Что такое память рам – Увеличиваем производительность системы с помощью RAM-диска — «Хакер»

Содержание

Что такое RAM и ROM-память?

Все смартфоны имеют определенный объем памяти, и это один из ключевых моментов, который вы должны учитывать при покупке нового телефона. Существует два вида памяти: RAM (оперативная) и ROM (постоянная, внутренняя). RAM-память, как правило, имеет меньший объем, а назначение ее состоит в том, чтобы хранить информацию, обрабатываемую процессором.

ROM-память относится к категории долговременной памяти, и в ней можно установить всю операционную систему, а также приложения и различные файлы.

Итак, давайте рассмотрим подробнее эти два вида памяти.

Что такое RAM?

Чтобы понять, что такое оперативная память, вам нужно узнать, что обозначает аббревиатура «RAM». В переводе с английского это значит «Память с произвольным доступом», или также «Оперативное запоминающее устройство» (ОЗУ). Говоря иначе, информация в такой памяти может быть прочитана и записана в любой момент, без необходимости ожидания выполнения ряда процессов.

Это значительно ускоряет поиск тех или иных данных, так как, в отличие от ROM-памяти или памяти формата microSD, можно быстро получить доступ к физическому местоположению, где хранится данные.

Особенности RAM-памяти

Оперативная память – это то место, которое любое устройство использует для заполнения какими-либо данными, например, операционная система, приложения, используемые по прямому назначению и те, которые работают в фоновом режиме. RAM – это хранилище, откуда процессор получает всю необходимую информацию напрямую.

Вот поэтому ОЗУ и процессор располагаются на единой платформе-модуле, которая припаяна к материнской плате. На изображении ниже вы можете увидеть материнскую плату Nexus 5X. Этот девайс имеет оперативную память на 2 гигабайта, процессор, отмеченный красным цветом, и внутреннюю память с оранжевой отметкой.

RAM и ROM память фото 1

Чем больший объем RAM-памяти присутствует в вашем телефоне, тем лучше производительность и скорость работы девайса в целом, хотя это также зависит от типа памяти и качества сборки телефона.

Важный момент: оперативная память работает только тогда, когда устройство включено – то есть, такой тип памяти не способен хранить информацию после выключения девайса. Вот поэтому имеется небольшая задержка при включении смартфона, во время которой оперативная память подготавливается для работы с ОС устройства.

Виды оперативной памяти

На сегодняшний день существует множество видов RAM-памяти, которые различаются между собой по скорости чтения и потребляемой мощности. Самые первые сообщения об оперативной памяти появились в 60-х годах прошлого столетия, и с тех пор каждое новое поколение ОЗУ характеризовалось большей емкостью, скоростью и энергоэффективностью.

В наши дни в смартфонах используется особый вид RAM-памяти, называемый LPDDR. Такая память расходует очень мало энергии, с одной стороны, но с другой, она недешева. Наиболее распространены такие виды ОЗУ: LPDDR2, LPDDR3 и LPDDR4 – это последние три поколения оперативной памяти для мобильных устройств. Главное различие между ними состоит в том, что у каждого последующего поколения наблюдается удвоение скорости передачи данных.

RAM и ROM память фото 2

Что такое ROM?

Если RAM – это память уровня «чтение-запись», то ROM является памятью, рассчитанной лишь для сохранения информации. Аббревиатура «ROM» переводится на русский как «Память, доступная лишь для чтения» (отечественный вариант – «Постоянное запоминающее устройство» (ПЗУ). Данные, хранящиеся в такой памяти, не могут быть изменены – по крайней мере, сделать это не так легко или быстро.

В более новых поколениях ПЗУ, таких как EPROM или Flash EEPROM (флеш-память), содержимое может быть удалено и перезаписано большое количество раз, но такая память по-прежнему считается «только для чтения». Основная причина этого заключается в том, что процесс стирания и записи относительно медленный, и он может быть использован лишь для мест, подвергнувшихся процессу форматирования.

Сегодня ROM-память в смартфонах намного быстрее, чем жесткие диски обычных ПК, а модули с данным видом памяти также монтируются непосредественно на материнской плате. В этом виде памяти хранится особная программа-загрузчик, которая запускает устройство и загружает операционную систему, а также сама ОС, все приложения и пользовательские данные.

Как правило, модифицированные версии операционной системы также относятся к ROM-памяти (такие версии еще называют «пользовательские прошивки ОС»). Быстрый поиск онлайн скажет вам, что существует множество вариантов пользовательских прошивок. Такие прошивки именуются «ROM» потому, что каждая из них представляет собой образ системы, подобный тому, который записан в ROM-память заводом-изготовителем.

Была ли наша статья полезной для вас? Что вам было бы еще интересно узнать на эту тему? Поделитесь с нами вашими мыслями в комментариях.

Что такое ОЗУ или RAM в телефонах и смартфонах

Изучая технические характеристики телефонов и смартфонов, пользователи часто задаются вопросом, что такое ОЗУ или RAM и на что оно влияет. Если вас также интересуют эти вопросы, то предлагаем вам ознакомиться с данной статьей.

Что такое ОЗУ или RAM

чипы ОЗУ для мобильных устройств Аббревиатура ОЗУ расшифровывается как Оперативное Запоминающее Устройство и означает оперативную память. Фактически, термин Оперативное Запоминающее Устройство или ОЗУ — это более правильное название для оперативной памяти. Такой термин часто используют в профессиональной литературе для программистов и компьютерщиков.

Что касается аббревиатуры RAM, то она расшифровывается как Random Access Memory и также обозначает оперативную память. Все эти термины означают одно и тоже – оперативную память. Поэтому если в характеристиках телефона или смартфона указано «RAM 2 Gb» или «ОЗУ 2 Гб», то это означает, что объем оперативной памяти данного мобильного устройства составляет 2 Гигабайта.

Также в характеристиках телефонов или смартфонов можно встретить такие аббревиатуры как ПЗУ или ROM (вариант ROM используется редко). ПЗУ – это Постоянное запоминающее устройство, а ROM – это Read-only memory. Этими терминами обозначают постоянную память смартфона (ее еще иногда называют внутренней). Поэтому путать термины ПЗУ и ОЗУ либо RAM и ROM нельзя, они обозначают совершенно разные типы памяти и выполняют разные задачи. ОЗУ и RAM – это оперативная память, а ПЗУ и ROM – это постоянная (внутренняя) память.

Для чего нужна ОЗУ

Оперативная память или ОЗУ – это быстрая энергозависимая память, которая присутствует в любой компьютерной технике. Есть она и в мобильных устройствах, например, в телефонах, смартфонах и умных часах. ОЗУ используется для хранения данных, которые нужны процессору для работы. В частности, в оперативной памяти хранится код запущенных приложений и нужные им данные.

Как уже было сказано, основными особенностями ОЗУ являются высокая скорость работы и зависимость от питания. По факту оперативная память – это самая быстрая память в компьютере, если не считать регистры и кэш, которые находятся непосредственно в самом процессоре. Зависимость от питания означает, что оперативная память может хранить данные только пока присутствует напряжение электропитания. Как только напряжение пропадает, все данные в оперативной памяти обнуляются. Поэтому оперативная память используется только для временного хранения данных, которые нужны компьютеру для работы в данный момент. Для долговременного хранения данных используется постоянная память (ПЗУ, ROM), которая не зависит от питания и продолжает хранить информацию даже после полного выключения.

На что влияет объем ОЗУ

Производители телефонов, смартфонов и другой умной техники часто делают акцент на объеме ОЗУ. В рекламных материалах часто можно увидеть громкие заголовки, сообщающие о том, что устройство оснащено 2, 4, 6 или даже 8 гигабайтами оперативной памяти. Но, при этом производители редко объясняют, что конкретно получит пользователь если выберет устройство с таким объемом ОЗУ.

Большинство пользователей считают, что объем ОЗУ влияет на скорость работы их телефона. Частично так и есть, ведь чем больше объем оперативной памяти, тем реже системе нужно обращаться к постоянной памяти, которая заметно медленней. На практике, это означает, что телефон быстрее реагирует на действия пользователя, быстрее открывает приложения, реже перезагружает вкладки в браузере и т.д.

Но, нужно понимать, что скорость работы телефона также зависит от тактовой частоты процессора, количества вычислительных ядер, тактовой частоты оперативной памяти и программного обеспечения. Поэтому увеличение объема ОЗУ далеко не всегда дает улучшение, которое можно было бы заметить невооруженным взглядом.

Как посмотреть объем ОЗУ

Если вы хотите узнать, какой объем ОЗУ установлен в вашем телефоне или смартфоне, то для этого можно воспользоваться специальными приложениями, предоставляющими информацию об устройстве. Например, можно воспользоваться приложением AIDA64, которое доступно как на Android, так и на iOS.

Если у вас телефон на базе Android, то вам нужно запустить приложение AIDA64 и перейти в раздел «Система».

AIDA64 на Android

А в случае iOS нужно запустить приложение AIDA64 и открыть раздел «Memory».

AIDA64 на iOS

Также вы можете просто ввести название вашего устройства в любую поисковую систему и посмотреть характеристики в интернете.

Оперативная память телефона (RAM) — сколько нужно Гб

Читайте, что такое оперативная память и сколько ее нужно смартфону, чтобы он справлялся с повседневными задачами. А сколько нужно RAM, чтобы играть в игры на высоких настройках. И нужно ли гнаться за 8 и 12Гб RAM.

Что такое оперативная память (RAM или ОЗУ)

Оперативная память (RAM, ОЗУ – аббревиатуры) – это кратковременное цифровое устройство хранения данных. Смартфоны, как и компьютеры, используют оперативную память в основном для хранения данных, которые используют запущенные приложения. Все потому, что оперативная память очень быстрая. Даже самый быстрый жесткий диск или флэш-накопитель работает медленно по сравнению с ОЗУ.

Сколько RAM бывает в смартфонах

Еще в первые годы появления Android в смартфонах было 512 МБ памяти, а флагманы могли похвастаться даже 1 ГБ. Так началась революция в мире телефонов и смартфонов. Со временем RAM становилось только больше. К 2018 году большинство высокотехнологичных смартфонов имели на борту 3 ГБ оперативной памяти, а в 2018 и 2019 годах 4 ГБ стали фактическим стандартом. Казалось бы, куда еще больше? Но в продаже все больше телефонов с 6 ГБ, 8 ГБ, даже 10 ГБ и 12 ГБ ОЗУ.

Наверняка  у вас дома есть ноутбуки под управлением Windows 10 с 4 ГБ оперативной памяти. MacBook имеет 8 ГБ оперативной памяти и может работать с требовательными приложениями, такими как Premiere Pro или Photoshop. Неужели, вы всерьез думаете, что телефону требуется больше оперативной памяти, чем ноутбуку?

Как Android смартфон использует оперативную память

оперативная память в смартфоне RAMоперативная память в смартфоне RAM

Чтобы понять, достаточно ли смартфону оперативной памяти и сколько ее должно быть, надо разобраться, как она используется.

Когда вы запускаете новое приложение на Android, ядро Linux создает новый процесс. Процесс – это единица исполнения с собственным виртуальным адресным пространством (которое сопоставляется с физической памятью). Ядро Linux управляет ресурсами, необходимыми для этого процесса. Сюда входят: время работы процессора, ввод и вывод данных и физическую память (RAM).

Когда имеется достаточно ресурсов, работа ядра проста. Если процесс требует больше процессорного времени, ядро может легко предоставить ему больше времени на выполнение и больше оперативной памяти.

Однако, когда ресурсы ограничены, все усложняется. Если процессор (CPU) смартфона перегружен, то ядро ждет завершения процесса. И все это время, выделенная оперативная память все еще занята. А если таких процессов много? Они быстро могут скушать всю вашу RAM. И телефон станет ни на что не реагирующим кирпичом.

Linux и Android справляются с этой проблемой двумя способами.

Первый способ, когда Android может выделить часть внутренней памяти (ROM) для файла подкачки. Именно так поступают ОС на компьютерах. При недостатке памяти на диск записываются самые старые и наименее используемые части оперативной памяти. И занимаемая ими RAM становится доступной для других процессов. Если позднее эти данные потребуются, они считываются с диска и записываются обратно в оперативную память.

Второй способ смартфону быть быстрым – “убивать” старые процессы. Обычно это те, что были запущены давно и на данный момент не используются

На самом деле, все телефоны обязательно используют первый и второй способы. Больший объем оперативной памяти позволяет реже использовать “убийство”. Именно поэтому компании-производители увеличивают объем оперативной памяти телефонов буквально каждый год.

Какой вывод можно сделать из этой информации? Производители смартфонов не виновны в постоянном росте оперативной памяти. В конце концов, разработчики мобильных приложений и игр делают их все более тяжелыми и требовательными.

Какой объем RAM используют приложения?

оперативная память в смартфоне RAMоперативная память в смартфоне RAM

Приложения тоже бывают разные. Есть встроенные (стандартные), без которых работа смартфона не возможна. Например приложение “Телефон”. Есть игры и мультимедийные программы. Браузеры. У всех у них совершенно разные аппетиты.

Стандартные приложения используют от 130 Мб до 400 Мб оперативной памяти. Существуют такие приложения, как YouTube и WhatsApp, а еще казуальные игры, типа Crossy Road и Candy Crush. Также есть “медиа-приложения”, которые загружают большое количество изображений и поэтому используют больше RAM для их отображения. Например, Google Photos и Instagram. Эти приложения используют от 400 Мб до 700 Мб оперативной памяти.

Наконец, появились “огромные” приложения, преимущественно высококлассные 3D-игры. Эти монстры сжирают гигабайты RAM вашего смартфона, как голодный Pac-Man. Например, PUBG Mobile может использовать от 800 МБ до 1152 МБ ОЗУ.

Вы не поверите, но браузер Google Chrome также относится к категории монстров (всего с тремя открытыми вкладками).

Сколько оперативной памяти нужно смартфону?

оперативная память в смартфоне RAMоперативная память в смартфоне RAM

Объем оперативной памяти, используемой на устройстве, полностью зависит от того, какие приложения у вас запущены. Если вам нравится Instagram и Candy Crush, но не больше, то вы будете использовать чуть больше 1 ГБ оперативной памяти. Если постоянно играете в PUBG и Asphalt 9, вам понадобится 2GB только на игры.

Не забывайте, что еще сама операционная система тоже требует от 500 до 1 ГБ оперативной памяти. Плюс фоновые процессы, которые постоянно висят в памяти. Например, Viber или другой мессенджер. Т.е. не весь объем оперативной памяти вам доступен.

Доступная оперативная память – это объем RAM, свободный для запуска новых приложений без “убийства” предыдущих.

Huawei Mate 8, Google Pixel 3 XL и Samsung Note 8 позволяют вам использовать всего около 50-60% установленной оперативной памяти. Остальную они резервируют на нужды операционной системы и своих фирменных прошивок и приложений.

Смартфоны типа Pixel 3 XL могут хранить в оперативной памяти не менее пяти “стандартных” приложений без удаления. Это означает, что вы можете переключаться между YouTube, WhatsApp, Spotify, Candy Crush и Google Play без проблем.

Если вы запустите больше приложений, Pixel 3 XL начнет более агрессивно использовать файл подкачки, пытаясь освободить память. Это означает, что на самом деле, вы можете запустить около восьми “стандартных” приложений и сохранить их все в памяти и файле подкачки. Переключение на приложение, которое было перенесено из оперативной памяти в подкачку, приведет к небольшой задержке.

Если вы запустите более восьми “стандартных” приложений, одно из предыдущих будет удалено из памяти. И будет запускаться в следующий раз с нуля.

Если приложение выгружается из RAM, это не обязательно плохо. Вы сами не раз с этим сталкивались. Такое приложение будет перезагружаться при включении.

Смартфоны с 6 ГБ оперативной памяти, такие как Samsung Note 8 и 9, отдают пользователю всего около 2,5- 3,5 ГБ RAM. Оба устройства также имеют как минимум файл подкачки в ROM размером 2 Гб. Это означает, что вы можете переключаться между тяжелой игрой (или Chrome), мультимедийным приложением (например, Instagram) и 5 или более стандартными приложениями, и все останется в оперативной памяти. Если вы запустите дополнительные приложения, телефон начнет использовать файл подкачки.

6Гб оперативной памяти в смартфоне – идеальный вариант!

Такой объем RAM означает зону комфорта для пользователя смартфона. Стандартные приложения остаются в памяти в течение длительного периода времени, а многозадачность быстрой. Вы не будете замечать переключения между приложениями и играми.

Телефоны с 6 ГБ оперативной памяти могут переключаться между десятками и более приложений, включая некоторые сверхмощные. И вы даже не заметите перезагрузки некоторых приложений.

Естественно, смартфоны с 8ГБ RAM в плане плавности работы еще лучше. Они могут хранить в памяти, по крайней мере, дюжину приложений без перезагрузки. Даже такие крупные, как PUBG и Google Photo. Переключение между приложениями происходит без проблем.

Зачем нужны смартфоны с 8ГБ и больше RAM?

В отличие от компьютеров, для смартфонов на Android, не делают приложения, которые они не смогут запустить! Даже с 3 ГБ оперативной памяти мы не говорим о том, какие приложения потянет смартфон. Мы всего лишь учитываем, сколько приложений он может одновременно хранить в памяти! Смартфоны с 4ГБ работают хорошо, с 6ГБ отлично, с 8Гб уже, наверно, и слишком. 10 ГБ, 12 ГБ, 16 ГБ – это просто глупость. Это примеры маркетинговых хитростей, которые увеличивает цену и не приносит пользы пользователю или приносит совершенно мало пользы.

Сколько Гб оперативной памяти бывает в смартфонах и телефонах:

Запоминающее устройство с произвольным доступом — Википедия

Запрос «Random Access Memory» перенаправляется сюда; об альбоме Daft Punk см. Random Access Memories.

Запоминающее устройство с произвольным доступом, также Запоминающее устройство с произвольной выборкой (сокращённо ЗУПВ[1]; англ. Random Access Memory, RAM) — один из видов памяти компьютера, позволяющий единовременно получить доступ к любой ячейке (всегда за одно и то же время, вне зависимости от расположения) по её адресу на чтение или запись.

Это отличает данный вид памяти от устройств памяти первых компьютеров (последовательных компьютеров), созданных в конце 1940-х — начале 1950-х годов (EDSAC, EDVAC, UNIVAC), которые для хранения программы использовали разрядно-последовательную память[2] на ртутных линиях задержки, при которой разряды слова для последующей обработки в АЛУ поступали последовательно один за другим.

Ранние модели компьютеров, чтобы осуществить функции основной памяти ёмкостью сотни или тысячи бит, использовали реле, память на линиях задержки или различные виды вакуумных трубок.

Триггеры, построенные сперва на вакуумных триодах, а позднее на дискретных транзисторах, использовались для меньших по размеру и более быстрых блоков памяти, таких, как регистры и регистровые хранилища прямого доступа. До разработки интегральных микросхем память прямого доступа (или только для чтения) часто создавалась из матриц полупроводниковых диодов, управляемых дешифраторами адреса.

Ситуация в принципе изменилась с изобретением запоминающих устройств с произвольной выборкой, стала реализуемой разрядно-параллельная память, в которой все разряды слова одновременно считываются из памяти и обрабатываются АЛУ.

Первой коммерческой ЭВМ, использующей новую организацию памяти, стала созданная в 1953 году IBM 701, а первой массово продаваемой (150 экземпляров) — выпущенная в 1955 году IBM 704, в которой были реализованы такие новшества, как память на ферритовых сердечниках и аппаратное средство вычисления чисел с плавающей запятой.

Внешние устройства IBM 704 и большинства компьютеров того времени были очень медленны (например, лентопротяжное работало со скоростью 15 тыс. символов в секунду, что было гораздо меньше скорости обработки данных процессором), а все операции ввода-вывода производились через АЛУ, что требовало принципиального решения проблемы низкой производительности на операциях ввода-вывода.

Одним из первых решений стало введение в состав ЭВМ специализированной ЭВМ, называемой каналом ввода-вывода, которое позволяло АЛУ работать независимо от устройств ввода-вывода. На этом принципе, путём добавления в состав IBM 704 ещё шести каналов ввода-вывода, построена IBM 709 (1958 год).

Первый широко распространённый тип перезаписываемой памяти прямого доступа был запоминающим устройством на магнитных сердечниках, разработанным в 1949—1952 годах, и впоследствии использовался в большинстве компьютеров вплоть до разработки статических и динамических интегрированных каналов оперативной памяти в конце 1960-х — начале 1970-х.

Для построения ЗУПВ современных персональных компьютеров широко применяются полупроводниковые запоминающие устройства, в частности, широко применяются СБИС запоминающих устройств оперативной памяти, по принципу организации подразделяемые на статические и динамические. В ОЗУ статического типа запоминающий элемент представляет собой триггер, изготовленный по той или иной технологии (ТТЛ, ЭСЛ, КМОП и др.), что позволяет считывать информацию без её потери. В динамических ОЗУ элементом памяти является ёмкость (например, входная ёмкость полевого транзистора), что требует восстановления записанной информации в процессе её хранения и использования. Это усложняет применение ОЗУ динамического типа, но позволяет реализовать больший объём памяти. В современных динамических ОЗУ имеются встроенные системы синхронизации и регенерации, поэтому по внешним сигналам управления они не отличаются от статических.

На полупроводниках[править | править код]

Эволюционное развитие конструкции модулей памяти, используемых в качестве ОЗУ компьютеров. Сверху вниз: DIP, SIPP, SIMM 30 pin, SIMM 72 pin, DIMM, DDR DIMM

  • Полупроводниковая статическая (англ. Static Random Access Memory, SRAM) — ячейки представляют собой полупроводниковые триггеры. Достоинства — небольшое энергопотребление, высокое быстродействие. Отсутствие необходимости производить «регенерацию». Недостатки — малый объём, высокая стоимость. Благодаря принципиальным достоинствам широко используется в качестве кеш-памяти процессоров в компьютерах.
  • Полупроводниковая динамическая (англ. Dynamic Random Access Memory, DRAM) — каждая ячейка представляет собой конденсатор на основе перехода КМОП-транзистора. Достоинства — низкая стоимость, большой объём. Недостатки — необходимость периодического считывания и перезаписи каждой ячейки — т. н. «регенерации», и, как следствие, понижение быстродействия, большое энергопотребление. Процесс регенерации реализуется специальным контроллером, установленным на материнской плате или в центральном процессоре. DRAM обычно используется в качестве оперативной памяти (ОЗУ) компьютеров.

В настоящее время[когда?] выпускается в виде модулей памяти — небольшой печатной платы, на которой размещены микросхемы запоминающего устройства.

На ферромагнетиках[править | править код]

Ферромагнитная — представляет собой матрицу из проводников, на пересечении которых находятся кольца или биаксы, изготовленные из ферромагнитных материалов. Достоинства — устойчивость к радиации, сохранение информации при выключении питания; недостатки — малая ёмкость, большой вес, стирание информации при каждом чтении. В настоящее время в таком, собранном из дискретных компонентов виде, не применяется. Однако к 2003 году появилась магнитная память MRAM в интегральном исполнении. Сочетая скорость SRAM и возможность хранения информации при отключённом питании, MRAM является перспективной заменой используемым ныне типам ROM и RAM. Однако она на 2006 год была приблизительно вдвое дороже микросхем SRAM (при той же ёмкости и габаритах).

RAM, ROM, NAND, NOR — что значат эти заглавные буквы… / Habr

Меня попросили, чтобы я написал статью о различиях между RAM, ROM, NAND, и NOR. Поскольку ответ на этот вопрос не вызывает сложностей и менее спорный, чем моя следующая запланированная статья, я пойду путем наименьшего сопротивления и расскажу об этом сначала.

Почему я хочу об этом рассказать?

Когда Вы будете покупать устройство на основе WM, Вы увидите количество RAM и ROM, рекламируемые на web-страницах. Я хочу предоставить Вам достаточно информации, чтобы Вы сделали правильный и осознанный выбор.

RAM против ROM

Все аббревиатуры, о которых мы здесь будем говорить, относятся к типу памяти. Память используется для хранения данных на вашем устройстве. Телефонные номера, картинки, программы, музыка и т.д. и т.п. — все это требует памяти. Не принимая во внимание устаревшие технологии, которые сейчас уже никто не использует, а также такие редкие и экзотические, которые еще не предназначены для массового рынка, существует два типа памяти: RAM и ROM. Их сходство в том, что они предназначены для хранения данных. Но их основные отличия — в скорости работы и потребляемой энергии.

RAM: очень быстрая, но потребляет достаточно энергии.
ROM: намного медленнее, но более экономично расходует энергию.

Но, что более существенно, RAM нуждается в постоянном питании для хранения данных, в то время как ROM — нет. Другими словами, если ваша батарея разрядится, то данные в RAM-памяти будут утеряны, а в ROM-памяти — нет.

Как это используется?

До появления WM5, это было сложным вопросом. С Persistent Storage (Постоянное Хранилище), все стало намного проще.

ROM — это место хранения. Все программы и OS, которые и представляют собой программное обеспечение на устройстве, хранятся в ROM. Ваши данные также хранятся в ROM. И SD и CF карты памяти представляют собой ROM-память. Фактически, вашему устройству имплантировали карточку SD, которую Вы не можете извлечь.

RAM — это место, где программы выполняются. Когда Вы включаете ваше устройство, программы из ROM загружаются в RAM и уже там, в RAM, работают. Когда Вы слушаете музыку, некоторая часть композиции загружается из ROM в RAM, воспроизводится, выгружается обратно, и загружает следующая часть, и т.д. Когда Вы читаете электронную почту, текст загружается из ROM в RAM и отображается на экране. Когда Вы переходите к следующему письму, старый текст выгружается из памяти и загружается новый текст. Перейдя назад к предыдущему письму, оно снова будет загружено из ROM в RAM. Прим. переводчика: процесс загрузки-выгрузки данных описан чисто формально, для упрощения модели, но суть остается та же.

Так, вообще говоря, количество имеющейся RAM определяет количество одновременно загружаемых данных. А количество ROM — сколько данных вы можете хранить на своем устройстве.

Сколько памяти мне нужно?

Из-за природы аппаратных ограничений, объем памяти четко регламентирован. Отклонения являются редкими. В основном, объем памяти не меньше, чем 32Mб и увеличивается, оставаясь кратным двум. 32Mб, 64Mб, 128Mб, 256Mб, и т.д.

«Типичное» устройство на WM5 будет иметь 64Mб RAM. 32Mб RAM-памяти будет уместно, только если устройство использует, «NOR» ROM (подробнее чуть позже). Из-за большого расхода энергии, существует «обратная сторона медали» наличия слишком большого количества RAM. И, по этой причине, 128Mб RAM маловероятно, но не исключено для определенных устройств «профессионального использования».

Так, «типичное» устройство на WM5 будет иметь 64Mб RAM. Нет никаких других ограничений, кроме стоимости, чтобы иметь больше RAM. Однако, если вы можете себе это позволить, то больше RAM никогда не будет лишним.

Есть много различных версий WM5 — Smartphone, PocketPC, PocketPC Phone Edition, и их вариации. Язык операционной системы также влияет на выбор объема памяти (например, азиатские шрифты занимают большое количество памяти). Но, грубое эмпирическое правило можно сформулировать так: программное обеспечение вашего устройства будет занимать около 32Mб. Так, если Вы купите типичное устройство с 64Mб ROM, то Вы сможете хранить примерно 32Mб ваших собственных данных. Если же у Вас 128Mб ROM — Вы сможете хранить около 96Mб ваших данных.

Не нужно забрасывать меня гневными письмами, если вы купите устройство с 64Мб ROM и у вас свободными окажется только 30Мб. Все устройства различны, по-этому и количество доступной вам памяти тоже различно.

Нужно найти компромисс. При прочих равных условиях, я предпочел бы устройство с 32Мб RAM и 128Мб ROM, по сравнению с устройством у которого 64Мб RAM и 64Мб ROM. Но я хотел бы 64Мб RAM и 256Мб ROM :-). Конечно, последний стоил бы значительно больше.

Посмотрите, как все это преподносится маркетологами. Одни говорят: «Мы предоставляем 64Мб ROM», другие говорят «Доступно 30Мб для пользовательских данных». Они подразумевают одно и тоже, но говорят об этом разными словами. Хотя, в силу природы маркетинга, я уверен, что они бы предпочли говорить о бОльших цифрах :-).

Как насчет других заглавных букв?

Теперь давайте перейдем к NAND и NOR. Это — два основных типа ROM. Они, в значительной степени, используются одинаково, и все, что я сказал о ROM, верно для них обоих. Так, Вы можете не заботиться о том, какой из этих типов памяти Вы имеете. Но я расскажу Вам о них так или иначе.

NOR: быстрее чтение, медленнее запись.
NAND: медленнее чтение, быстрее запись.

Это все относительно. Оба типа значительно медленнее, чем RAM. Есть одно очень важное различие в этих технологиях. NOR позволяет Вам делать кое-что, что мы называем, «выполнять на месте» (XIP). Вспомните, о чем мы говорили вначале. Чтобы выполнить программу, Вы сначала загружаете ее в RAM, и затем Вы выполняете ее оттуда. NOR позволяет Вам выполнять программу непосредственно из ROM, не загружая ее предварительно в RAM. Это означает, что Вы можете иметь систему с меньшим количеством RAM. Заметьте, что это только работает для программ. Вы не можете «выполнить на месте» изображение или звуковой файл. Неспособность к XIP, NAND компенсирует своей стоимостью (NAND обычно более дешевая.)

Поскольку NAND быстрее работает на запись, а NOR — на чтение, идеальная система должна бы иметь 64Mб NOR и 64Mб NAND. Тогда бы все программы хранились в NOR, а пользовательскте данные — в NAND. Так как все программы выполнялись бы «на месте», не было бы необходимости в 64Mб RAM, что позволило бы уменьшить ее объем до 32Мб, экономя при этом драгоценный заряд вашей батареи. «Выполнение на месте» также означало бы более быструю загрузку программ, так как не было бы необходимости загружать программу в RAM перед выполнением. Такое устройство было бы просто сказкой!

Между прочим, SD и CF карточки памяти основаны на NAND. Таким образом, нет никакой возможности для «выполнения на месте» сохраненных на них программ.

Есть многое другое, о чем я мог бы рассказать, но тогда это было бы довольно длинным повествованием. Таким образом, я поставлю точку здесь.

— Связанные статьи:

Постоянное запоминающее устройство — Википедия

Материал из Википедии — свободной энциклопедии

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 21 апреля 2018;
проверки требуют 9 правок.
Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 21 апреля 2018;
проверки требуют 9 правок.

У этого термина существуют и другие значения, см. ПЗУ.
Микросхема масочного ПЗУ NEC D23128C в компьютере ZX Spectrum
Микросхема EPROM Intel 1702 с ультрафиолетовым стиранием
Микросхема EPROM AMD AM2716, выпущенная в 1979 году

Постоя́нное запомина́ющее устро́йство (ПЗУ) — энергонезависимая память, используется для хранения массива неизменяемых данных.

По типу исполнения ПЗУ выделяют:

  • ПЗУ, в которых массив данных (в обиходе называемый «прошивкой») совмещён с устройством выборки (считывающим устройством):
  • ПЗУ, в которых массив данных существует самостоятельно:

По разновидностям микросхем выделяют ПЗУ:

  • по технологии изготовления кристалла:
    • ROM — (англ. read-only memory, постоянное запоминающее устройство) — масочное ПЗУ, изготовляемое фабричным методом;
    • PROM — (англ. programmable read-only memory, программируемое ПЗУ (ППЗУ)) — ПЗУ, однократно «прошиваемое» пользователем;
    • EPROM (англ. erasable programmable read-only memory) — перепрограммируемое ПЗУ, например, содержимое микросхемы К573РФ1 стиралось при помощи ультрафиолетовой лампы. Для прохождения ультрафиолетовых лучей к кристаллу в корпусе микросхемы было предусмотрено окошко с кварцевым стеклом;
    • EEPROM (англ. electrically erasable programmable read-only memory — электрически стираемое перепрограммируемое ПЗУ, память которого может стираться и заполняться данными несколько десятков тысяч раз, используется в твердотельных накопителях, одной из разновидностей EEPROM является флеш-память;
    • ПЗУ на магнитных доменах, например, К1602РЦ5, которое имело сложное устройство выборки и хранило довольно большой объём данных в виде намагниченных областей кристалла, при этом не имея движущихся частей, обеспечивает неограниченное количество циклов перезаписи;
    • NVRAM (англ. non-volatile memory, «неразрушающаяся» память) — ПЗУ, выполняющее роль ОЗУ небольшого объёма, конструктивно совмещённое с батарейкой; в СССР такие устройства часто назывались «Dallas» по имени фирмы Dallas Semiconductor[en], выпустившей их на рынок; в NVRAM современных ЭВМ батарейка уже конструктивно не связана с ОЗУ и может быть заменена;
  • по виду доступа:
    • ПЗУ с параллельным доступом — ПЗУ, которое в системе может быть доступно в адресном пространстве ОЗУ, например, К573РФ5;
    • ПЗУ с последовательным доступом — ПЗУ, часто используемые для однократной загрузки констант или «прошивки» в процессор или ПЛИС, используемые для хранения, например, настроек каналов телевизора и других данных, например, 93С46, AT17LV512A;
  • по способу программирования микросхем (то есть, по способу записи «прошивки» в микросхему):
    • непрограммируемые ПЗУ;
    • ПЗУ, программируемые только с помощью специального устройства — программатора ПЗУ (как однократно, так и многократно прошиваемые), использование программатора необходимо, в частности, для подачи нестандартных и относительно высоких напряжений (до ±27 В) на специальные выводы;
    • внутрисхемно перепрограммируемые ПЗУ (англ. in-system programming, ISP) — микросхемы, имеющие внутри генератор всех необходимых высоких напряжений, могут быть перепрошиты программным способом, то есть, без программатора и без выпайки из печатной платы.

В постоянную память часто записывают микропрограмму управления техническим устройством: телевизором, сотовым телефоном, различными контроллерами или компьютером (BIOS или OpenBoot на машинах SPARC).

BootROM — такая прошивка, что если её записать в подходящую микросхему ПЗУ, установленную в сетевой карте, то становится возможной загрузка операционной системы на компьютер с удалённого узла локальной сети. Для встроенных в ЭВМ сетевых плат BootROM можно активировать через BIOS.

ПЗУ в IBM-PC-совместимых ЭВМ располагается в адресном пространстве с F600:0000 по FD00:0FFF.

Постоянные запоминающие устройства стали находить применение в технике задолго до появления ЭВМ и электронных приборов. В частности, одним из первых типов ПЗУ был кулачковый валик, применявшийся в шарманках, музыкальных шкатулках, часах с боем.

С развитием электронной техники и ЭВМ возникла необходимость в быстродействующих ПЗУ. В эпоху вакуумной электроники находили применение ПЗУ на основе потенциалоскопов, моноскопов, лучевых ламп. В ЭВМ на базе транзисторов в качестве ПЗУ небольшой ёмкости широко использовались штепсельные матрицы. При необходимости хранения больших объёмов данных (для ЭВМ первых поколений — несколько десятков килобайт) применялись ПЗУ на базе ферритовых колец (не следует путать их с похожими типами ОЗУ). Именно от этих типов ПЗУ и берёт своё начало термин «прошивка» — логическое состояние ячейки задавалось направлением навивки провода, охватывающего кольцо. Поскольку тонкий провод требовалось протягивать через цепочку ферритовых колец для выполнения этой операции применялись металлические иглы, аналогичные швейным. Да и сама операция наполнения ПЗУ информацией напоминала процесс шитья.

  • Угрюмов Е. П. Цифровая схемотехника. — СПб.: БХВ-Петербург, 2005. — Глава 5.

как дешёвая память меняет вычисления / Habr

Ранний Micron DRAM, ёмкость 1 Мбит

RAM (random access memory, запоминающее устройство с произвольным доступом) присутствует в любой компьютерной системе, от небольших встроенных контроллеров до промышленных серверов. Данные хранятся в SRAM (статической RAM) или DRAM (динамической RAM), пока процессор работает с ними. С падением цен на RAM модель перемещения данных между RAM и постоянным местом хранения данных может исчезнуть.

RAM сильно подвержена влиянию колебаний рынка, но в долгосрочной перспективе её стоимость идёт вниз. В 2000 году гигабайт памяти стоил более $1000, а сейчас – всего $5. Это позволяет вообразить совершенно другую архитектуру системы.

Базы данных обычно хранятся на дисках, откуда нужная информация считывается при необходимости в память, после чего обрабатывается. Обычно считается, что объём памяти в системе на несколько порядков меньше объёма дисков – например, гигабайты против терабайтов. Но с увеличением объёмов памяти становится эффективнее загружать больше данных в память, уменьшая количество чтений и записей. С уменьшением стоимости RAM становится возможным загружать базы данных в память целиком, проводить операции над ними и записывать их обратно. Сейчас мы уже подошли к точке, в которой некоторые базы не записываются обратно на диск, и постоянно висят в памяти.

Мегабитный чип от Carl Zeiss

До 1975 года RAM была памятью на магнитных сердечниках

4-мегабитный чип EPROM, стираемый при помощи ультрафиолета, направляемого через окошко

Кучка современных DRAM

Скорости доступа к памяти измеряются в наносекундах, а время доступа к диску измеряется в миллисекундах – то есть, память получается в миллион раз быстрее. Скорость передачи данных в памяти, конечно, не в миллион раз быстрее – это гигабайты в секунду против нескольких сотен мегабайт в секунду для быстрого харда – но, по крайней мере, скорость RAM превосходит скорость накопителей на порядок.

В реальном мире различия не такие серьёзные, но чтение данных с диска в RAM и запись их обратно – серьёзное узкое место, а также поле для появления ошибок. Исчезновение этого шага ведёт к упрощению инструкций, увеличению простоты и эффективности.

С падением цен на RAM в больших компаниях и дата-центрах становится популярным обеспечивать сервера терабайтами памяти. Но кроме размера, базу данных в памяти обычно не хочется держать по соображениям надёжности. RAM теряет содержимое при отключении энергии или компрометации системы. С этими проблемами сталкиваются при попытке соответствовать стандарту надёжности баз данных ACID (atomicity, consistency, isolation, durability – Атомарность, Согласованность, Изолированность, Долговечность).

Проблем можно избежать при помощи слепков и логов. Так же, как можно делать резервные копии БД с дисков, БД в памяти можно копировать в хранилище. Создание слепков мешает другим процессам читать данные, поэтому частота контрольных точек – это компромисс между быстродействием и надёжностью. А это, в свою очередь, можно сгладить записью транзакций, или журналированием, записывающим изменения данных так, что позднее состояние можно воссоздать из ранней копии. Но всё же, когда БД полностью находится в памяти, некий процент избыточности теряется.

Программы для управления БД, находящихся в памяти (IMDBS), позволяют создавать гибридные системы, в которых некоторые таблицы БД находятся в памяти, а другие живут на диске. Это лучше кэширования, и удобно в тех случаях, когда бессмысленно держать всю БД в памяти.

БД могут быть сжатыми, особенно в системах со столбцами, хранящими таблицы в виде наборов столбцов, а не строк. Большинство технологий сжатия предпочитают, чтобы соседние данные были одного типа, а столбцы в таблицах почти всегда содержат данные одного типа. И хотя сжатие подразумевает увеличение нагрузки на вычисления, хранение столбцов хорошо подходит для сложных запросов в очень больших наборах данных – поэтому в них заинтересованы пользователи «большие данные» и учёные.

На больших масштабах компании вроде Google перешли на RAM, чтобы большое количество поисковых запросов обрабатывалось с приемлемой скоростью. Здесь также появляются проблемы обеспечения доступа к большим объёмам памяти, поскольку количество RAM, подсоединяемое к одной материнской плате, ограничено, а организация общего доступа приводит к появлению дополнительных задержек.

Но нельзя гарантировать, что работа с данными в памяти – это будущее обработки данных. Альтернативный метод – использование энергонезависимой RAM (non-volatile RAM, NVRAM), знакомой пользователям в виде SSD, предлагающих совместимую с дисковыми системами архитектуру. Сейчас они работают на флэш-памяти NAND, предлагающей высокие по сравнению с механическими жёсткими дисками скорости чтения и записи. Но у неё есть свои проблемы. Флэш-памяти требуются относительно высокие напряжения для записи данных, и она постепенно вырождается, с чем призваны бороться особые алгоритмы, приводящие к постепенному замедлению работы.

Стоимость памяти и накопителей от времени (долларов за Мегабайт)

Как видно из графика, со временем стоимость накопителей уменьшается примерно так же, как и стоимость RAM. Уменьшающаяся стоимость SSD привела к их распространению в дата-центрах и на рабочих местах, но пока непонятно, какое у этой технологии будущее. В исследовании от Google, опубликованном в феврале 2016 года, на основе шести лет использования был сделан вывод, что флэш-память гораздо менее надёжна, чем жёсткие диски – например, она выдаёт неисправимые ошибки – хотя ей и требуются более редкие замены. А SSD для корпоративного применения не отличаются по качеству от потребительских вариантов.

Но уже появляются новые типы NVRAM. Ферроэлектрическая RAM (FRAM) когда-то должна была стать заменой RAM и флэшек в мобильных устройствах, но сейчас внимание переключилось на магниторезистивную RAM (MRAM). По скоростям она приближается к RAM, а задержка доступа к ней составляет 50 наносекунд – это медленнее, чем 10 нс у DRAM, но в 1000 раз быстрее, чем микросекунды у NAND.

Схема MRAM

MRAM хранит информацию при помощи магнитной ориентации, а не электрического заряда, используя тонкоплёночную структуру и магнитный туннельный переход. MRAM с переключением уже используется в таких продуктах, как массивы хранения данных EqualLogic от Dell, но пока лишь для журналирования.

MRAM с передачей спина (ST-MRAM) использует более сложную структуру, в потенциале допускающую увеличение плотности. Сейчас на рынок её выводит Everspin, недавно вышедшая на NASDAQ под кодом MRAM. Другие фирмы, исследующие эту возможность — Crocus, Micron, Qualcomm, Samsung, Spin Transfer Technologies (STT) и Toshiba.


Память 3D XPoint

Два чипа 3D XPoint по 128 ГБ

Диаграмма для Intel/Micron 3D XPoint

Сравнение скоростей

А в это время Intel работает с Micron над разновидностью NVRAM под названием 3D XPoint (произносится «кросспоинт»). Эта форма памяти с изменением фазового состояния (PCM), известная как резистивная RAM (ReRAM), впервые была обнародована в 2015-м. «3D» означает возможность многослойного построения памяти. Intel считает, что XPoint может работать в 1000 раз быстрее, чем NAND, и быть в 10 раз более ёмкой, хотя недавно эти заявления слегка уменьшились. Ожидается, что цена будет в промежутке между флэш-памятью и DRAM. Из-за этого она вряд ли приживётся в домах, но на большом масштабе она может заменить RAM и SSD.

IBM также работает над памятью с изменением фазового состояния. Как и у Intel, их технология основана на халькогенидном стекле, используемом в перезаписываемых оптических носителях. Используя электричество для преобразования материала из аморфного состояния в одно из трёх кристаллических, компания похваляется прорывом в ёмкости, который позволит сделать стоимость памяти ниже, чем у DRAM.

RAM-гонка повлияет на все уровни развития компьютеров. Увеличение памяти с 8 до 16 ГБ на десктопах конечных потребителей позволит ускорить многозадачность и повысить эффективность требовательных к памяти программ.

В ультрабуках SSD уже являются нормой, а растущие ёмкости уже делают их кандидатами для замены жёстких дисков. Следующее поколение трёхмерной NAND (V-NAND, вертикальной) обещает большую эффективность и плотность записи. Samsung предсказывает, что к 2020 году появятся SSD для конечных пользователей на 512 Гб по цене сегодняшнего терабайтного винта.

Для среднего бизнеса и научных заведений больше дешёвой RAM означает улучшение аналитики при помощи данных, находящихся в памяти – если софт будет поспевать за этим. SAP HANA – база данных, содержащаяся в памяти, платформа для широкого применения облачных и местных решений, позволяющая уже не очень крупным компаниям работать с большими данными. Схожие БД есть и у IBM с Oracle.

RAM демократизирует технологии – техника дешевеет, и разница между крупными и мелкими организациями стирается.

Дата-центр Google со сделанными под заказ серверами

Суперкомпьютер Sequoia

Суперкомпьютер Sunway TaihuLight, быстрейший компьютер в мире, 93 петафлопс

Titan, быстрейший суперкомпьютер США

Дата-центр EcoPod HP

Последний по порядку, но не по значимости, пункт – потребность в памяти суперкомпьютеров. Быстрейший на сегодня китайский СК Sunway TaihuLight содержит 1 300 ТБ DDR3 DRAM, что относительно немного для его скорости в 93 петафлопс (квадриллион операций с плавающей запятой в секунду). В частности из-за этого его энергопотребление составляет всего 15,3 МВт, но это может стать и ограничивающим фактором.

Теперь все стремятся к приставке экзафлопсам, или к 1000 петафлопсов. Японский компьютер post-K, разрабатываемый Riken и Fujitsu, будет готов к 2020 году и будет содержать Hybrid Memory Cube от Micron – многослойная реализация DRAM, и возможно также будет использовать 3D XPoint NVRAM. Европейский проект NEXTGenIO в Эдинбургском суперкомпьютерном центре намеревается достичь экзафлопсов к 2022 году, также с использованием 3D XPoint.

В США Exascale Computing Project, разрабатываемый в рамках инициативы NSCI, к 2023 году должен представить аж два суперкомпьютера подобного быстродействия. Их архитектура ещё прорабатывается, но поскольку быстродействие и энергоэффективность находятся в приоритете, RAM будет играть в нём центральную роль.

Оставьте комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *