Экран на квантовых точках: Дисплей на квантовых точках — Википедия – Технология квантовых точек в новых телевизорах Samsung QLED TV

Содержание

Дисплей на квантовых точках — Википедия

«Квантовые точки», облучённые ультрафиолетовым светом. Различные размеры «квантовых точек» излучают различные цвета.

Дисплей на квантовых точках — отображающее устройство, использующее квантовые точки для получения красного, зелёного и синего света. На данный момент существуют только экспериментальные модели дисплея, основанного на квантово-точечных светодиодах (QD-LED или QD-OLED).

QLED (от англ. quantum dot, «квантовая точка») — маркетинговое название технологии изготовления ЖК-экранов со светодиодной подсветкой на квантовых точках от компании Samsung. Подобная технология от компании LG Electronics называется NanoCell, от компании Sony — Triluminos[1], от компании Hisense — ULED.

Квантовые точки — это кристаллы, которые светятся, когда подвергаются воздействию тока или света. Они излучают различные цвета в зависимости от размера и материала, из которого они изготовлены. Исследователи заявляют, что дисплеи на квантовых точках могут иметь сниженное в пять раз энергопотребление по сравнению с обычными ЖК-дисплеями (LCD), а также более продолжительный срок службы по сравнению с OLED-дисплеями.
Также утверждается, что стоимость производства может быть вдвое ниже стоимости изготовления ЖК- и OLED-дисплеев[2].

По заявлениям создателей, обеспечивает более низкое потребление энергии, чем остальные технологии, в том числе OLED, и низкую стоимость производства (как и электронная бумага, OLED-дисплеи (а также, в некоторой степени, LCD), претендует на статус основной технологии в гибких дисплеях).
При этом декларируются гораздо более высокие, чем у конкурирующих технологий, яркость и контрастность.

Принцип действия

Создание целого телевизионного дисплея из квантовых точек, а не просто использование их в качестве подсветки, было начальной целью QD Vision. Предполагалось взять структуру устройства OLED, но использовать квантовые точки в качестве эмиссионного слоя[3]. Они производят монохроматический свет, поэтому более эффективны, чем источники белого света[4]. QD-LED-дисплеи будут использовать электролюминесцентные квантовые точки в качестве излучающих элементов, управляемые активной матрицей из тонкоплёночных транзисторов (TFT).

На данный момент существуют только лабораторные образцы электроэмиссионных дисплеев. Пока все коммерческие продукты используют фотолюминесцентные квантовые точки для подсветки жидкокристаллических дисплеев. Как оказалось, использование квантовых точек для получения чистого спектрального цвета — это сравнительно недорогой способ обеспечить близкую к естественной цветопередачу для жидкокристаллических матриц.

Технология

В цветных дисплеях каждый пиксель содержит красный, зелёный и синий субпиксель. Эти цвета комбинируются с различной интенсивностью для получения миллионов оттенков. Исследователи смогли создать повторяемые образцы из красных, зелёных и синих полосок, многократно повторяя технологию литографического нанесения. Полоски наносятся непосредственно на матрицу тонкоплёночных транзисторов. Транзисторы сделаны из аморфного индий-галлий-цинкового оксида (IGZO), обладающего более высокой подвижностью электронов и являющегося полупроводником электронного типа проводимости, имеющего лучшую стабильность, чем транзисторы из аморфного гидрированного кремния (a-Si). В результате дисплей имеет субпиксели около 50 микрометров в ширину и 10 микрометров в длину, достаточно малого размера, чтобы было возможно использовать их в экранах телефонов[2].

История

Идея использования квантовых точек в качестве источника света впервые была разработана в 1990-х годах[источник не указан 855 дней].
В начале 2000-х учёные начали понимать весь потенциал квантовых точек в качестве следующего поколения дисплеев. В 2004 году для разработки технологии QLED была основана лаборатория QD Vision (США, Лексингтон (Массачусетс)). В последствии к ней присоединились компании LG Electronics и Samsung Electronics.

В феврале 2011 года исследователи из Samsung представили разработки первого полноцветного дисплея на основе квантовых точек — QLED. 4-дюймовый дисплей управлялся активной матрицей, это означает, что каждый цветной пиксель с квантовой точкой может включаться и выключаться тонкоплёночным транзистором. Исследователи сделали прототип на стекле и на гибком пластике. Для создания прототипа на кремниевую плату наносится слой раствора квантовых точек и напыляется растворитель. Затем слой квантовых точек аккуратно запрессовывается в резиновый штамп с гребенчатой поверхностью, отделяется и штампуется на стекло или гибкий пластик. Так осуществляется нанесение полосок квантовых точек на подложку[5].

Использование высокотоксичного кадмия, который в основном применялся в производстве квантовых точек, ограничено 0,01 % по весу однородного материала[6]. Благодаря сотрудничеству Samsung с химической компанией Dow Chemical в 2015 году проблема была решена применением материалов содержащих индий вместо кадмия[7]. В создании технологии квантовых точек без кадмия LG тоже сотрудничает с Dow Chemical и LG Chem.

Путаница в терминах

Все существующие дисплеи, которые заявляются как QLED, по факту являются LCD-матрицей со светодиодной подсветкой на квантовых точках, то есть единственное их преимущество перед LCD — это расширенный цветовой охват. По сравнению с OLED-телевизорами (где сами пиксели являются маленькими светодиодами), использующими электролюминесценцию, у телевизоров на QLED нет настоящего чёрного цвета и бесконечной контрастности, используется фотолюминесценция — переизлучение света в другом диапазоне частот. По аналогии, LED-телевизоры — это также не электролюминесцентное излучение как OLED, а вид подсветки, где вместо ранее применявшихся люминесцентных ламп с холодным катодом используется панель из светодиодов (LED).

Технология подсветки на квантовых точках Color IQ

Технология была разработана компанией QD Vision и использована в телевизорах Sony, выпущенных в 2013 году[8], TCL Corporation, Hisense (K7100)[9].

Свет от синего светодиода проходит через трубку, заполненную красными и зелёными квантовыми точками, которые флуоресцируют и генерируют красный и зелёный свет. Из трубки выходит белый свет, состоящий из смеси оригинального чистого синего, чистого красного и чистого зелёного. Трубки подсветки размещаются по краям дисплея[10].

Технология QLED

Название принадлежит Samsung, но его разрешено использовать всем членам QLED Alliance, созданного в апреле 2017 года[11].

Технология QDEF (quantum dot enhancement film — улучшающая плёнка с квантовыми точками)[12]

Строение жк-дисплея с плёнкой QDEF

Технология была разработана компанией Nanosys (англ.)русск. и представлена на выставке SID (англ.)русск. в 2011 году. Она призвана улучшить цветовую гамму, яркость и контраст экрана. Данная технология используется в телевизорах Samsung, TCL Corporation, Hisense, Philips, планшете Amazon Kindle Fire HD 7, ноутбуке ASUS Zenbook NX-500.

В жк-панелях между блоком подсветки из синих светодиодов и слоем с жидкими кристаллами (LCM) добавляется плёнка, пропитанная случайно распределёнными квантовыми точками двух разных размеров — одни излучают зелёный свет, другие — красный. Красный и зелёный свет смешивается с непоглощённым синим светом, и таким образом формируется белый. Затем он проходит через субпиксельный цветовой фильтр (BEF).

Технология QDОG (QD on Glass — квантовые точки на стекле)

Технология появилась в 2018 году, а телевизоры с экранами QDОG должны появиться в 2019-м. Технология позволяет сделать телевизоры тоньше и дешевле[13].

Квантовые точки нанесены на тонкий лист стекла, которое служит световодом.

Технология QDCF (QD color filter — квантово-точечный цветовой фильтр)

Технология позволяет отказаться от цветного матричного фильтра. Вместо зелёного и красного субпикселей используются ячейки с квантовыми точками, вместо синего субпикселя — прозрачный рассеивающий слой, который пропускает голубой свет от светодиодной подсветки. Сложность метода состоит в том, что квантовые точки должны быть расположены очень близко друг к другу, чтобы между ними не проходил синий свет и не мешал получать чистые цвета. Nanosys совместно с производителем чернил Dic Corporation (англ.)русск. разработали метод нанесения квантовых точек с помощью струйной печати, который был представлен в 2017 году[14].

Технология NanoCell

Технологию представила компания LG Display в 2017 году на выставке CES[15]. Она позволила расширить цветовой охват и увеличить угол обзора.

Традиционные экраны IPS обычно снабжены белой светодиодной подсветкой (WLED), которая позволяет им воспроизводить цвета в стандартном цветовом пространстве RGB. В технологии Nano IPS на белые светодиоды (а не на дополнительный светорассеивающий слой, как в QLED) наносится слой наночастиц (отсюда название Nano IPS) — квантовых точек размером менее 2 нм. Они поглощают свет с определённой длиной волны, например, ненужные оттенки желтого и оранжевого, что улучшает точность передачи оттенков красного[16].

LG Electronics использует безкадмиевые квантовые точки Nanoco (англ.)русск., поставляемые Dow Chemical.

Производство

Дистрибьютор MMD (Philips Monitors) и компания QD Vision сообщили, что в Китае начались продажи первого в мире монитора на квантовых точках. Выпускает мониторы гонконгская компания TPV Technology, выкупившая 2011—2014 году бренд «Philips»[17]. Речь идёт о 27-дюймовом мониторе 276E6ADS, который, благодаря технологии QD Vision, позволяет говорить о появлении профессиональных дисплеев по цене потребительских моделей. Он был представлен на выставке CES 2015. В основе устройства лежит панель IPS, разрешение панели 1920х1080 пикселей, время отклика 4 мс, максимальная яркость 300 кд/м². Монитор охватывает 99 % пространства Adobe RGB[18].

2013: телевизоры от Sony серий W900 (модель Ultra HD 55W900)[19] и X900 (65X900, 55X900)[8], планшет Amazon Kindle Fire HDX 7[20].

2014: на выставке Computex ASUS представила ноутбук Zenbook NX500 с дисплеем, использующим технологию QDEF (Quantum Dot Enhancement Film)[21].

2015: телевизоры от TCL Corporation, Hisense, Samsung, LG Electronics[22].

2016: телевизоры с прямым экраном от Samsung серий Q9F и Q7F (75-, 65- и 55-дюймовые модели).

2017: телевизоры с изогнутым экраном от Samsung серий Q7C (диагонали 49 и 55 дюймов) и Q8C (диагонали 55, 65 и 75 дюймов) и мониторы серий CHG90 и CHG70 от Samsung . Буква «С» в серии означает «Curved» (изогнутый). На выставке CES 2017 Samsung переименовала свою технологию подсветки «SUHD» в «QLED»[23]. Телевизоры от LG серий SJ9500, SJ8500 и SJ8000. Также в этом году появился планшет с технологией Quantum Dot Iconia Tab 10 от Acer[24], игровые мониторы Acer Predator X27 и ASUS ROG Swift PG27UQ.

2018: монитор ASUS ProArt PA32UC[25].

Критика

По заявлению Сэта Коу-Салливана (Seth Coe-Sullivan), основателя и руководителя компании QD Vision, множество проблем было решено исследователями и инженерами фирмы Samsung, однако лучшие устройства на квантовых точках не столь эффективны, как дисплеи на основе органических светодиодов. Также необходимо увеличить срок службы, так как яркость QLED дисплеев начинает уменьшаться спустя 10 000 часов[2].

Ссылки

Примечания

  1. ↑ Quantum dots help return ‘Triluminos’ RGB LED lighting to Sony HDTVs (англ.). engadget (14 January 2013).
  2. 1 2 3 The First Full-Color Display with Quantum Dots (рус.). MIT Technology Review (22 ноября 2011). Дата обращения 7 апреля 2019.
  3. ↑ CES 2015: What the Heck Are Quantum Dots? (рус.). IEEE Spectrum (2 января 2015). Дата обращения 16 мая 2019.
  4. ↑ Белый свет содержит не только чистый красный, зеленый и синий, которые составляют телевизионное изображение, но и розовые, желтые и другие дополнительные элементы, искажающие красные, зеленые и синие тона. Эти посторонние цвета блокируются фильтрами, что снижает яркость картинки.
  5. ↑ Квантовые точки и зачем их ставят (рус.). habr (4 декабря 2016). Дата обращения 1 июня 2019.
  6. ↑ ТР ЕАЭС 037/2016 (рус.). Решение Совета Евразийской экономической комиссии от 18 октября 2016 года N 113. Дата обращения 19 апреля 2019.; Директива 2011/65/EU от 8 июня 2011 года (рус.). Европейский парламент и Совет ЕС. Дата обращения 16 мая 2019.
  7. ↑ Samsung may introduce cadmium-free quantum dots LCD TVs in 2015 (рус.). Оled-info (22 октября 2014). Дата обращения 18 апреля 2019.
  8. 1 2 What are Quantum Dots, and how could they help your next TV? (англ.). CNET (18 February 2013). Дата обращения 14 мая 2019.
  9. ↑ У Hisense готов первый в мире телевизор с изогнутым экраном, в котором применена технология квантовых точек QD Vision Color IQ (рус.). ixbt.com (6 июня 2015). Дата обращения 23 мая 2019.
  10. ↑ CES 2015: What the Heck Are Quantum Dots? (рус.). IEEE SPECTRUM (2 января 2015). Дата обращения 23 мая 2019.
  11. ↑ Samsung, TCL и Hisense создали QLED Alliance (рус.). STEREO&VIDEO (27 апреля 2017). Дата обращения 1 июня 2019.
  12. ↑ Nanosys Quantum-Dot Update at CES 2018 (рус.). AVSFORUM (18 января 2018). Дата обращения 10 мая 2019.
  13. ↑ Samsung изменит технологию квантовых точек для телевизоров (рус.). DailyComm (5 июля 2018). Дата обращения 19 мая 2019.
  14. ↑ Nanosys and DIC Announce Inkjet-Printed Quantum-Dot Process (рус.). AVSForum (4 декабря 2017). Дата обращения 22 мая 2019.
  15. ↑ LG представляет новую линейку телевизоров на базе технологии Nano Cell (рус.). 4pda (10 января 2017). Дата обращения 16 мая 2019.
  16. ↑ Технология Nano IPS (рус.). НИКС (1 ноября 2018). Дата обращения 10 мая 2019.
  17. ↑ Philips передает оставшиеся 30% акций совместного предприятия TP Vision (рус.). hifinews.ru (23 января 2014). Дата обращения 10 апреля 2019.
  18. ↑ Philips 276E6ADS — первый монитор на квантовых точках в розничной продаже (рус.). 3DNEWS (6 июня 2015). Дата обращения 10 апреля 2019.
  19. ↑ Технология Sony Triluminos (рус.). hifinews.RU (26 марта 2013). Дата обращения 7 апреля 2019.
  20. ↑ Mini Tablet Display Technology Shoot-Out (англ.). DisplayMate (2013). Дата обращения 21 мая 2019.
  21. Чуб А. Цена и сроки начала продаж ультрабука ASUS Zenbook NX500 с экраном 3840×2160 (рус.). gagadget.com (12 июня 2014). Дата обращения 11 апреля 2019.
  22. ↑ Телевизоры с технологией Quantum Dot на выставке CES 2015 (рус.). HDTV.RU (12 января 2017). Дата обращения 7 апреля 2019.
  23. ↑ Samsung представляет QLED телевизоры (рус.). LCD телевизоры. Характеристики и параметры. Дата обращения 11 апреля 2019.
  24. Карасёв С. Acer оснастила планшет Iconia Tab 10 дисплеем с технологией Quantum Dot (рус.). 3DNEWS (26 мая 2017). Дата обращения 17 апреля 2019.
  25. ↑ Asus ProArt PA32UC 4K HDR профессиональный монитор (рус.). ULTRAHD (18 марта 2018). Дата обращения 22 мая 2019.

Что такое QLED-телевизоры и причем тут квантовая физика — Александр Навагин — Хайп

Что такое QLED-телевизоры и причем тут квантовая физикаЧто такое телевизор на квантовых точках © Newegg

QLED – относительно новое слово на рынке экранных технологий. Компания Samsung активно продвигает телевизоры с дисплеями на квантовых точках, позиционируя их как революционное решение. Однако многие не знают, что же это такое, некоторые даже путают QLED с OLED из-за похожести этих аббревиатур.

Квантовые точки – это новая технология подсветки экрана, в основе которой лежит использование миниатюрных (несколько нанометров) частиц полупроводников, способных излучать свет под воздействием потока электронов или фотонов. Цвет свечения этих частиц определяется их размером и химическим составом полупроводника. Для изготовления точек используются соединения марганца, цинка, кадмия, а их габариты составляют от 2 (синие) до 6-8 (красные) нанометров.

Размеры квантовых точек и длина оптических волн разного цвета © NanosysРазмеры квантовых точек и длина оптических волн разного цвета © Nanosys

Чтобы разобраться, что такое QLED-телевизоры и чем они особенны, стоит внести небольшую ясность в термины, во избежание путаницы. Поэтому для начала – небольшой глоссарий.

  • LCD – экран, в котором активным элементом выступают жидкие кристаллы (ЖК). Они оснащаются тремя разноцветными (красными, синими и зелеными) светофильтрами на каждый пиксель, и пропускают свет в зависимости от поданного напряжения (0 вольт – не пропускают совсем, максимум – пропускают с максимальной яркостью). Сами ЖК светиться не умеют, свет на них подается от установленной по краю экрана подсветки через рассеивающую пленку. LCD-экраны бывают разных типов: TN, IPS, SVA, PVA. В телевизорах наиболее распространены панели *VA.
  • LED – просто светодиод. В случае с экранами под этим термином подразумевают LCD матрицу, для подсветки которой используются ленты светодиодов (в отличие от популярных в прошлом трубчатых люминесцентных ламп CCFL). Практически все современные ЖК-телевизоры используют LED-подсветку, модели с CCFL сейчас почти не выпускаются.
  • OLED – экран на органических светодиодах. Активным элементом такого дисплея являются миниатюрные (десятки или сотни микрометров) светодиоды на основе органических соединений. В таких матрицах светятся сами пиксели, состоящие из трех диодов синего, красного и зеленого цвета, подсветка по периметру им не нужна. Управление OLED матрицей тоже осуществляется по напряжению, подаваемому на TFT-транзистор субпикселя (чем выше – тем ярче). AMOLED, P-OLED, SuperAMOLED – это разновидности одной технологии.
  • TFT – тонкопленочный транзистор. Активный элемент, используемый для управления субпикселем. Все современные телевизоры (не важно, OLED, LCD или QLED) используют TFT для регулировки напряжения на пикселях и, как следствие, их яркости и цвета.

Что такое QLED экран и как он устроен

Емкости с квантовыми точками разного размера светятся под действием ультрафиолета © Area-Info.netЕмкости с квантовыми точками разного размера светятся под действием ультрафиолета © Area-Info.net

С терминами разобрались – можно переходить к описанию экранов на квантовых точках. Начать стоит с того, что QLED не имеет никакого отношения к OLED. Это принципиально разные технологии экранов. Дисплеи на квантовых точках имеют классическую LCD матрицу (обычно *VA) с LED подсветкой по краю. Это просто новая разновидность жидкокристаллических экранов.

Ключевым отличием от старых матриц (часто называемых сокращенно LED LCD) является способ переноса света от излучающего элемента (подсветки) к пикселям. В обычных ЖК панелях картинка формируется следующим образом:

  1. Лента светодиодов по краю экрана светится чистым белым цветом. Ее яркость зависит от настроек и остается неизменной в процессе работы.
  2. Через специальный рассеивающий слой, расположенный за матрицей жидких кристаллов, белый свет от ленты передается на них (кристаллы).
  3. Каждый пиксель состоит из трех скоплений кристаллов субпикселей, имеющих свои светофильтры: красный, синий и зеленый. Проходя через жидкие кристаллы и фильтры, расположенные поверх них, белый свет приобретает цвет, заданный фильтром (на выходе красного – красный, и т.д.).
  4. TFT-транзистор управляет подачей напряжения на кристаллы. Чем оно выше – тем больше света пропускает субпиксель. За счет комбинации яркостей красного, синего и зеленого кристаллов достигается конечный цвет пикселя. Обычно возможны до 16,7 млн комбинаций яркостей: от черного (напряжения нет, все три субпикселя не пропускают свет) до чисто белого (напряжение максимальное, все три субпикселя пропускают весь поступающий на них свет).

Слои LCD LED (снизу вверх): рассеиватель подсветки, поляризатор, TFT транзисторы, жидкие кристаллы, светофильтры, поляризатор © AWOK.comСлои LCD LED (снизу вверх): рассеиватель подсветки, поляризатор, TFT транзисторы, жидкие кристаллы, светофильтры, поляризатор © AWOK.com

В панелях QLED инженеры изменили способ передачи света от диодов, расположенных по краю экрана, к пиксельной сетке. В составе таких дисплеев появился «посредник» в виде слоя квантовых точек. Эти экраны работают по следующему алгоритму:

  1. Лента светодиодов по краю матрицы излучает свет, обычно он синий. Как и у обычных LCD экранов, яркость задается настройками и не меняется в ходе работы.
  2. Слой рассеивателя подает свет от диодов на прослойку квантовых точек. Они возбуждаются и начинают издавать люминесцентное свечение вне зависимости от оттенка подаваемого света: достаточно просто потока фотонов. Цвет точки зависит от того, какой размер и состав она имеет (см. выше). То есть, даже если подсветить 2-нанометровые частицы бирюзовым или фиолетовым – они будут светиться синим.
  3. Свет от точек поступает на кристаллы, положением которых управляет транзистор. Чем большее напряжение он подает – тем ярче светится субпиксель.
  4. Субпиксели оснащаются светофильтрами, красного, синего и зеленого цвета. Комбинация из трех разноцветных субпикселей, формирует конечный цвет пикселя за счет комбинации яркостей трех субпикселей.

Как можно заметить, ключевое изменение всего одно. В обычной матрице LCD телевизора окончательный цвет субпикселя формируется уже после того, как свет пройдет через рассеиватель, жидкий кристалл и фильтр (до этого момента он белый). В QLED цвет задается только после рассеивателя, слоем квантовых точек. На кристалл поступают волны синего, красного и зеленого цветов, отделяемые фильтрами.

Слои экрана QLED (снизу вверх): подсветка, квантовые точки, поляризатор, TFT транзисторы, жидкие кристаллы, светофильтры, поляризатор © DSCCСлои экрана QLED (снизу вверх): подсветка, квантовые точки, поляризатор, TFT транзисторы, жидкие кристаллы, светофильтры, поляризатор © DSCC

Изменив порядок формирования цвета пикселя, разработчикам QLED удалось добиться повышения КПД подсветки.

Во-первых, с квантовыми точками снижаются требования к качеству ее цветопередачи. Это значит, что можно использовать более долгоживущие и энергоэффективные светодиоды, пусть и с ухудшением некоторых их параметров (оно теперь не играет роли). Главное, чтобы было ярко.

Во-вторых, использование светообразующих точек прямо под кристаллами (после рассеивателя) увеличивает яркость свечения, так как потери яркости на светодиодах подсветки (которые в обычном LCD для образования белого покрываются люминофором, не нужным для QLED) и рассеивателе снижаются. В итоге яркость экрана увеличивается, цветовой охват расширяется, а потребление энергии остается прежним, или даже снижается.

Кроме того, возможно создание экранов без пассивных светофильтров. В них массивы квантовых точек будут располагаться поверх ЖК-слоя, следовательно, потерь света станет еще меньше.

QLED экран без светофильтров, слои (снизу вверх): синяя подсветка, поляризатор, TFT транзисторы, жидкие кристаллы, поляризатор, массивы квантовых точек разных цветов © DSCCQLED экран без светофильтров, слои (снизу вверх): синяя подсветка, поляризатор, TFT транзисторы, жидкие кристаллы, поляризатор, массивы квантовых точек разных цветов © DSCC

Минусами QLED телевизоров являются склонность к выгоранию квантовых точек (пусть и гораздо меньшая, чем у OLED), а также (пока что) сравнительно высокая цена. Однако освоение технологии должно сделать такие ТВ гораздо доступнее, а эффект выгорания выражен слабо, ресурс матрицы может оказаться больше срока эксплуатации устройства.

Причем тут квантовая физика?

Сегодня разработки в области квантовой физики ассоциируются, в основном, с квантовыми компьютерами, в основе работы которых лежит использование принципа квантовой запутанности. Однако экраны телевизоров на квантовых точках прямого отношения к этой технологии не имеют.

Из «квантового» у точек подсветки только то, что при столь миниатюрных размерах частиц полупроводника (нанометры) в них проявляются квантовые эффекты. А механизмы излучения нанокристаллами полупроводника фотонов под воздействием электрического заряда (или света) описываются именно законами квантовой механики.

Зависимо от размера, квантовые точки излучают свет разных цветов, до квантового ограничения © Public Information DisplayЗависимо от размера, квантовые точки излучают свет разных цветов, до квантового ограничения © Public Information Display

Этими законами описывается еще много чего в нашем мире (а если в целом – то на микроуровне ими описывается вообще все), но слово то красивое, вызывающее ассоциации с технологиями будущего, а потому удачное для использования в рекламе. Вот и выбрали эту особенность в качестве ключевой для маркетингового именования технологии.

Хотя, с тем же успехом, экраны QLED телевизоров могли бы называться не «дисплеями на квантовых точках», а «дисплеями на нано-кристаллах» или еще как-то. Ведь из квантового у них – только принцип формирования светового излучения, в то время основа матрицы и подсветки вполне подчиняются законам классической механики. И являются эти матрицы не какой-то революцией, а всего лишь следующей ступенькой эволюции давно освоенных ЖК-телевизоров.

Новая технология в два раза снизит потребление QLED-экранов

Швейцарские учёные предложили технологию, которая в два раза увеличивает интенсивность свечения светодиодов на квантовых точках. Тем самым большеформатные дисплеи на QLED могут двукратно снизить потребление или стать намного ярче.

Свечение пластинки синим светом, возбуждаемым в материале ультрафиолетовой подсветкой (ETH Zurich / Jakub Jagielski)

Свечение пластинки синим светом, возбуждаемым в материале ультрафиолетовой подсветкой (ETH Zurich / Jakub Jagielski)

Традиционная технология производства светодиодов на квантовых точках предполагает изготовление слоя или нескольких слоёв из нанокристаллов сферической формы. Подобные формы означают, что возбуждаемый в нанокристаллах свет распространяется во все стороны, а не только перпендикулярно по направлению к наблюдателю. Очевидно, что это ведёт к потерям и лишним затратам энергии. В нужном направлении распространяется только около 20 % света.

Учёные из Швейцарской высшей технической школы Цюриха (ETH) предложили технологию, которая может в два и более раз увеличить интенсивность свечения светодиодов на квантовых точках. Но прежде мы уточним, что речь идёт именно о светодиодах, в которых слой с квантовыми точками в зависимости от материала может излучать свет заданного цвета: синий, зелёный или красный (жёлтый или оранжевый). Обозначение QLED в данной заметке (и в оригинале) не следует путать с технологией Samsung QLED, которая для формирования цветных экранов использует «монохромные» QLED, накладные цветные фильтры и LCD-панели.

Технология ETH предполагает использование ультрафиолетового источника свечения и несколько материалов с квантовыми точками, каждый из которых возбуждает свет заданной длины волны (цвет). Из таких QLED можно сформировать полноценную триаду. Изобретение швейцарских учёных позволит существенно снизить потребление дисплеев из массивов таких триад. Для этого они научились формировать вместо сферических плоские нанопластинки с квантовыми точками. Более того, если нанопластинки располагать в несколько слоёв друг над другом, то интенсивность свечения существенно возрастает.

Проблема крылась в том, что нанопластинки, расположенные одним слоем, возбуждают свет в одном направлении перпендикулярно своей поверхности, но если сверху для увеличения интенсивности излучения наложить второй слой нанопластинок, то за счёт квантовых взаимодействий между слоями свет начинает распространяться в других направлениях. Учёные преодолели эту трудность и научились изолировать пластинки друг от друга тонкой прослойкой толщиной 0,65 нм. Размеры самих пластинок составили 2,4 нм.

Представленная структура и технология производства QLED позволили увеличить передачу возбуждаемого в материале с квантовыми точками света в направлении наблюдателя до 40 % или в два раза по сравнению с обычной технологией производства. Этого удалось добиться для синего, зелёного, жёлтого и оранжевого цветов. Для красного цвета это пока сделать не получилось.

По словам учёных, по новой технологии светодиоды QLED изготавливаются в одном цикле, что обещает сделать производство менее затратным. Также за счёт многослойного расположения излучающих слоёв можно увеличить интенсивность свечения обычных светодиодов, но это, как раз, потребует увеличения производственных циклов. Обычные светодиоды станут ярче, но будут дороже.

Если вы заметили ошибку — выделите ее мышью и нажмите CTRL+ENTER.

Дисплей на квантовых точках Википедия

«Квантовые точки», облучённые ультрафиолетовым светом. Различные размеры «квантовых точек» излучают различные цвета.

Дисплей на квантовых точках — отображающее устройство, использующее квантовые точки для получения красного, зелёного и синего света. На данный момент существуют коммерческие модели дисплеев, основанного на квантово-точечных светодиодах (QD-LED или QD-OLED).

QLED (от англ. quantum dot, «квантовая точка») — маркетинговое название технологии изготовления ЖК-экранов со светодиодной подсветкой на квантовых точках от компании Samsung. Подобная технология от компании LG Electronics называется NanoCell, от компании Sony — Triluminos[1], от компании Hisense — ULED.

Квантовые точки — это кристаллы, которые светятся, когда подвергаются воздействию тока или света. Они излучают различные цвета в зависимости от размера и материала, из которого они изготовлены. Исследователи заявляют, что дисплеи на квантовых точках могут иметь сниженное в пять раз энергопотребление по сравнению с обычными ЖК-дисплеями (LCD), а также более продолжительный срок службы по сравнению с OLED-дисплеями.
Также утверждается, что стоимость производства может быть вдвое ниже стоимости изготовления ЖК- и OLED-дисплеев[2].

По заявлениям создателей, обеспечивает более низкое потребление энергии, чем остальные технологии, в том числе OLED, и низкую стоимость производства (как и электронная бумага, OLED-дисплеи (а также, в некоторой степени, LCD), претендует на статус основной технологии в гибких дисплеях).
При этом декларируются гораздо более высокие, чем у конкурирующих технологий, яркость и контрастность.

Принцип действия[ | ]

Создание целого телевизионного дисплея из квантовых точек, а не просто использование их в качестве подсветки, было начальной целью QD Vision. Предполагалось взять структуру устройства OLED, но использовать квантовые точки в качестве эмиссионного слоя[3]. Они производят монохроматический свет, поэтому более эффективны, чем источники белого света[4]. QD-LED-дисплеи будут использовать электролюминесцентные квантовые точки в качестве излучающих элементов, управляемые активной матрицей из тонкоплёночных транзисторов (TFT).

На данный момент существуют только лабораторные образцы электроэмиссионных дисплеев. Пока все коммерческие продукты используют фотолюминесцентные квантовые точки для подсветки жидкокристаллических дисплеев. Как оказалось, использование квантовых точек для получения чистого спектрального цвета — это сравнительно недорогой способ обеспечить бли

Эластичный дисплей на квантовых точках / Habr

В микроэлектронике наметился заметный перекос или, если угодно, тренд в сторону различных гибких решений, не требующих подложек, выполненных из стекла или кремния (например, гибкая электроника на основе поликремния). Вот и дисплеи не стали исключением, даже такие экзотические, как дисплеи на квантовых точках.

Итак, что же это за чудный объект такой, квантовая точка? Если мы возьмём кусочек полупроводника (кремния или сульфида кадмия, например) и начнём его дробить в темноте под фиолетовой лампой, то в какой-то момент мы увидим люминесценцию. При этом, чем меньше будет размер частиц полупроводника или квантовой точки, тем короче длину волны люминесценции мы сможем наблюдать (сдвиг в синюю область спектра). Объясняется сие явление увеличением ширины запрещённой зоны полупроводника с уменьшением размера наночастицы. Аналогичное явление будет наблюдаться, если мы подключим квантовую точку к батарейке, и называется оно электролюминесценция. Подсветка Ваших часов скорее всего работает на данном эффекте.

Запрещённая зона полупроводника или диаметр наночастицы и цвет раствора наночастиц ядро-оболочка, а также спектр материалов для изготовления квантовых точек с заданными оптическими свойствами. Источник

Таким образом, чтобы получить красный, зелёный или синий цвета нам нет необходимости разрабатывать новые материалы и технологии их нанесения, как, например, было с OLED-дисплеями. Вместо этого, мы можем синтезировать 3 разных раствора и просто смешать их, чтобы получить заданный цвет или же использовать по отдельности для создания пикселей дисплея. Соответственно, учёные с самого открытия квантовых точек на заре 90-х годов стали задумываться об использовании их в дисплеях, особенно, после удачного внедрения LCD матриц.

Однако осуществить задуманное оказалось не так просто, и вплоть до начала нулевых реального прототипа работающих пикселей или целого дисплея попросту не существовало. Буквально пару лет назад в 2011 году компания Samsung, заинтересовавшись новыми типами дисплеев, провела ряд изысканий, что позволило создать полноценный QLED (quantum dots light emitting diode) дисплей.

В свежей работе, опубликованной в журнале ACSNano, группа учёных из Сингапура и Турции представила концепцию очень гибкого дисплея на квантовых точках, который – кто знает – может быть, через пару лет будет анонсирован вместе с новым Samsung 7, например.

Основные проблемы создания таких дисплеев: ограниченный круг подходящих материалов и плохая механическая устойчивость к перегибам и скручиванию. Однако, использование полиимида, каптона, позволяет решить часть проблем, оптимизировать процесс и получить на выходе довольно большие (квадратные миллиметры) QLED с яркостью 20 000 кд/м2, что на сегодняшний день является рекордом в области гибких диодов на квантовых точках.

(a) Схема разработанного QLED (слои сверху вниз: полимерная плёнка из Каптона/Al/ZnO наночастицы/CdSe-CdS-ZnS квантовые точки/полимер TCTA/MoO3/Ag), (b) AFM-изображение полученной плёнки, (с) диаграмма электронных уровней и (d) работающий QLED

Механические свойства полученного устройства настолько хороши, что его можно использовать как стикер, приклеивая и отклеивая по нескольку раз, а также изгибая во всевозможных направлениях (яркость в относительных единицах падает не значительно, не более 5%). Что касается оптических характеристик, то изготовленные диоды выдержали тест, продемонстрировав максимальную яркость в 20 000 кд/м2 при внешней квантовой эффективности в 4%.

(a) Нормализованные спектры электролюминесценции для изготовленных диодов, (b) охват спектра RGB в CIE координатах (для сравнения приведён аналогичный охват для стандарта HDTV), (с) яркость и (d) внешний квантовый выход диодов

И в заключение для примера приведу демонстрацию работы диодов в реальных, так сказать, полевых условиях:

Демонстрация работы QLED на плоских (a-d) и изогнутых поверхностях (e-f)

Оригинальная статья в ACSNano (DOI: 10.1021/nn502588k)

PS: LeoMat подсказал, что Apple подало 3 патента на QLED дисплеи в самом конце 2013 года.


Полный список опубликованных статей This is Science на GeekTimes:
This is Science: Простая и дешёвая солнечная энергетика
This is Science: Графен – жизнь или смерть?
This is Science: Вдувай и получай электроэнергию
This is Science: Кремниевая электроника: согни меня полностью!
This is Science: Эластичный дисплей на квантовых точках
This is Science: Поставить трибоэлектричество на службу человечеству
This is Science: 3D оптическая печать переезжает на микроуровень
This is Science: Что внутри нейроморфного чипа?
This is Science: Новости с графеновых полей
This is Science: 3D электронная литография в массы
This is Science: Разряд щелочных батареек или почему батарейка подпрыгивает
This is Science: микропушки и наноядра
This is Science: носимая электроника и трибоэлектричество. Часть 1
This is Science: носимая электроника и трибоэлектричество. Часть 2


Иногда кратко, а иногда не очень о новостях науки и технологий можно почитать на моём Телеграм-канале — милости просим;)

Дисплей на квантовых точках Википедия

«Квантовые точки», облучённые ультрафиолетовым светом. Различные размеры «квантовых точек» излучают различные цвета.

Дисплей на квантовых точках — отображающее устройство, использующее квантовые точки для получения красного, зелёного и синего света. На данный момент существуют коммерческие модели дисплеев, основанного на квантово-точечных светодиодах (QD-LED или QD-OLED).

QLED (от англ. quantum dot, «квантовая точка») — маркетинговое название технологии изготовления ЖК-экранов со светодиодной подсветкой на квантовых точках от компании Samsung. Подобная технология от компании LG Electronics называется NanoCell, от компании Sony — Triluminos[1], от компании Hisense — ULED.

Квантовые точки — это кристаллы, которые светятся, когда подвергаются воздействию тока или света. Они излучают различные цвета в зависимости от размера и материала, из которого они изготовлены. Исследователи заявляют, что дисплеи на квантовых точках могут иметь сниженное в пять раз энергопотребление по сравнению с обычными ЖК-дисплеями (LCD), а также более продолжительный срок службы по сравнению с OLED-дисплеями.
Также утверждается, что стоимость производства может быть вдвое ниже стоимости изготовления ЖК- и OLED-дисплеев[2].

По заявлениям создателей, обеспечивает более низкое потребление энергии, чем остальные технологии, в том числе OLED, и низкую стоимость производства (как и электронная бумага, OLED-дисплеи (а также, в некоторой степени, LCD), претендует на статус основной технологии в гибких дисплеях).
При этом декларируются гораздо более высокие, чем у конкурирующих технологий, яркость и контрастность.

Принцип действия

Создание целого телевизионного дисплея из квантовых точек, а не просто использование их в качестве подсветки, было начальной целью QD Vision. Предполагалось взять структуру устройства OLED, но использовать квантовые точки в качестве эмиссионного слоя[3]. Они производят монохроматический свет, поэтому более эффективны, чем источники белого света[4]. QD-LED-дисплеи будут использовать электролюминесцентные квантовые точки в качестве излучающих элементов, управляемые активной матрицей из тонкоплёночных транзисторов (TFT).

На данный момент существуют только лабораторные образцы электроэмиссионных дисплеев. Пока все коммерческие продукты используют фотолюминесцентные квантовые точки для подсветки жидкокристаллических дисплеев. Как оказалось, использование квантовых точек для получения чистого спектрального цвета — это сравнительно недорогой способ обеспечить близкую к естественной цветопередачу для жидкокристаллических матриц.

Технология

В цветных дисплеях каждый пиксель содержит красный, зелёный и синий субпиксель. Эти цвета комбинируются с различной интенсивностью для получения миллионов оттенков. Исследователи смогли создать повторяемые образцы из красных, зелёных и синих полосок, многократно повторяя технологию литографического нанесения. Полоски наносятся непосредственно на матрицу тонкоплёночных транзисторов. Транзисторы сделаны из аморфного индий-галлий-цинкового оксида (IGZO), обладающего более высокой подвижностью электронов и являющегося полупроводником электронного типа проводимости, имеющего лучшую стабильность, чем транзисторы из аморфного гидрированного кремния (a-Si). В результате дисплей имеет субпиксели около 50 микрометров в ширину и 10 микрометров в длину, достаточно малого размера, чтобы было возможно использовать их в экранах телефонов[2].

История

Идея использования квантовых точек в качестве источника света впервые была разработана в 1990-х годах[источник не указан 974 дня].
В начале 2000-х учёные начали понимать весь потенциал квантовых точек в качестве следующего поколения дисплеев. В 2004 году для разработки технологии QLED была основана лаборатория QD Vision (США, Лексингтон (Массачусетс)). В последствии к ней присоединились компании LG Electronics и Samsung Electronics.

В феврале 2011 года исследователи из Samsung представили разработки первого полноцветного дисплея на основе квантовых точек — QLED. 4-дюймовый дисплей управлялся активной матрицей, это означает, что каждый цветной пиксель с квантовой точкой может включаться и выключаться тонкоплёночным транзистором. Исследователи сделали прототип на стекле и на гибком пластике. Для создания прототипа на кремниевую плату наносится слой раствора квантовых точек и напыляется растворитель. Затем слой квантовых точек аккуратно запрессовывается в резиновый штамп с гребенчатой поверхностью, отделяется и штампуется на стекло или гибкий пластик. Так осуществляется нанесение полосок квантовых точек на подложку[5].

Использование высокотоксичного кадмия, который в основном применялся в производстве квантовых точек, ограничено 0,01 % по весу однородного материала[6]. Благодаря сотрудничеству Samsung с химической компанией Dow Chemical в 2015 году проблема была решена применением материалов содержащих индий вместо кадмия[7]. В создании технологии квантовых точек без кадмия LG тоже сотрудничает с Dow Chemical и LG Chem.

Путаница в терминах

Все существующие дисплеи, которые заявляются как QLED, по факту являются LCD-матрицей со светодиодной подсветкой на квантовых точках, то есть единственное их преимущество перед LCD — это расширенный цветовой охват. По сравнению с OLED-телевизорами (где сами пиксели являются маленькими светодиодами), использующими электролюминесценцию, у телевизоров на QLED нет настоящего чёрного цвета и бесконечной контрастности, используется фотолюминесценция — переизлучение света в другом диапазоне частот. По аналогии, LED-телевизоры — это также не электролюминесцентное излучение как OLED, а вид подсветки, где вместо ранее применявшихся люминесцентных ламп с холодным катодом используется панель из светодиодов (LED).

Технология подсветки на квантовых точках Color IQ

Технология была разработана компанией QD Vision и использована в телевизорах Sony, выпущенных в 2013 году[8], TCL Corporation, Hisense (K7100)[9].

Свет от синего светодиода проходит через трубку, заполненную красными и зелёными квантовыми точками, которые флуоресцируют и генерируют красный и зелёный свет. Из трубки выходит белый свет, состоящий из смеси оригинального чистого синего, чистого красного и чистого зелёного. Трубки подсветки размещаются по краям дисплея[10].

Технология QLED

Название принадлежит Samsung, но его разрешено использовать всем членам QLED Alliance, созданного в апреле 2017 года[11].

Технология QDEF (quantum dot enhancement film — улучшающая плёнка с квантовыми точками)[12]

Строение жк-дисплея с плёнкой QDEF

Технология была разработана компанией Nanosys (англ.)русск. и представлена на выставке SID (англ.)русск. в 2011 году. Она призвана улучшить цветовую гамму, яркость и контраст экрана. Данная технология используется в телевизорах Samsung, TCL Corporation, Hisense, Philips, планшете Amazon Kindle Fire HD 7, ноутбуке ASUS Zenbook NX-500.

В жк-панелях между блоком подсветки из синих светодиодов и слоем с жидкими кристаллами (LCM) добавляется плёнка, пропитанная случайно распределёнными квантовыми точками двух разных размеров — одни излучают зелёный свет, другие — красный. Красный и зелёный свет смешивается с непоглощённым синим светом, и таким образом формируется белый. Затем он проходит через субпиксельный цветовой фильтр (BEF).

Технология QDОG (QD on Glass — квантовые точки на стекле)

Технология появилась в 2018 году, а телевизоры с экранами QDОG должны появиться в 2019-м. Технология позволяет сделать телевизоры тоньше и дешевле[13].

Квантовые точки нанесены на тонкий лист стекла, которое служит световодом.

Технология QDCF (QD color filter — квантово-точечный цветовой фильтр)

Технология позволяет отказаться от цветного матричного фильтра. Вместо зелёного и красного субпикселей используются ячейки с квантовыми точками, вместо синего субпикселя — прозрачный рассеивающий слой, который пропускает голубой свет от светодиодной подсветки. Сложность метода состоит в том, что квантовые точки должны быть расположены очень близко друг к другу, чтобы между ними не проходил синий свет и не мешал получать чистые цвета. Nanosys совместно с производителем чернил Dic Corporation (англ.)русск. разработали метод нанесения квантовых точек с помощью струйной печати, который был представлен в 2017 году[14].

Технология NanoCell

Технологию представила компания LG Display в 2017 году на выставке CES[15]. Она позволила расширить цветовой охват и увеличить угол обзора.

Традиционные экраны IPS обычно снабжены белой светодиодной подсветкой (WLED), которая позволяет им воспроизводить цвета в стандартном цветовом пространстве RGB. В технологии Nano IPS на белые светодиоды (а не на дополнительный светорассеивающий слой, как в QLED) наносится слой наночастиц (отсюда название Nano IPS) — квантовых точек размером менее 2 нм. Они поглощают свет с определённой длиной волны, например, ненужные оттенки желтого и оранжевого, что улучшает точность передачи оттенков красного[16].

LG Electronics использует безкадмиевые квантовые точки Nanoco (англ.)русск., поставляемые Dow Chemical.

Производство

Дистрибьютор MMD (Philips Monitors) и компания QD Vision сообщили, что в Китае начались продажи первого в мире монитора на квантовых точках. Выпускает мониторы гонконгская компания TPV Technology, выкупившая 2011—2014 году бренд «Philips»[17]. Речь идёт о 27-дюймовом мониторе 276E6ADS, который, благодаря технологии QD Vision, позволяет говорить о появлении профессиональных дисплеев по цене потребительских моделей. Он был представлен на выставке CES 2015. В основе устройства лежит панель IPS, разрешение панели 1920х1080 пикселей, время отклика 4 мс, максимальная яркость 300 кд/м². Монитор охватывает 99 % пространства Adobe RGB[18].

2013: телевизоры от Sony серий W900 (модель Ultra HD 55W900)[19] и X900 (65X900, 55X900)[8], планшет Amazon Kindle Fire HDX 7[20].

2014: на выставке Computex ASUS представила ноутбук Zenbook NX500 с дисплеем, использующим технологию QDEF (Quantum Dot Enhancement Film)[21].

2015: телевизоры от TCL Corporation, Hisense, Samsung, LG Electronics[22].

2016: телевизоры с прямым экраном от Samsung серий Q9F и Q7F (75-, 65- и 55-дюймовые модели).

2017: телевизоры с изогнутым экраном от Samsung серий Q7C (диагонали 49 и 55 дюймов) и Q8C (диагонали 55, 65 и 75 дюймов) и мониторы серий CHG90 и CHG70 от Samsung . Буква «С» в серии означает «Curved» (изогнутый). На выставке CES 2017 Samsung переименовала свою технологию подсветки «SUHD» в «QLED»[23]. Телевизоры от LG серий SJ9500, SJ8500 и SJ8000. Также в этом году появился планшет с технологией Quantum Dot Iconia Tab 10 от Acer[24], игровые мониторы Acer Predator X27 и ASUS ROG Swift PG27UQ.

2018: монитор ASUS ProArt PA32UC[25].

Критика

По заявлению Сэта Коу-Салливана (Seth Coe-Sullivan), основателя и руководителя компании QD Vision, множество проблем было решено исследователями и инженерами фирмы Samsung, однако лучшие устройства на квантовых точках не столь эффективны, как дисплеи на основе органических светодиодов. Также необходимо увеличить срок службы, так как яркость QLED дисплеев начинает уменьшаться спустя 10 000 часов[2].

Ссылки

Примечания

  1. ↑ Quantum dots help return ‘Triluminos’ RGB LED lighting to Sony HDTVs (англ.). engadget (14 January 2013).
  2. 1 2 3 The First Full-Color Display with Quantum Dots (рус.). MIT Technology Review (22 ноября 2011). Дата обращения 7 апреля 2019. (недоступная ссылка)
  3. ↑ CES 2015: What the Heck Are Quantum Dots? (рус.). IEEE Spectrum (2 января 2015). Дата обращения 16 мая 2019.
  4. ↑ Белый свет содержит не только чистый красный, зеленый и синий, которые составляют телевизионное изображение, но и розовые, желтые и другие дополнительные элементы, искажающие красные, зеленые и синие тона. Эти посторонние цвета блокируются фильтрами, что снижает яркость картинки.
  5. ↑ Квантовые точки и зачем их ставят (рус.). habr (4 декабря 2016). Дата обращения 1 июня 2019.
  6. ↑ ТР ЕАЭС 037/2016 (рус.). Решение Совета Евразийской экономической комиссии от 18 октября 2016 года N 113. Дата обращения 19 апреля 2019.; Директива 2011/65/EU от 8 июня 2011 года (рус.). Европейский парламент и Совет ЕС. Дата обращения 16 мая 2019.
  7. ↑ Samsung may introduce cadmium-free quantum dots LCD TVs in 2015 (рус.). Оled-info (22 октября 2014). Дата обращения 18 апреля 2019.
  8. 1 2 What are Quantum Dots, and how could they help your next TV? (англ.). CNET (18 February 2013). Дата обращения 14 мая 2019.
  9. ↑ У Hisense готов первый в мире телевизор с изогнутым экраном, в котором применена технология квантовых точек QD Vision Color IQ (рус.). ixbt.com (6 июня 2015). Дата обращения 23 мая 2019.
  10. ↑ CES 2015: What the Heck Are Quantum Dots? (рус.). IEEE SPECTRUM (2 января 2015). Дата обращения 23 мая 2019.
  11. ↑ Samsung, TCL и Hisense создали QLED Alliance (рус.). STEREO&VIDEO (27 апреля 2017). Дата обращения 1 июня 2019.
  12. ↑ Nanosys Quantum-Dot Update at CES 2018 (рус.). AVSFORUM (18 января 2018). Дата обращения 10 мая 2019.
  13. ↑ Samsung изменит технологию квантовых точек для телевизоров (рус.). DailyComm (5 июля 2018). Дата обращения 19 мая 2019.
  14. ↑ Nanosys and DIC Announce Inkjet-Printed Quantum-Dot Process (рус.). AVSForum (4 декабря 2017). Дата обращения 22 мая 2019.
  15. ↑ LG представляет новую линейку телевизоров на базе технологии Nano Cell (рус.). 4pda (10 января 2017). Дата обращения 16 мая 2019.
  16. ↑ Технология Nano IPS (рус.). НИКС (1 ноября 2018). Дата обращения 10 мая 2019.
  17. ↑ Philips передает оставшиеся 30% акций совместного предприятия TP Vision (рус.). hifinews.ru (23 января 2014). Дата обращения 10 апреля 2019.
  18. ↑ Philips 276E6ADS — первый монитор на квантовых точках в розничной продаже (рус.). 3DNEWS (6 июня 2015). Дата обращения 10 апреля 2019.
  19. ↑ Технология Sony Triluminos (рус.). hifinews.RU (26 марта 2013). Дата обращения 7 апреля 2019.
  20. ↑ Mini Tablet Display Technology Shoot-Out (англ.). DisplayMate (2013). Дата обращения 21 мая 2019.
  21. Чуб А. Цена и сроки начала продаж ультрабука ASUS Zenbook NX500 с экраном 3840×2160 (рус.). gagadget.com (12 июня 2014). Дата обращения 11 апреля 2019.
  22. ↑ Телевизоры с технологией Quantum Dot на выставке CES 2015 (рус.). HDTV.RU (12 января 2017). Дата обращения 7 апреля 2019.
  23. ↑ Samsung представляет QLED телевизоры (рус.). LCD телевизоры. Характеристики и параметры. Дата обращения 11 апреля 2019.
  24. Карасёв С. Acer оснастила планшет Iconia Tab 10 дисплеем с технологией Quantum Dot (рус.). 3DNEWS (26 мая 2017). Дата обращения 17 апреля 2019.
  25. ↑ Asus ProArt PA32UC 4K HDR профессиональный монитор (рус.). ULTRAHD (18 марта 2018). Дата обращения 22 мая 2019.

Дисплей на квантовых точках — Википедия

«Квантовые точки», облучённые ультрафиолетовым светом. Различные размеры «квантовых точек» излучают различные цвета.

QD-LED, QLED (от англ. quantum dot, «квантовая точка») — маркетинговое название технологии изготовления ЖК экранов от компании Samsung. Подобная технология от компании LG Electronics называется Nano Cell.

Квантовые точки — это полупроводниковые нанокристаллы, которые светятся, когда подвергаются воздействию тока или света. Они излучают различные цвета в зависимости от их размера и материала, из которого они изготовлены. Исследователи заявляют, что дисплеи на квантовых точках могут иметь сниженное в пять раз энергопотребление по сравнению с обычными ЖК-дисплеями (LCD), а также более продолжительный срок службы по сравнению с OLED-дисплеями.
Также утверждается, что стоимость производства может быть вдвое ниже стоимости изготовления ЖК- и OLED-дисплеев[1].

По заявлениям создателей, обеспечивает более низкое потребление энергии, чем остальные технологии, в том числе OLED, и низкую стоимость производства (как и электронная бумага, OLED-дисплеи (а также, в некоторой степени, LCD), претендует на статус основной технологии в гибких дисплеях).
При этом декларируются гораздо более высокие, чем у конкурирующих технологий, яркость и контрастность.

Технология QLED

В цветных дисплеях каждый пиксель содержит красный, зелёный и синий субпиксель. Эти цвета комбинируются с различной интенсивностью для получения миллионов оттенков. Исследователи смогли создать повторяемые образцы из красных, зелёных и синих полосок, многократно повторяя технологию литографического нанесения. Полоски наносятся непосредственно на матрицу тонкоплёночных транзисторов. Транзисторы сделаны из аморфного индий-галлий-цинкового оксида (IGZO), обладающего более высокой подвижностью электронов и являющегося полупроводником электронного типа проводимости, имеющего лучшую стабильностью, чем транзисторы из аморфные гидрированного кремния (a-Si). В результате дисплей имеет субпиксели около 50 микрометров в ширину и 10 микрометров в длину, достаточно малого размера, чтобы было возможно использовать их в экранах телефонов[1].

История

Идея использования квантовых точек в качестве источника света впервые была разработана в 1990-х годах[источник не указан 498 дней].
В начале 2000-х учёные начали понимать весь потенциал квантовых точек в качестве следующего поколения дисплеев.

В феврале 2011 года исследователи из Samsung Electronics представили разработки первого полноцветного дисплея на основе квантовых точек — QLED. 4-дюймовый дисплей управлялся активной матрицей, это означает, что каждый цветной пиксель с квантовой точкой может включаться и выключаться тонкоплёночным транзистором. Исследователи сделали прототип на стекле и на гибком пластике.
Для создания прототипа на кремниевую плату наносится слой раствора квантовых точек и напыляется растворитель. Затем слой квантовых точек аккуратно запрессовывается в резиновый штамп с гребенчатой поверхностью, отделяется и штампуется на стекло или гибкий пластик. Так осуществляется нанесение полосок квантовых точек на подложку.

В июне 2013 года в Physical Review Letters была опубликована статья с результатами открытия, сделанного учёными из индийского Института науки в Бангалоре. Согласно ему, квантовые точки, созданные на базе сплава цинка, кадмия и серы, легированного марганцем, светятся не только оранжевым цветом, как считалось до сих пор, а люминесцируют в диапазоне от тёмно-зелёного до красного. Практическая значимость открытия состоит в том, что квантовые точки из легированных марганцем сплавов прочнее, эффективнее и не требуют высокотоксичного кадмия, который в основном применялся в производстве квантовых точек.

Ещё несколько лет назад дисплеи на базе этой технологии считались сложными в производстве, так как требовали использования опасного для людей кадмия. Однако Samsung отмечает, что благодаря сотрудничеству с химическими компаниями эта проблема была решена применением материалов содержащих индий [когда?]вместо кадмия .

Путаница в терминах

Все существующие дисплеи, которые заявляются как QLED, по факту являются LCD-матрицей со светодиодной подсветкой на квантовых точках, т.е. единственное их преимущество перед LCD — это расширенный цветовой охват. По сравнению с OLED-телевизорами (где сами пиксели являются маленькими светодиодами), использующими электролюминесценцию, у телевизоров на QLED нет настоящего черного цвета и бесконечной контрастности, используется фотолюминесценция — переизлучение света в другом диапазоне частот. По аналогии, LED-телевизоры — это также не электролюминесцентное излучение как OLED, а вид подсветки, где вместо ранее применявшихся люминесцентных ламп с холодным катодом используется панель из светодиодов (LED).

Технология «квантовых точек» представляет собой решение для получения чистого спектрального цвета: красного и зелёного (из спектра излучения синих светодиодов). Как оказалось, это сравнительно недорогой способ обеспечить близкую к естественной цветопередачу для жидкокристаллических матриц.

Производство

Дистрибьютор MMD (Philips Monitors) и компания QD Vision сообщили, что в Китае начались продажи первого в мире монитора на квантовых точках. Выпускает мониторы гонконгская компания TPV Technology, выкупившая несколько лет назад бренд «Philips». Речь идёт о 27-дюймовом мониторе 276E6ADS, который, благодаря технологии QD Vision, позволяет говорить о появлении профессиональных дисплеев по цене потребительских моделей.
В пресс-релизе нет подробной информации о новинке. Ранее сообщалось, что разрешение панели равно 1920х1080 пикселей, время отклика находится на уровне 5 мс, максимальная яркость 300 кд/м² и охватывает 99 % пространства Adobe RGB.[источник не указан 498 дней]

2016: телевизоры от Samsung серий Q9F и Q7F (75-, 65- и 55-дюймовые модели).

Критика

По заявлению Сэта Коу-Салливана (Seth Coe-Sullivan), основателя и руководителя компании QD Vision, множество проблем было решено исследователями и инженерами фирмы Samsung, однако лучшие устройства на квантовых точках не столь эффективны, как дисплеи на основе органических светодиодов. Также необходимо увеличить срок службы, так как яркость QLED дисплеев начинает уменьшаться спустя 10 000 часов[1].

Ссылки

Примечания

Оставьте комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *