30 метровый телескоп – Новости со строек крупнейших наземных оптических и инфракрасных телескопов: za_neptunie — LiveJournal

Тридцатиметровый телескоп — Википедия

Материал из Википедии — свободной энциклопедии

Сравнение основных зеркал некоторых телескопов

Тридцатиметровый телескоп (англ. Thirty Meter Telescope (TMT)) — планируемая к постройке астрономическая обсерватория с 30 метровым сегментным зеркалом. Зеркало будет состоять из 492 шестиугольных сегментов по 1,4 метра общей площадью 664 м2, что позволит собирать в 9 раз больше света, чем крупнейшие из существующих наземных телескопов[1]. По сравнению с телескопом Хаббла, изображения, получаемые с нового телескопа, будут примерно в 10—12 раз четче. Планируемый срок службы телескопа составляет более 50 лет. Постройку телескопа планируется завершить в середине 2020-х, а в 2027 году начать научные наблюдения.

Когда телескоп будет построен, то он станет третьим в новом поколении Экстремально больших телескопов. По оценкам на 2017 год, стоимость телескопа около 1,4 млрд долларов.

Телескоп будет находиться на высоте 4050 метров над уровнем моря, на вершине горы Мауна-Кеа, неподалеку от знаменитой обсерватории Кека.

22 октября 2008 г. в статье http://rosinvest.com/novosti/457810 сказано, что «Телескоп апертурой 30 метров, строительство которого ведет Фонд Гордона и Бетти Мур совместно с Калифорнийским технологическим институтом, Калифорнийским университетом и канадской университетской астрономическо ассоциацией ACURA, планируется установить либо в Чили на высокогорном плато Атакама, либо на Гавайских островах, на вершине Мауна Кеа.»

12 апреля 2013 года Гавайский совет по земельным и природным ресурсам одобрил строительство телескопа. До конца 2013 года будут производиться подготовительные работы, а о запуске непосредственного строительства телескопа было объявлено в июле 2014 года[2][3]. Стоимость строительства телескопа составит 1 млрд долларов. 100 млн были израсходованы ещё до начала строительных работ на конструирование, проектную документацию и подготовку строительной площадки. Финансирование проекта будут осуществлять университеты США, Канады, Китая, Индии и Японии.

Официальное строительство началось 7 октября 2014 года.

6 апреля 2015 года к проекту официально присоединилась Канада, выделив на строительство 243,5 млн долларов.

26 мая 2015 года от губернатора штата Гавайи Дэвида Игея было получено официальное разрешение на строительство нулевого цикла.

07 декабря 2015 сообщалось о протестах местного населения против стройки на священной горе Мауна Кеа. Верховный Суд Гавайев отозвал разрешение на строительство. Стоимость строительства оценивается в 1.5 млрд долларов.

29 сентября 2017 года Гавайское бюро природных и земельных ресурсов утвердило разрешение на строительство телескопа на горе Мауна-Кеа.

Тридцатиметровый телескоп (Thirty Meter Telescope, TMT)

Первые телескопы диаметром чуть более 20 мм и скромным увеличением менее 10x, появившиеся в начале XVII столетия, совершили настоящую революцию в знаниях об окружающем нас космосе. Сегодня астрономы готовятся ввести в строй гигантские оптические инструменты диаметром в тысячи раз больше.

26 мая 2015 года стало настоящим праздником для астрономов всего мира. В этот день губернатор штата Гавайи Дэвид Игей разрешил начать нулевой цикл строительства вблизи вершины потухшего вулкана Мауна-Кеа гигантского приборного комплекса, который через несколько лет станет одним из крупнейших оптических телескопов в мире.

Вот как это будет выглядеть:

Гиганты на арене

Новый телескоп получил название Тридцатиметровый телескоп (Thirty Meter Telescope, TMT), поскольку его апертура (диаметр) составит 30 м. Если все пойдет по плану, TMT увидит первый свет в 2022 году, а спустя еще год начнутся регулярные наблюдения. Сооружение будет действительно исполинским — высотой 56 и шириной 66 м. Главное зеркало будет составлено из 492 шестиугольных сегментов общей площадью 664 м². По этому показателю TMT на 80% превзойдет Гигантский Магелланов телескоп (Giant Magellan Telescope, GMT) с апертурой 24,5 м, который в 2021 году вступит в строй в чилийской обсерватории Лас-Кампанас, принадлежащей Институту Карнеги.

Однако мировым чемпионом TMT пробудет недолго. На 2024 год запланировано открытие Чрезвычайно большого европейского телескопа (European Extremely Large Telescope, E-ELT) с рекордным диаметром 39,3 м, который станет флагманским инструментом Европейской южной обсерватории (ESO). Его сооружение уже началось на трехкилометровой высоте на горе Серро-Армазонес в чилийской пустыне Атакама. Главное зеркало этого исполина, составленное из 798 сегментов, будет собирать свет с площади 978 м².

Эта великолепная триада составит группу оптических супертелескопов нового поколения, у которых долго не будет конкурентов.

 

 

Тридцать метров науки Тридцатиметровый телескоп TMT построен по схеме Ричи-Кретьена, которая используется во многих ныне действующих крупных телескопах, в том числе и в крупнейшем на настоящий момент Gran Telescopio Canarias с главным зеркалом диаметром 10,4 м. На первом этапе TMT будет оснащен тремя ИК- и оптическими спектрометрами, а в будущем планируется добавить к ним еще несколько научных приборов.

 

Фото 2.

 

Анатомия супертелескопов

Оптическая схема TMT восходит к системе, которую сотню лет назад независимо предложили американский астроном Джордж Виллис Ричи и француз Анри Кретьен. В основе ее лежит комбинация из главного вогнутого зеркала и соосного с ним выпуклого зеркала меньшего диаметра, причем оба они имеют форму гиперболоида вращения. Лучи, отраженные от вторичного зеркала, направляются в отверстие в центре основного рефлектора и фокусируются позади него. Использование второго зеркала в этой позиции делает телескоп более компактным и увеличивает его фокусное расстояние. Эта конструкция реализована во многих действующих телескопах, в частности в крупнейшем на настоящий момент Gran Telescopio Canarias с главным зеркалом диаметром 10,4 м, в десятиметровых телескопах-близнецах гавайской Обсерватории Кека и в четверке 8,2-метровых телескопов обсерватории Серро-Параналь, принадлежащей ESO.

Оптическая система E-ELT также содержит вогнутое главное зеркало и выпуклое вторичное, но при этом имеет ряд уникальных особенностей. Она состоит из пяти зеркал, причем главное из них представляет собой не гиперболоид, как у TMT, а эллипсоид.

GMT сконструирован совершенно иначе. Его главное зеркало состоит из семи одинаковых монолитных зеркал диаметром 8,4 м (шесть составляют кольцо, седьмое находится в центре). Вторичное зеркало — не выпуклый гиперболоид, как в схеме Ричи-Кретьена, а вогнутый эллипсоид, расположенный перед фокусом основного зеркала. В середине XVII века такую конфигурацию предложил шотландский математик Джеймс Грегори, а на практике впервые воплотил Роберт Гук в 1673 году. По грегорианской схеме построены Большой бинокулярный телескоп (Large Binocular Telescope, LBT) в международной обсерватории на горе Грэм в штате Аризона (оба его «глаза» оснащены такими же главными зеркалами, как и зеркала GMT) и два одинаковых Магеллановых телескопа с апертурой 6,5 м, которые с начала 2000-х годов работают в обсерватории Лас-Кампанас.

 

Фото 3.

 

 

Сила — в приборах

Любой телескоп сам по себе — просто очень большая зрительная труба. Для превращения в астрономическую обсерваторию его необходимо снабдить высокочувствительными спектрографами и видеокамерами.

TMT, который рассчитан на срок службы более чем в 50 лет, в первую очередь оснастят тремя измерительными инструментами, смонтированными на общей платформе — IRIS, IRMS и WFOS. IRIS (InfraRed Imaging Spectrometer) представляет собой комплекс из видеокамеры очень высокого разрешения, обеспечивающей обзор в поле 34 х 34 угловых секунды, и спектрометра инфракрасного излучения. IRMS — это многощелевой инфракрасный спектрометр, а WFOS — широкоугольный спектрометр, который может одновременно отслеживать до 200 объектов на площади не менее 25 квадратных угловых минут. В конструкции телескопа предусмотрено плоско-поворотное зеркало, направляющее свет на нужные в данный момент приборы, причем для переключения нужно меньше десяти минут. В дальнейшем телескоп оборудуют еще четырьмя спектрометрами и камерой для наблюдения экзопланет. Согласно нынешним планам, по одному дополнительному комплексу будет добавляться каждые два с половиной года. GMT и E-ELT также будут иметь чрезвычайно богатую приборную начинку.

 

Фото 4.

 

Европейский гигант

Супертелескопы следующего десятилетия обойдутся недешево. Точная сумма пока неизвестна, но уже ясно, что их общая стоимость превысит $3 млрд. Что же эти исполинские инструменты дадут науке о Вселенной?

«E-ELT будет использован для астрономических наблюдений самых разных масштабов — от Солнечной системы до сверхдальнего космоса. И на каждой масштабной шкале от него ожидают исключительно богатой информации, значительную часть которой не могут выдать другие супертелескопы, — рассказал «Популярной механике» член научной команды европейского гиганта Йохан Лиске, который занимается внегалактической астрономией и обсервационной космологией. — На это есть две причины: во-первых, E-ELT сможет собирать много больше света по сравнению со своими конкурентами, и во-вторых, его разрешающая способность будет гораздо выше. Возьмем, скажем, внесолнечные планеты. Их список быстро растет, к концу первой половины нынешнего года он содержал около 2000 названий. Сейчас главная задача состоит не в умножении числа открытых экзопланет, а в сборе конкретных данных об их природе. Именно этим и будет заниматься E-ELT. В частности, его спектроскопическая аппаратура позволит изучать атмосферы каменных землеподобных планет с полнотой и точностью, совершенно недоступной для ныне действующих телескопов. Эта исследовательская программа предусматривает поиск паров воды, кислорода и органических молекул, которые могут быть продуктами жизнедеятельности организмов земного типа. Нет сомнения, что E-ELT увеличит количество претендентов на роль обитаемых экзопланет».

Новый телескоп обещает и другие прорывы в астрономии, астрофизике и космологии. Как известно, существуют немалые основания для предположения, что Вселенная уже несколько миллиардов лет расширяется с ускорением, обусловленным темной энергией. Величину этого ускорения можно определить по изменениям в динамике красного смещения света далеких галактик. Согласно нынешним оценкам, этот сдвиг соответствует 10 см/с за десятилетие. Эта величина чрезвычайно мала для измерения с помощью ныне действующих телескопов, но для E-ELT такая задача вполне по силам. Его сверхчувствительные спектрографы позволят также получить более надежные данные для ответа на вопрос, постоянны ли фундаментальные физические константы или они меняются со временем.

E-ELT обещает подлинную революцию во внегалактической астрономии, которая занимается объектами, расположенными за пределами Млечного Пути. Нынешние телескопы позволяют наблюдать отдельные звезды в ближайших галактиках, но на больших дистанциях они пасуют. Европейский супертелескоп предоставит возможность увидеть самые яркие звезды в галактиках, отдаленных от Солнца на миллионы и десятки миллионов световых лет. С другой стороны, он будет способен принять свет и от самых ранних галактик, о которых еще практически ничего не известно. Он также сможет наблюдать за звездами вблизи сверхмассивной черной дыры в центре нашей Галактики — не только измерять их скорости с точностью до 1 км/с, но и открывать неизвестные ныне звезды в непосредственной близости от дыры, где их орбитальные скорости приближаются к 10% скорости света. И это, как говорит Йохан Лиске, далеко не полный перечень уникальных возможностей телескопа.

 

Фото 5.

 

 

Магелланов телескоп

Сооружает гигантский Магелланов телескоп интернациональный консорциум, объединяющий более десятка различных университетов и исследовательских институтов США, Австралии и Южной Кореи. Как объяснил «ПМ» профессор астрономии Аризонского университета и заместитель директора Стюартовской обсерватории Деннис Заритски, грегорианская оптика была выбрана по той причине, что она повышает качество изображений в широком поле зрения. Такая оптическая схема в последние годы хорошо зарекомендовала себя на нескольких оптических телескопах 6−8-метрового диапазона, а еще раньше ее применяли на крупных радиотелескопах.

Несмотря на то что по диаметру и, соответственно, площади светособирающей поверхности GMT уступает TMT и E-ELT, у него есть немало серьезных преимуществ. Его аппаратура сможет одновременно измерять спектры большого числа объектов, что чрезвычайно важно для обзорных наблюдений. Кроме того, оптика GMT обеспечивает очень высокую контрастность и возможность забраться далеко в инфракрасный диапазон. Диаметр его поля зрения, как и у TMT, составит 20 угловых минут.

По словам профессора Заритски, GMT займет достойное место в триаде будущих супертелескопов. Например, с его помощью можно будет получать информацию о темной материи — главном компоненте многих галактик. О ее распределении в пространстве можно судить по движению звезд. Однако большинство галактик, где она доминирует, содержат сравнительно мало звезд, к тому же довольно тусклых. Аппаратура GMT будет в состоянии отслеживать движения много большего числа таких звезд, чем приборы любого из ныне действующих телескопов. Поэтому GMT позволит точнее составить карту темной материи, и это, в свою очередь, даст возможность выбрать наиболее правдоподобную модель ее частиц. Такая перспектива приобретает особую ценность, если учесть, что до сих пор темную материю не удавалось ни обнаружить путем пассивного детектирования, ни получить на ускорителе. На GMT также будут выполнять и другие исследовательские программы: поиск экзопланет, включая планеты земного типа, наблюдение самых древних галактик и исследование межзвездного вещества.

 

 

Супергигант E-ELT станет самым большим в мире телескопом с главным зеркалом диаметром 39,3 м. Он будет оснащен суперсовременной системой адаптивной оптики (АО) с тремя деформируемыми зеркалами, способными устранить искажения, возникающие на различных высотах, и сенсорами волнового фронта для анализа света от трех природных опорных звезд и четырех-шести искусственных (порожденных в атмосфере с помощью лазеров). Благодаря этой системе разрешающая способность телескопа в ближней инфракрасной зоне при оптимальном состоянии атмосферы достигнет шести угловых миллисекунд и вплотную приблизится к дифракционному пределу, обусловленному волновой природой света.

 

 

 

Гавайский проект

«TMT — единственный из трех будущих супертелескопов, место для которого выбрано в Северном полушарии, — говорит член совета директоров гавайского проекта, профессор астрономии и астрофизики Калифорнийского университета в Санта-Крус Майкл Болте. — Однако его смонтируют не очень далеко от экватора, на 19-м градусе северной широты. Поэтому он, как и прочие телескопы обсерватории Мауна-Кеа, сможет обозревать небосвод обоих полушарий, тем более что по части условий наблюдения эта обсерватория — одно из лучших мест на планете. Кроме того, TMT будет работать в связке с группой расположенных по соседству телескопов: двух 10-метровых близнецов Keck I и Keck II (которые можно считать прототипами TMT), а также 8-метровых Subaru и Gemini-North. Система Ричи-Кретьена вовсе не случайно задействована в конструкции многих крупных телескопов. Она обеспечивает хорошее поле зрения и весьма эффективно защищает и от сферической, и от коматической аберрации, искажающей изображения объектов, не лежащих на оптической оси телескопа. К тому же для TMT запланирована поистине великолепная адаптивная оптика. Понятно, что астрономы с полным основанием ожидают, что наблюдения на TMT принесут немало замечательных открытий».

По мнению профессора Болте, и TMT, и другие супертелескопы будут способствовать прогрессу астрономии и астрофизики прежде всего тем, что в очередной раз отодвинут границы известной науке Вселенной и в пространстве, и во времени. Еще 35−40 лет назад наблюдаемый космос в основном был ограничен объектами не старше 6 млрд лет. Сейчас удается надежно наблюдать галактики возрастом около 13 млрд лет, чей свет был испущен через 700 млн лет после Большого взрыва. Имеются кандидаты в галактики с возрастом 13,4 млрд лет, однако это пока не подтверждено. Можно ожидать, что приборы TMT смогут регистрировать источники света возрастом лишь чуть меньше (на 100 млн лет) самой Вселенной.

TMT предоставит астрономии и множество других возможностей. Результаты, которые будут на нем получены, позволят уточнить динамику химической эволюции Вселенной, лучше понять процессы формирования звезд и планет, углубить знания о структуре нашей Галактики и ее ближайших соседей и, в частности, о галактическом гало. Но главное в том, что TMT, так же как GMT и E-ELT, скорее всего, позволит исследователям ответить на вопросы фундаментальной важности, которые сейчас нельзя не только корректно сформулировать, но и даже вообразить. В этом, по мнению Майкла Болте, и состоит основная ценность проектов супертелескопов.

 

Оптика для супертелескопов

 

 

Три самых крупных телескопа первой половины XXI века будут использовать разные оптические схемы. TMT построен по схеме Ричи-Кретьена с вогнутым главным зеркалом и выпуклым вторичным (оба гиперболические). E-ELT имеет вогнутое главное зеркало (эллиптическое) и выпуклое вторичное (гиперболическое). GMT использует оптическую схему Грегори с вогнутыми зеркалами: главным (параболическим) и вторичным (эллиптическим).

Апертура (диаметр) нового телескопа составит 30 метров. Если все пойдет по плану, TMT впервые увидит свет звезд в 2022 году, а спустя еще год начнутся регулярные наблюдения.

 

Супертелескоп E-ELT обещает подлинную революцию во внегалактической астрономии, которая занимается объектами, расположенными за пределами Млечного Пути.

Любой телескоп сам по себе — просто очень большая зрительная труба. Для превращения в астрономическую обсерваторию его необходимо снабдить высокочувствительными спектрографами и видеокамерами.

 

Фото 6.

 

На земле и в небесах

В октябре 2018 года планируется вывести в космос телескоп James Webb (JWST). Он будет работать только в оранжевой и красной зонах видимого спектра, но зато сможет вести наблюдения почти во всем среднем инфракрасном диапазоне вплоть до волн длиной 28 мкм (инфракрасные лучи с длинами волн свыше 20 мкм практически полностью поглощаются в нижнем слое атмосферы молекулами углекислого газа и воды, так что наземные телескопы их не замечают). Поскольку он будет защищен от тепловых помех земной атмосферы, его спектрометрические приборы будут гораздо чувствительнее наземных спектрографов. Однако диаметр его главного зеркала — 6,5 м, и поэтому благодаря адаптивной оптике угловое разрешение наземных телескопов будет в несколько раз выше. Так что, по словам Майкла Болте, наблюдения на JWST и на наземных супертелескопах будут идеально дополнять друг друга. Что касается перспектив 100-метрового телескопа, то профессор Болте весьма осторожен в оценках: «По моему мнению, в ближайшие 20−25 лет просто не удастся создать системы адаптивной оптики, способные эффективно работать в паре со стометровым зеркалом. Возможно, это произойдет где-то лет через сорок, во второй половине столетия».

 

Фото 7.

 

Фото 9.

Фото 10.

Фото 11.

Фото 12.

Фото 13.

Фото 14.

 

 

 

 

[источники]

источники

http://www.popmech.ru/science/221411-tmt-kak-ustroen-teleskop-diametrom-30-metrov/

http://www.infuture.ru/article/8603

http://hi-news.ru/space/teleskop-tmt-pozvolit-zaglyanut-za-13-milliardov-svetovyx-let.html

 

А вот что мы еще обсуждали про телескопы: вот вам Большой Телескоп Азимутальный, а вот Китайский телескоп в полкилометра. Не могу не напомнить вам Самый большой радиотелескоп в мире ,а так же про Швейцарский «Сфинкс» и Европейскую южную обсерваторию

Оригинал статьи находится на сайте ИнфоГлаз.рф Ссылка на статью, с которой сделана эта копия — http://infoglaz.ru/?p=82983

Астрофизикам разрешили построить Тридцатиметровый телескоп на Канарах

Директор Канарского
института астрофизики сообщил о получении последнего разрешения, необходимого
для строительства Тридцатиметрового телескопа на территории принадлежащего
Испании острова. В первой версии проекта телескоп должны были построить на Гавайях, но протесты местных жителей поставили под угрозу завершение проекта в первоначальном варианте, передает Associated
Press
.

Тридцатиметровый телескоп
(Thirty Meter Telescope, TMT) — это один из трех проектов наиболее крупных
наземных астрономических инструментов нового поколения. Помимо него к этой
группе также относятся Гигантский Магелланов телескоп (Giant Magellan Telescope,
GMT, диаметр апертуры 24,5 метра) и Экстремально большой телескоп (Extremely
Large Telescope, ELT, диаметр апертуры 39,3 метра). Последние два строятся в высокогорной части
Чили, и их сооружение идет по плану, в то время как возведение TMT на данный момент приостановлено.

Изначально TMT должен был появиться на вершине вулкана Мауна-Кеа,
расположенного на Большом острове в составе Гавайев. Это место известно как одно
из наилучших для проведения астрономических наблюдений, так как здесь много
ясных и сухих ночей. Несмотря на то, что на вершине расположено уже немало астрономических
инструментов, в том числе два девятиметровых телескопа Обсерватории Кека, некоторые
коренные жители развернули активную кампанию по противодействию появлению
нового, наиболее крупного прибора, так как считают вершину горы священным
местом.

Противостояние также
продолжается в местном суде, который выдавал разрешения на строительство. Формально
работы начались летом 2019 года с задержкой в четыре года, но спустя буквально несколько
недель опять прекратились из-за протестов. Международный консорциум, занимающийся
созданием TMT, предвидя такое развитие событий, готовил запасной вариант, которым стали
Канарские острова, где также расположено несколько крупных телескопов.

Директор Канарского
института астрофизики  Рафаэль Реболо (Rafael
Rebolo) сообщил, что администрация муниципалитета Пунтагорда выдала разрешение
на строительство телескопа на острове Пальма. Это стало последним разрешением
со стороны испанских чиновников, необходимым для начала работ на Канарах.

Выбранное место
строительства уже прошло этап согласования оценки воздействия на окружающую
среду. Ученые решили приступить к получению последнего разрешения после
блокирования дороги, ведущей на вершину Мауна-Кеа местными жителями в середине
июля.

Ранее сообщалось, что NASA завершило сборку нового флагманского космического телескопа «Джеймс Уэбб». Недавно юбилей отмечал Эдвин Хаббл, в честь которого мы делали тест «Человек и телескоп». О перепитиях с крупнейшим отечественными телескопом мы рассказывали в материале «Второй подход к зеркалу».

Тимур Кешелава

Телескоп-гигант: как он устроен? | Журнал Популярная Механика

Первые телескопы диаметром чуть более 20 мм и скромным увеличением менее 10x, появившиеся в начале XVII столетия, совершили настоящую революцию в знаниях об окружающем нас космосе. Сегодня астрономы готовятся ввести в строй гигантские оптические инструменты диаметром в тысячи раз больше.

26 мая 2015 года стало настоящим праздником для астрономов всего мира. В этот день губернатор штата Гавайи Дэвид Игей разрешил начать нулевой цикл строительства вблизи вершины потухшего вулкана Мауна-Кеа гигантского приборного комплекса, который через несколько лет станет одним из крупнейших оптических телескопов в мире.

Оптика для супертелескопов
Оптика для супертелескопов Три самых крупных телескопа первой половины XXI века будут использовать разные оптические схемы. TMT построен по схеме Ричи-Кретьена с вогнутым главным зеркалом и выпуклым вторичным (оба гиперболические). E-ELT имеет вогнутое главное зеркало (эллиптическое) и выпуклое вторичное (гиперболическое). GMT использует оптическую схему Грегори с вогнутыми зеркалами: главным (параболическим) и вторичным (эллиптическим).

Гиганты на арене

Новый телескоп получил название Тридцатиметровый телескоп (Thirty Meter Telescope, TMT), поскольку его апертура (диаметр) составит 30 м. Если все пойдет по плану, TMT увидит первый свет в 2022 году, а спустя еще год начнутся регулярные наблюдения. Сооружение будет действительно исполинским — высотой 56 и шириной 66 м. Главное зеркало будет составлено из 492 шестиугольных сегментов общей площадью 664 м². По этому показателю TMT на 80% превзойдет Гигантский Магелланов телескоп (Giant Magellan Telescope, GMT) с апертурой 24,5 м, который в 2021 году вступит в строй в чилийской обсерватории Лас-Кампанас, принадлежащей Институту Карнеги.

Оптика для супертелескопов
Тридцатиметровый телескоп TMT построен по схеме Ричи-Кретьена, которая используется во многих ныне действующих крупных телескопах, в том числе и в крупнейшем на настоящий момент Gran Telescopio Canarias с главным зеркалом диаметром 10,4 м. На первом этапе TMT будет оснащен тремя ИК- и оптическими спектрометрами, а в будущем планируется добавить к ним еще несколько научных приборов.

Однако мировым чемпионом TMT пробудет недолго. На 2024 год запланировано открытие Чрезвычайно большого европейского телескопа (European Extremely Large Telescope, E-ELT) с рекордным диаметром 39,3 м, который станет флагманским инструментом Европейской южной обсерватории (ESO). Его сооружение уже началось на трехкилометровой высоте на горе Серро-Армазонес в чилийской пустыне Атакама. Главное зеркало этого исполина, составленное из 798 сегментов, будет собирать свет с площади 978 м².

Эта великолепная триада составит группу оптических супертелескопов нового поколения, у которых долго не будет конкурентов.

«Спитцер» получил снимок скопления Рождественская елка

«Спитцер» получил снимок скопления Рождественская елка

Анатомия супертелескопов

Оптическая схема TMT восходит к системе, которую сотню лет назад независимо предложили американский астроном Джордж Виллис Ричи и француз Анри Кретьен. В основе ее лежит комбинация из главного вогнутого зеркала и соосного с ним выпуклого зеркала меньшего диаметра, причем оба они имеют форму гиперболоида вращения. Лучи, отраженные от вторичного зеркала, направляются в отверстие в центре основного рефлектора и фокусируются позади него. Использование второго зеркала в этой позиции делает телескоп более компактным и увеличивает его фокусное расстояние. Эта конструкция реализована во многих действующих телескопах, в частности в крупнейшем на настоящий момент Gran Telescopio Canarias с главным зеркалом диаметром 10,4 м, в десятиметровых телескопах-близнецах гавайской Обсерватории Кека и в четверке 8,2-метровых телескопов обсерватории Серро-Параналь, принадлежащей ESO.

Оптическая система E-ELT также содержит вогнутое главное зеркало и выпуклое вторичное, но при этом имеет ряд уникальных особенностей. Она состоит из пяти зеркал, причем главное из них представляет собой не гиперболоид, как у TMT, а эллипсоид.

GMT сконструирован совершенно иначе. Его главное зеркало состоит из семи одинаковых монолитных зеркал диаметром 8,4 м (шесть составляют кольцо, седьмое находится в центре). Вторичное зеркало — не выпуклый гиперболоид, как в схеме Ричи-Кретьена, а вогнутый эллипсоид, расположенный перед фокусом основного зеркала. В середине XVII века такую конфигурацию предложил шотландский математик Джеймс Грегори, а на практике впервые воплотил Роберт Гук в 1673 году. По грегорианской схеме построены Большой бинокулярный телескоп (Large Binocular Telescope, LBT) в международной обсерватории на горе Грэм в штате Аризона (оба его «глаза» оснащены такими же главными зеркалами, как и зеркала GMT) и два одинаковых Магеллановых телескопа с апертурой 6,5 м, которые с начала 2000-х годов работают в обсерватории Лас-Кампанас.

«Спитцер» получил снимок скопления Рождественская елка

Сила — в приборах

Любой телескоп сам по себе — просто очень большая зрительная труба. Для превращения в астрономическую обсерваторию его необходимо снабдить высокочувствительными спектрографами и видеокамерами.

TMT, который рассчитан на срок службы более чем в 50 лет, в первую очередь оснастят тремя измерительными инструментами, смонтированными на общей платформе — IRIS, IRMS и WFOS. IRIS (InfraRed Imaging Spectrometer) представляет собой комплекс из видеокамеры очень высокого разрешения, обеспечивающей обзор в поле 34 х 34 угловых секунды, и спектрометра инфракрасного излучения. IRMS — это многощелевой инфракрасный спектрометр, а WFOS — широкоугольный спектрометр, который может одновременно отслеживать до 200 объектов на площади не менее 25 квадратных угловых минут. В конструкции телескопа предусмотрено плоско-поворотное зеркало, направляющее свет на нужные в данный момент приборы, причем для переключения нужно меньше десяти минут. В дальнейшем телескоп оборудуют еще четырьмя спектрометрами и камерой для наблюдения экзопланет. Согласно нынешним планам, по одному дополнительному комплексу будет добавляться каждые два с половиной года. GMT и E-ELT также будут иметь чрезвычайно богатую приборную начинку.

«Спитцер» получил снимок скопления Рождественская елка
Супергигант E-ELT станет самым большим в мире телескопом с главным зеркалом диаметром 39,3 м. Он будет оснащен суперсовременной системой адаптивной оптики (АО) с тремя деформируемыми зеркалами, способными устранить искажения, возникающие на различных высотах, и сенсорами волнового фронта для анализа света от трех природных опорных звезд и четырех-шести искусственных (порожденных в атмосфере с помощью лазеров). Благодаря этой системе разрешающая способность телескопа в ближней инфракрасной зоне при оптимальном состоянии атмосферы достигнет шести угловых миллисекунд и вплотную приблизится к дифракционному пределу, обусловленному волновой природой света.

Европейский гигант

Супертелескопы следующего десятилетия обойдутся недешево. Точная сумма пока неизвестна, но уже ясно, что их общая стоимость превысит $3 млрд. Что же эти исполинские инструменты дадут науке о Вселенной?

«E-ELT будет использован для астрономических наблюдений самых разных масштабов — от Солнечной системы до сверхдальнего космоса. И на каждой масштабной шкале от него ожидают исключительно богатой информации, значительную часть которой не могут выдать другие супертелескопы, — рассказал «Популярной механике» член научной команды европейского гиганта Йохан Лиске, который занимается внегалактической астрономией и обсервационной космологией. — На это есть две причины: во‑первых, E-ELT сможет собирать много больше света по сравнению со своими конкурентами, и во-вторых, его разрешающая способность будет гораздо выше. Возьмем, скажем, внесолнечные планеты. Их список быстро растет, к концу первой половины нынешнего года он содержал около 2000 названий. Сейчас главная задача состоит не в умножении числа открытых экзопланет, а в сборе конкретных данных об их природе. Именно этим и будет заниматься E-ELT. В частности, его спектроскопическая аппаратура позволит изучать атмосферы каменных землеподобных планет с полнотой и точностью, совершенно недоступной для ныне действующих телескопов. Эта исследовательская программа предусматривает поиск паров воды, кислорода и органических молекул, которые могут быть продуктами жизнедеятельности организмов земного типа. Нет сомнения, что E-ELT увеличит количество претендентов на роль обитаемых экзопланет».

«Спитцер» получил снимок скопления Рождественская елка

Новый телескоп обещает и другие прорывы в астрономии, астрофизике и космологии. Как известно, существуют немалые основания для предположения, что Вселенная уже несколько миллиардов лет расширяется с ускорением, обусловленным темной энергией. Величину этого ускорения можно определить по изменениям в динамике красного смещения света далеких галактик. Согласно нынешним оценкам, этот сдвиг соответствует 10 см/с за десятилетие. Эта величина чрезвычайно мала для измерения с помощью ныне действующих телескопов, но для E-ELT такая задача вполне по силам. Его сверхчувствительные спектрографы позволят также получить более надежные данные для ответа на вопрос, постоянны ли фундаментальные физические константы или они меняются со временем.

E-ELT обещает подлинную революцию во внегалактической астрономии, которая занимается объектами, расположенными за пределами Млечного Пути. Нынешние телескопы позволяют наблюдать отдельные звезды в ближайших галактиках, но на больших дистанциях они пасуют. Европейский супертелескоп предоставит возможность увидеть самые яркие звезды в галактиках, отдаленных от Солнца на миллионы и десятки миллионов световых лет. С другой стороны, он будет способен принять свет и от самых ранних галактик, о которых еще практически ничего не известно. Он также сможет наблюдать за звездами вблизи сверхмассивной черной дыры в центре нашей Галактики — не только измерять их скорости с точностью до 1 км/с, но и открывать неизвестные ныне звезды в непосредственной близости от дыры, где их орбитальные скорости приближаются к 10% скорости света. И это, как говорит Йохан Лиске, далеко не полный перечень уникальных возможностей телескопа.

«Спитцер» получил снимок скопления Рождественская елка

Магелланов телескоп

Сооружает гигантский Магелланов телескоп интернациональный консорциум, объединяющий более десятка различных университетов и исследовательских институтов США, Австралии и Южной Кореи. Как объяснил «ПМ» профессор астрономии Аризонского университета и заместитель директора Стюартовской обсерватории Деннис Заритски, грегорианская оптика была выбрана по той причине, что она повышает качество изображений в широком поле зрения. Такая оптическая схема в последние годы хорошо зарекомендовала себя на нескольких оптических телескопах 6−8-метрового диапазона, а еще раньше ее применяли на крупных радиотелескопах.

Несмотря на то что по диаметру и, соответственно, площади светособирающей поверхности GMT уступает TMT и E-ELT, у него есть немало серьезных преимуществ. Его аппаратура сможет одновременно измерять спектры большого числа объектов, что чрезвычайно важно для обзорных наблюдений. Кроме того, оптика GMT обеспечивает очень высокую контрастность и возможность забраться далеко в инфракрасный диапазон. Диаметр его поля зрения, как и у TMT, составит 20 угловых минут.

«Спитцер» получил снимок скопления Рождественская елка

По словам профессора Заритски, GMT займет достойное место в триаде будущих супертелескопов. Например, с его помощью можно будет получать информацию о темной материи — главном компоненте многих галактик. О ее распределении в пространстве можно судить по движению звезд. Однако большинство галактик, где она доминирует, содержат сравнительно мало звезд, к тому же довольно тусклых. Аппаратура GMT будет в состоянии отслеживать движения много большего числа таких звезд, чем приборы любого из ныне действующих телескопов. Поэтому GMT позволит точнее составить карту темной материи, и это, в свою очередь, даст возможность выбрать наиболее правдоподобную модель ее частиц. Такая перспектива приобретает особую ценность, если учесть, что до сих пор темную материю не удавалось ни обнаружить путем пассивного детектирования, ни получить на ускорителе. На GMT также будут выполнять и другие исследовательские программы: поиск экзопланет, включая планеты земного типа, наблюдение самых древних галактик и исследование межзвездного вещества.


На земле и в небесах

«Спитцер» получил снимок скопления Рождественская елка

В октябре 2018 года планируется вывести в космос телескоп James Webb (JWST). Он будет работать только в оранжевой и красной зонах видимого спектра, но зато сможет вести наблюдения почти во всем среднем инфракрасном диапазоне вплоть до волн длиной 28 мкм (инфракрасные лучи с длинами волн свыше 20 мкм практически полностью поглощаются в нижнем слое атмосферы молекулами углекислого газа и воды, так что наземные телескопы их не замечают). Поскольку он будет защищен от тепловых помех земной атмосферы, его спектрометрические приборы будут гораздо чувствительнее наземных спектрографов. Однако диаметр его главного зеркала — 6,5 м, и поэтому благодаря адаптивной оптике угловое разрешение наземных телескопов будет в несколько раз выше. Так что, по словам Майкла Болте, наблюдения на JWST и на наземных супертелескопах будут идеально дополнять друг друга. Что касается перспектив 100-метрового телескопа, то профессор Болте весьма осторожен в оценках: «По моему мнению, в ближайшие 20−25 лет просто не удастся создать системы адаптивной оптики, способные эффективно работать в паре со стометровым зеркалом. Возможно, это произойдет где-то лет через сорок, во второй половине столетия».

Гавайский проект

«TMT — единственный из трех будущих супертелескопов, место для которого выбрано в Северном полушарии, — говорит член совета директоров гавайского проекта, профессор астрономии и астрофизики Калифорнийского университета в Санта-Крус Майкл Болте. — Однако его смонтируют не очень далеко от экватора, на 19-м градусе северной широты. Поэтому он, как и прочие телескопы обсерватории Мауна-Кеа, сможет обозревать небосвод обоих полушарий, тем более что по части условий наблюдения эта обсерватория — одно из лучших мест на планете. Кроме того, TMT будет работать в связке с группой расположенных по соседству телескопов: двух 10-метровых близнецов Keck I и Keck II (которые можно считать прототипами TMT), а также 8-метровых Subaru и Gemini-North. Система Ричи-Кретьена вовсе не случайно задействована в конструкции многих крупных телескопов. Она обеспечивает хорошее поле зрения и весьма эффективно защищает и от сферической, и от коматической аберрации, искажающей изображения объектов, не лежащих на оптической оси телескопа. К тому же для TMT запланирована поистине великолепная адаптивная оптика. Понятно, что астрономы с полным основанием ожидают, что наблюдения на TMT принесут немало замечательных открытий».

«Спитцер» получил снимок скопления Рождественская елка

По мнению профессора Болте, и TMT, и другие супертелескопы будут способствовать прогрессу астрономии и астрофизики прежде всего тем, что в очередной раз отодвинут границы известной науке Вселенной и в пространстве, и во времени. Еще 35−40 лет назад наблюдаемый космос в основном был ограничен объектами не старше 6 млрд лет. Сейчас удается надежно наблюдать галактики возрастом около 13 млрд лет, чей свет был испущен через 700 млн лет после Большого взрыва. Имеются кандидаты в галактики с возрастом 13,4 млрд лет, однако это пока не подтверждено. Можно ожидать, что приборы TMT смогут регистрировать источники света возрастом лишь чуть меньше (на 100 млн лет) самой Вселенной.

TMT предоставит астрономии и множество других возможностей. Результаты, которые будут на нем получены, позволят уточнить динамику химической эволюции Вселенной, лучше понять процессы формирования звезд и планет, углубить знания о структуре нашей Галактики и ее ближайших соседей и, в частности, о галактическом гало. Но главное в том, что TMT, так же как GMT и E-ELT, скорее всего, позволит исследователям ответить на вопросы фундаментальной важности, которые сейчас нельзя не только корректно сформулировать, но и даже вообразить. В этом, по мнению Майкла Болте, и состоит основная ценность проектов супертелескопов.

Статья «Исполины смотрят в небо» опубликована в журнале «Популярная механика»
(№10, Октябрь 2015).

Самый большой телескоп в мире — Thirty Meter Telescope, Гавайи

Пять лет назад был разработан грандиозный проект строительства мега-телескопа, чья разрешающая способность в пять раз превосходит разрешающую способность космического телескопа Hubble, однако лишь недавно получилось перейти от слов к делу и проект плавно начал переходить на следующую, более активную стадию строительства.

Правительство Гавайев, на территории которых и планировалось возведение телескопа, наконец-то выделило участок земли под строительство и уже с апреля, возможно, будет начать строительство. Проект был назван Thirty Meter Telescope (TMT — Тридцатиметровый телескоп).

Самый большой в мире телескоп

Несмотря на то, что сам проект был разработан в 2009 году, говорить о строительстве TMT начали еще в 1990-х годах. Начиная с этого момента, началась разработка проекта самого большого телескопа в мире. Так была разработана конструкция зеркала, чей диаметр составит 30 метров, и которое будет состоять из 500 отдельных сегментов. Место для телескопа тоже выбрано под стать проекту – спящий вулкан Мауна-Кеа.

Схема телескопа Thirty Meter Telescope

Однако как обычно это и происходит, проект был частично заморожен из-за недостатка финансов и, начиная с 2009 года велось аккумулирование средств для реализации проекта. Таким образом, на сегодняшний день силами Калифорнийского технологического института, Калифорнийского университета и канадской Ассоциации астрономических исследований удалось собрать и вложить в проект 120 миллионов долларов на его проектирование, которых хватает на начало строительства. Общая цена проекта составляет от 970 миллионов до 1,2 миллиардов долларов.

Самый большой телескоп на планете

Помимо финансовых проблем, проект Thirty Meter Telescope столкнулся с проблемами правового плана. Дело в том, что самый большой в мире телескоп будет расположен в заповедной зоне, а стало быть, строительство является потенциальной угрозой уникальным видам живых существ. Данная проблема разрешилась лишь после разработки специального плана по минимизации потенциального ущерба от строительства телескопа.

Вулкан Мауна-Кеа на карте - место расположения телескопа TMT

Так или иначе, проект возродился и обрастает новыми подробностями, за появлением которых мы постараемся следить и информировать вас, наших читателей. По последним данным, если финансирование будет найдено и строительство TMT пройдет без задержек, то достроить самый большой в мире телескоп получится в 2022 году.

Тридцатиметровый телескоп Википедия

Сравнение основных зеркал некоторых телескопов

Тридцатиметровый телескоп (англ. Thirty Meter Telescope (TMT)) — планируемая к постройке астрономическая обсерватория с 30 метровым сегментным зеркалом. Зеркало будет состоять из 492 шестиугольных сегментов по 1,4 метра общей площадью 664 м2, что позволит собирать в 9 раз больше света, чем крупнейшие из существующих наземных телескопов[1]. По сравнению с телескопом Хаббла, изображения, получаемые с нового телескопа, будут примерно в 10—12 раз четче. Планируемый срок службы телескопа составляет более 50 лет. Постройку телескопа планируется завершить в середине 2020-х, а в 2027 году начать научные наблюдения.

Когда телескоп будет построен, то он станет третьим в новом поколении Экстремально больших телескопов. По оценкам на 2017 год, стоимость телескопа около 1,4 млрд долларов.

Телескоп будет находиться на высоте 4050 метров над уровнем моря, на вершине горы Мауна-Кеа, неподалеку от знаменитой обсерватории Кека.

Ход строительства[ | ]

22 октября 2008 г. в статье http://rosinvest.com/novosti/457810 сказано, что «Телескоп апертурой 30 метров, строительство которого ведет Фонд Гордона и Бетти Мур совместно с Калифорнийским технологическим институтом, Калифорнийским университетом и канадской университетской астрономическо ассоциацией ACURA, планируется установить либо в Чили на высокогорном плато Атакама, либо на Гавайских островах, на вершине Мауна Кеа.»

12 апреля 2013 года Гавайский совет по земельным и природным ресурсам одобрил строительство телескопа. До конца 2013 года будут производиться подготовительные работы, а о запуске непосредственного строительства телескопа было объявлено

Тридцатиметровый телескоп — Википедия

Материал из Википедии — свободной энциклопедии

Сравнение основных зеркал некоторых телескопов

Тридцатиметровый телескоп (англ. Thirty Meter Telescope (TMT)) — планируемая к постройке астрономическая обсерватория с 30 метровым сегментным зеркалом. Зеркало будет состоять из 492 шестиугольных сегментов по 1,4 метра общей площадью 664 м2, что позволит собирать в 9 раз больше света, чем крупнейшие из существующих наземных телескопов[1]. По сравнению с телескопом Хаббла, изображения, получаемые с нового телескопа, будут примерно в 10-12 раз четче. Планируемый срок службы телескопа составляет более 50 лет. Постройку телескопа планируется завершить в середине 2020-х, а в 2027 году начать научные наблюдения.

Когда телескоп будет построен, то он станет третьим в новом поколении Экстремально больших телескопов. По оценкам на 2017 год, стоимость телескопа около 1,4 млрд долларов.

Телескоп будет находиться на высоте 4050 метров над уровнем моря, на вершине горы Мауна-Кеа, неподалеку от знаменитой обсерватории Кека.

Ход строительства

12 апреля 2013 года Гавайский совет по земельным и природным ресурсам одобрил строительство телескопа. До конца 2013 года будут производиться подготовительные работы, а о запуске непосредственного строительства телескопа было объявлено в июле 2014 года[2][3]. Стоимость строительства телескопа составит 1 млрд долларов. 100 млн были израсходованы ещё до начала строительных работ на конструирование, проектную документацию и подготовку строительной площадки. Финансирование проекта будут осуществлять университеты США, Канады, Китая, Индии и Японии.

Официальное строительство началось 7 октября 2014 года.

6 апреля 2015 года к проекту официально присоединилась Канада, выделив на строительство 243,5 млн долларов.

26 мая 2015 года от губернатора штата Гавайи Дэвида Игея было получено официальное разрешение на строительство нулевого цикла.

29 сентября 2017 года Гавайское бюро природных и земельных ресурсов утвердило разрешение на строительство телескопа на горе Мауна-Кеа.

Примечания

Ссылки

Оставьте комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *