределах программного цикла, когда передача параметров начинается, а затем приостанавливается в моменты, когда время основного цикла подходит к концу. Может потребоваться несколько основных циклов для полной передачи всех параметров в новый блок флэш-памяти. Общее время выполнения задачи будет зависеть от ресурса времени, доступного в каждом цикле и от количества вызовов цикла, необходимого для завершения операции.

Как и в случае передачи параметров, стирание блока можно рассматривать как задачу переднего плана или как фоновую. В случае фоновой задачи, общее время стирания зависит от величины временного «окна» в рамках программного цикла. Число необходимых вызовов определяется путем деления общего времени стирания на длительность времени, доступного в пределах каждого цикла. Умножив число вызовов цикла на длительность цикла, получим полное время стирания параметрического блока.

Так, для микросхем флэш-памяти типа Boot Block в спецификации гарантируется не менее 100 тысяч циклов стирания. Как это влияет на хранение параметров (цикличность), легко рассчитать, воспользовавшись выражением:
100000 Cycles=[8KB-(Block_Record size)/Parameter_Record size]*number of Parameter_Record

Это уравнение можно решить как для искомого числа записей параметров, так и для длины поля Parameter_Record, в зависимости от того, что известно. По сравнению с EEPROM устойчивость флэш-памяти к ре-программированию значительно выше.

Заключение

В настоящей статье были описаны основные моменты программных методов эмуляции побайтовой работы с использованием двух параметрических блоков флэш-памяти. Разработчики систем, используя для хранения параметров вместо EEPROM параметрические блоки микросхем Boot Block, могут снизить стоимость и повысить надежность своих систем. Так, уже давно осознали преимущества перехода от микросхем, стираемых целиком, к приборам, основанным на блочной архитектуре. Флэш-память типа Bulk Erase, изготавливаемая по устаревшей технологии, перестала модернизироваться и уже давно вытеснена более современными семействами.

карта — это… Что такое Флэш-карта?

Сюда перенаправляется запрос Флэш-карты. На тему «Флэш-карты» нужна отдельная статья.

Флеш‐память (англ. Flash-Memory) — разновидность твердотельной полупроводниковой энергонезависимой перезаписываемой памяти.

Она может быть прочитана сколько угодно раз, но писать в такую память можно лишь ограниченное число раз (максимально — около миллиона циклов[1]). Распространена флеш-память, выдерживающая около 100 тысяч циклов перезаписи — намного больше, чем способна выдержать дискета или жёстких дисков, более надёжна и компактна.

Благодаря своей компактности, дешевизне и низком энергопотреблении флеш‐память широко используется в портативных устройствах, работающих на батарейках и аккумуляторах — цифровых фотокамерах и видеокамерах, цифровых диктофонах, MP3-плеерах, КПК, мобильных телефонах, а также смартфонах и коммуникаторах. Кроме того, она используется для хранения встроенного программного обеспечения в различных устройствах (маршрутизаторах, мини‐АТС, принтерах, сканерах), различных контроллерах.

Так же в последнее время широкое распространение получили «флешка», USB‐драйв, USB‐диск), практически вытеснившие дискеты и CD. Одним из первых флэшки JetFlash в 2002 году начал выпускать тайваньский концерн SSD накопителей объёмом 256 ГБ и более.

Ещё один недостаток устройств на базе флеш‐памяти по сравнению с жёсткими дисками — как ни странно, меньшая скорость. Несмотря на то, что производители SSD накопителей заверяют, что скорость этих устройств выше скорости винчестеров, в реальности она оказывается ощутимо ниже. Конечно, SSD накопитель не тратит подобно винчестеру время на разгон, позиционирование головок и т. п. Но время чтения, а тем более записи, ячеек флеш‐памяти, используемой в современных SSD накопителях, больше. Что и приводит к значительному снижению общей производительности. Справедливости ради следует отметить, что последние модели SSD накопителей и по этому параметру уже вплотную приблизились к винчестерам. Однако, эти модели пока слишком дороги.

Принцип действия

Программирование флеш-памяти

Стирание флеш-памяти

Флеш-память хранит информацию в массиве транзисторов с плавающим затвором, называемых ячейками (англ. cell). В традиционных устройствах с одноуровневыми ячейками (англ. single-level cell, SLC), каждая из них может хранить только один бит. Некоторые новые устройства с многоуровневыми ячейками (англ. multi-level cell, MLC) могут хранить больше одного бита, используя разный уровень электрического заряда на плавающем затворе транзистора.

NOR

В основе этого типа флеш-памяти лежит ИЛИ‑НЕ элемент (англ. NOR), потому что в транзисторе с плавающим затвором низкое напряжение на затворе обозначает единицу.

Транзистор имеет два затвора: управляющий и плавающий. Последний полностью изолирован и способен удерживать электроны до 10 лет. В ячейке имеются также сток и исток. При программировании напряжением на управляющем затворе создаётся электрическое поле и возникает туннельный эффект. Некоторые электроны туннелируют через слой изолятора и попадают на плавающий затвор, где и будут пребывать. Заряд на плавающем затворе изменяет «ширину» канала сток-исток и его проводимость, что используется при чтении.

Программирование и чтение ячеек сильно различаются в энергопотреблении: устройства флеш-памяти потребляют достаточно большой ток при записи, тогда как при чтении затраты энергии малы.

Для стирания информации на управляющий затвор подаётся высокое отрицательное напряжение, и электроны с плавающего затвора переходят (туннелируют) на исток.

В NOR архитектуре к каждому транзистору необходимо подвести индивидуальный контакт, что увеличивает размеры схемы. Эта проблема решается с помощью NAND архитектуры.

NAND

В основе NAND типа лежит И-НЕ элемент (англ. NAND). Принцип работы такой же, от NOR типа отличается только размещением ячеек и их контактами. В результате уже не требуется подводить индивидуальный контакт к каждой ячейке, так что размер и стоимость NAND чипа может быть существенно меньше. Так же запись и стирание происходит быстрее. Однако эта архитектура не позволяет обращаться к произвольной ячейке.

NAND и NOR архитектуры сейчас существуют параллельно и не конкурируют друг с другом, поскольку находят применение в разных областях хранения данных.

История

Флеш-память была изобретена Фудзи Масуока (Fujio Masuoka), когда он работал в 1984 году. Имя «флеш» было придумано также в Toshiba коллегой Фудзи, Сёдзи Ариизуми (Shoji Ariizumi), потому что процесс стирания содержимого памяти ему напомнил фотовспышку (англ. flash). Масуока представил свою разработку на IEEE 1984 International Electron Devices Meeting (IEDM), проходившей в Сан-Франциско, Калифорния. 1988 году выпустила первый коммерческий флеш-чип NOR-типа.

NAND-тип флеш-памяти был анонсирован Toshiba в 1989 году на International Solid-State Circuits Conference. У него была больше скорость записи и меньше площадь чипа.

На конец 2008 года, лидерами по производству флеш-памяти являются Samsung (31% рынка) и Toshiba (19% рынка, включая совместные заводы с Sandisk). (Данные согласно iSupply на Q4’2008). Стандартизацией чипов флеш-памяти типа NAND занимается Open NAND Flash Interface Working Group (ONFI). Текущим стандартом считается спецификация ONFI версии 1.0[2], выпущенная 28 декабря 2006 года. Группа ONFI поддерживается конкурентами Samsung и Toshiba в производстве NAND чипов: Hynix и Micron Technology.[3]

Характеристики

Скорость некоторых устройств с флеш-памятью может доходить до 100 Мб/с[4]. В основном флеш-карты имеют большой разброс скоростей и обычно маркируются в скоростях стандартного CD-привода (150 КБ/с). Так указанная скорость в 100x означает 100 × 150 КБ/с = 15 000 КБ/с= 14.65 МБ/с.

В основном объём чипа флеш-памяти измеряется от килобайт до нескольких гигабайт.

В 2005 году SanDisk представили NAND чипы объёмом 1 ГБ[5], выполненные по технологии многоуровневых ячеек, где один транзистор может хранить несколько бит, используя разный уровень электрического заряда на плавающем затворе.

Компания Samsung в сентябре 2006 года представила 8 ГБ чип, выполненный по 40-нм технологическому процессу[6]. В конце 2007 года Samsung сообщила о создании первого в мире MLC (multi-level cell) чипа флеш-памяти типа NAND, выполненного по 30-нм технологическому процессу. Ёмкость чипа также составляет 8 ГБ. Ожидается, что в массовое производство чипы памяти поступят в 2009 году.

Для увеличения объёма в устройствах часто применяется массив из нескольких чипов. К 2007 году USB устройства и карты памяти имели объём от 512 МБ до 64 ГБ. Самый большой объём USB устройств составлял 4 ТБ.

Файловые системы

Основное слабое место флеш-памяти — количество циклов перезаписи. Ситуация ухудшается также в связи с тем, что ОС часто записывает данные в одно и то же место. Например, часто обновляется таблица файловой системы, так что первые сектора памяти израсходуют свой запас значительно раньше. Распределение нагрузки позволяет существенно продлить срок работы памяти.

Для решения этой проблемы были созданы специальные файловые системы: JFFS2[7] и YAFFS[8] для GNU/Linux и Microsoft Windows.

SecureDigital и FAT.

Применение

Флеш-карты разных типов (спичка отображена для оценки размеров)

Флеш-память наиболее известна применением в USB флеш-носителях (англ. USB flash drive). В основном применяется NAND тип памяти, которая подключается через USB по интерфейсу USB mass storage device (USB MSC). Данный интерфейс поддерживается всеми ОС современных версий.

Благодаря большой скорости, объёму и компактным размерам USB флеш-носители полностью вытеснили с рынка дискеты. Например, компания 2003 года перестала выпускать компьютеры с дисководом гибких дисков[9].

В данный момент выпускается широкий ассортимент USB флеш-носителей, разных форм и цветов. На рынке присутствуют флешки с автоматическим шифрованием записываемых на них данных. Японская компания Solid Alliance даже выпускает флешки в виде еды[10].

Есть специальные дистрибутивы GNU/Linux и версии программ, которые могут работать прямо с USB носителей, например, чтобы пользоваться своими приложениями в интернет-кафе.

Технология Windows Vista способна использовать USB-флеш носитель или специальную флеш-память, встроенную в компьютер, для увеличения быстродействия[11]. На флеш-памяти также основываются карты памяти, такие как SecureDigital (SD) и Memory Stick, которые активно применяются в портативной технике (фотоаппараты, мобильные телефоны). Вкупе с USB носителями флеш-память занимает большую часть рынка переносных носителей данных.

NOR тип памяти чаще применяется в BIOS и ROM-памяти устройств, таких как DSL модемы, маршрутизаторы и т. д. Флеш-память позволяет легко обновлять прошивку устройств, при этом скорость записи и объём для таких устройств не так важны.

Сейчас активно рассматривается возможность замены жёстких дисков на флеш‑память. В результате увеличится скорость включения компьютера, а отсутствие движущихся деталей увеличит срок службы. Например, в XO-1, «ноутбуке за 100 $», который активно разрабатывается для стран третьего мира, вместо жёсткого диска будет использоваться флеш-память объёмом 1 ГБ[12]. Распространение ограничивает высокая цена за ГБ и меньший срок годности, чем у жёстких дисков из-за ограниченного количества циклов записи.

Типы карт памяти

Существуют несколько типов карт памяти, используемых в портативных устройствах:

MMC (MultiMedia Card): карточка в формате MMC имеет небольшой размер — 24×32×1,4 мм. Разработана совместно компаниями SanDisk и Siemens. MMC содержит контроллер памяти и обладает высокой совместимостью с устройствами самого различного типа. В большинстве случаев карты MMC поддерживаются устройствами со слотом SD.

RS-MMC (Reduced Size MultiMedia Card): карта памяти, которая вдвое короче стандартной карты MMC. Её размеры составляют 24×18×1,4 мм, а вес — около 6 г, все остальные характеристики не отличаются от MMC. Для обеспечения совместимости со стандартом MMC при использовании карт RS-MMC нужен адаптер.
DV-RS-MMC (Dual Voltage Reduced Size MultiMedia Card): карты памяти DV-RS-MMC с двойным питанием (1,8 и 3,3 В) отличаются пониженным энергопотреблением, что позволит работать мобильному телефону немного дольше. Размеры карты совпадают с размерами RS-MMC, 24×18×1,4 мм.
MMCmicro: миниатюрная карта памяти для мобильных устройств с размерами 14×12×1,1 мм. Для обеспечения совместимости со стандартным слотом MMC необходимо использовать переходник.

SD Card (Secure Digital Card): поддерживается фирмами Panasonic и

SD (Trans-Flash) и SDHC (High Capacity): Старые карты SD так называемые Trans-Flash и новые SDHC (High Capacity) и устройства их чтения различаются ограничением на максимальную ёмкость носителя, 2 ГБ для Trans-Flash и 32 ГБ для High Capacity (Высокой Ёмкости). Устройства чтения SDHC обратно совместимы с SDTF, то есть SDTF карта будет без проблем прочитана в устройстве чтения SDHC, но в устройстве SDTF увидится только 2 ГБ от ёмкости SDHC большей ёмкости, либо не будет читаться вовсе. Предполагается, что формат TransFlash будет полностью вытеснен форматом SDHC. Оба суб-формата могут быть представлены в любом из трёх форматов физ. размеров (Стандартный, mini и micro).
miniSD (Mini Secure Digital Card): От стандартных карт Secure Digital отличаются меньшими размерами 21,5×20×1,4 мм. Для обеспечения работы карты в устройствах, оснащённых обычным SD-слотом, используется адаптер.
microSD (Micro Secure Digital Card): являются на настоящий момент (2008) самыми компактными съёмными устройствами флеш-памяти (11×15×1 мм). Используются, в первую очередь, в мобильных телефонах, коммуникаторах, и т. п., так как, благодаря своей компактности, позволяют существенно расширить память устройства, не увеличивая при этом его размеры. Переключатель защиты от записи вынесен на адаптер microSD-SD.

MS Duo (Memory Stick Duo): данный стандарт памяти разрабатывался и поддерживается компанией

MS Duo (Memory Stick Duo): Данный формат является конкурентом формата microSD (по аналогичному размеру), сохраняя преимущества карт памяти Sony.

xD-Picture Card: используются в цифровых фотоаппаратах фирм Fuji и некоторых других.

Примечания

См. также

Ссылки

Wikimedia Foundation.
2010.

Оставьте комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *