Температура во вселенной: Температура вселенной

Содержание

Температура вселенной

Вселенная по представлению простых людей, населяющих землю, это окружающее Землю звездное небо с миллионами звезд, планет, галактик. Она загадочна, она даже можно сказать, не познаваема, но она существует и поэтому имеет свою температуру. Какова же средняя температура в космосе? Согласно широко распространённой модели, Вселенная образовалась 15 миллиардов лет назад в результате Большого взрыва и продолжает расширяться до сих пор.

Важнейшей характеристикой эволюции вселенной является ее температура. По теоретическим расчетам, в течение первых 10-36 с, когда температура Вселенной была больше 1028 К, энергия в единице объема оставалась постоянной, Вселенная расширялась со скоростью, значительно превышающей скорость света. Этот факт не противоречит теории относительности, так как с такой скоростью расширялось не вещество, но само пространство. Эта стадия эволюции называется инфляционной. Из современных теорий квантовой физики следует, что в это время сильное ядерное взаимодействие отделилось от электромагнитного и слабого. Выделившаяся в результате подобного нарушения симметрии энергия и явилась причиной катастрофического расширения Вселенной, которая за крошечный промежуток времени в 10-33 с увеличилась от размеров атома до размеров Солнечной системы. В это же время появились привычные нам элементарные частицы и чуть меньшее из-за спонтанного нарушения симметрии количество античастиц.

Вещество и излучение все еще находилось в термодинамическом равновесии, а «горячие» фотоны полностью определяли характер излучения Вселенной. Эта эпоха называется радиационной стадией эволюции.

При температуре 5•1012 К закончилась стадия рекомбинации: почти все протоны и нейтроны аннигилировали, превратившись в фотоны; остались только те, для которых не хватило античастиц. Как показали наблюдения, на один барион приходится почти миллиард фотонов – продуктов аннигиляции. Значит, первоначальный избыток частиц по сравнению с античастицами составляет одну миллиардную от их числа. Именно из этого «избыточного» вещества и состоит в основном вещество наблюдаемой Вселенной.

Спустя несколько секунд после Большого Взрыва в горячей и плотной Вселенной началась стадия первичного нуклеосинтеза, продолжавшаяся около трех минут. В результате термоядерных реакций образовывались ядра тяжелого водорода и гелия. Затем началось спокойное расширение и остывание Вселенной. Предсказанные количества водорода (75%) и гелия (25%) по теории первичного нуклеосинтеза подтверждаются распространенностью легких элементов в космосе в настоящее время.

Примерно через миллион лет после взрыва равновесие между веществом и излучением нарушилось, из свободных протонов и электронов начали образовываться атомы, а излучение стало проходить через вещество, как через прозрачную среду. Именно это излучение назвали реликтовым, его температура была около 3000 К. Гипотезу о существовании такого излучения высказал Георгий Гамов. Реликтовое фоновое излучение открыли в 1964 году американские ученые Арно Пензиас и Роберт Вильсон. Оно оказалось в высокой степени изотропным, одинаковым по всем направлениям и своим существованием подтверждает модель горячей расширяющейся Вселенной. При расширении Вселенная остывает, поэтому длина волны реликтовых фотонов должна возрастать: в настоящее время регистрируется фон с температурой 2,725 К, что соответствует миллиметровому диапазону. Самым точным измерением температуры реликтового фона на данный момент считается 2.725 +/- 0.001 Кельвина (Mather с соавт. 1999, ApJ, 512, 511). Довольно точный результат. Неужели когда-то наша вселенная остынет окончательно?

Похожие по тематике статьи на сайте:

Самое холодное место Солнечной системы — Луна

Температура над Землей

Почему небо голубое?

Температура внутри Земли

Британские плюшевые мишки сообщили из космоса о температуре

Почему звездное небо черное? (фотометрический парадокс)

Использованы материалы сайта http://www.astrolab.ru

Какая температура максимально возможна во Вселенной?














  • История
    • Быт и жизненный уклад
    • Войны
    • Изобретения
    • Личности
    • События
  • Мифы
  • Моя планета
    • Общество, культура, традиции
    • Удивительные места
    • Флора и фауна
    • Явления
  • Наука
    • Археология
    • Естественные науки
    • Космос
    • Технологии
  • Рекорды
  • В мире
    • Животные
    • Люди
    • Новости
    • Открытия




Поиск





Интересные статьи, новости, факты — MyDiscoveries.ru

  • История
    • ВсеБыт и жизненный укладВойныИзобретенияЛичностиСобытия

      Энн Ходжес — единственный известный человек, пострадавший от прямого попадания метеорита

      Клара — самый знаменитый носорог 18 века

      Модная римская обувь возрастом 2000 лет

      Откуда в русском языке появился мат?

  • Мифы
    • Правда, что если хрустеть суставами, можно заработать артрит?

      Правда, что мухомор убивает мух?

      Правда ли, что носороги топчут огонь?

      «Правило пяти секунд» — правда или вымысел?

      Правда ли, что акулам не нравится вкус человека?

  • Моя планета
    • ВсеОбщество, культура, традицииУдивительные местаФлора и фаунаЯвления

      Как насекомые видят в темноте?

      Изначально морковь была фиолетового цвета

      Раньше на планете обитали пингвины-гиганты

      Парижский синдром — когда город влюбленных не оправдывает ожиданий

  • Наука
    • ВсеАрхеологияЕстественные наукиКосмосТехнологии

      Отпечатки ладоней возрастом 13 000 лет

      Это изображение Луны составлено из 50 000 отдельных фотографий

      Наглядно о том, почему скорость света не такая быстрая

      video

      Это видео покажет, как выглядит звук

  • Рекорды
    • Раньше на планете обитали пингвины-гиганты

      video

      Самая высокая статуя в мире

      video

      Нисияма Онсэн Кэйункан — самая старая гостиница в мире

      video

      Haliade-X 12-MW — «король ветра» или самый большой ветряк в мире

      video

      Самый продолжительный пассажирский авиарейс в мире

  • В мире

Температура во Вселенной | Космос

Галактика Андромеды M31 в УФ

Температурой в физике называют величину, которая количественно выражает степень нагретости различных тел. Учитывая, что в область изучения часто попадают не только твердые тела, но жидкости и газы, то существует более общее понятие температуры, как степень кинетической энергии частиц.

Содержание:

  • 1 Единица измерения температуры
  • 2 Среднегодовая температура
  • 3 Диапазон температур Земли
  • 4 Распределение годовых максимальных температур Земли
  • 5 Температурные колебания у других планет Солнечной системы
  • 6 Температура звезд
  • 7 Материалы по теме
  • 8 Температуры нейтронных звезд
  • 9 Высокотемпературные процессы черных дыр
  • 10 Температура межзвездной среды
  • 11 Температура нашей Вселенной во время Большого взрыва
  • 12 Материалы по теме
  • 13 Статистика частиц космических лучей по энергиям

Единица измерения температуры

Системной единицей измерения температуры является Кельвин (сокращено К), в которой за точку отчета берется абсолютный нуль — состояние вещества с нулевой кинетической энергией частиц. В быту чаще всего используются градусы Цельсия (сокращено °С), для которых точка отчета соответствует точке замерзания воды. Один градус Цельсия равен Кельвину, и соответствует 1/100 части температурной разницы между точкой замерзания и точкой кипения воды. Абсолютный нуль равен −273,15 градусов Цельсия.

С точки зрения квантовой физики и при абсолютном нуле температуры существуют нулевые колебания, которые обусловлены квантовыми свойствами частиц и их окружающего физического вакуума.

Среднегодовая температура

Наша планета находится в зоне жизни своей звезды. Зоной жизни называется пространство достаточно удаленное от своей звезды, в котором на поверхности планеты возможно существование воды в жидкой форме. Современные метеорологи (специалисты по земному климату и погоде) чаще всего используют температурные измерения приземного воздуха с помощью ртутных или спиртовых термометров (температура замерзания ртути и спирта равна -38.9°C и -114,1°C соответственно).

Температура поверхности Земли

Температура поверхности Земли

По международной методике измерения должны происходить на двухметровой высоте от поверхности земли в специальной метеорологической будке, удаленной от антропогенного ландшафта. Среднегодовая температура приземного воздуха на поверхности Земли равна +14°С. В то же время в отдельных частях планеты температура приземного воздуха сильно отличается от этого значения по причине разного времени года или суток, различной географической широты, удаления от океана, высоты над средним уровнем моря и близости к вулканическим областям.

Диапазон температур Земли

Самый небольшой температурный перепад приземного воздуха наблюдается в экваториальных районах Мирового океана. Так на острове Рождества, который находится в центральной экваториальной части Тихого океана сезонные температурные перепады ограничены диапазоном 19-34 градусов Цельсия. Впрочем, считается, что самый ровный климат наблюдается в местечке Гарапан на острове Сайпан (Мариинские острова). В течение 9 лет с 1927 по 1935 г. самая низкая температура здесь была зарегистрирована 30 января 1934 г. (+19.6°С), а самая высокая — 9 сентября 1931 г. (+31,4°С), что дает перепад 11,8°С.

Континенты характеризуются значительно более высокими температурными перепадами. В долине Смерти (Калифорния) 10 июля 1913 года было зарегистрировано +56.7°C, а 13 июля 1922 года регистрировалось +57.8° C (позже это значение было оспорено). На российской станции Восток, 21 июля 1983 года, наблюдалось -89,2° C. Самый большой перепад температур зарегистрирован в российском Верхоянске —  106,7° C: от -70° C до +36.7°С. Самая низкая среднегодовая температура зарегистрирована в 1958 году на Южном полюсе (-57,8°С). Самая высокая среднегодовая температура зафиксирована в местечке Феранди (Эфиопия) в 60-х годах 20 века (+34°С).

Поверхностная температура Земли отличается ещё экстремальными значениями в связи с тем, что темная поверхность днем может прогреваться до значительно более высоких температур по сравнению с воздухом. В долине Смерти (Калифорния) 15 июля 1972 года регистрировалось +93.9°C. Вероятно такие высокие поверхностные температуры могут вызывать в условиях сильного ветра аномальные кратковременные всплески температуры воздуха (в июле 1967 году в иранском Абадане был зарегистрирован резкий рост температуры воздуха до +87.7°С).

Распределение годовых максимальных температур Земли

Тепловое электромагнитное излучение согласно закону смещения Вина
Тепловое электромагнитное излучение
Анализ снимков спутника “Aqua“
Максимальная поверхностная температура в иранской пустыне
Статистическое распределение годовых максимальных температур поверхности на планете
Анализ спутниковых снимков за 1982-2013 годы

Поверхность нашей планеты является источником теплового электромагнитного излучения, максимум которого находится в инфракрасной области спектра (согласно закону смещения Вина).

Благодаря этому свойству околоземные спутники могут измерять температуру любой точки поверхности Земли в отличие от наземных метеостанций.

Температура плато Аргус

Температура плато Аргус

Анализ снимков спутника “Aqua“ за 2009-2013 годы позволил определить, что максимальная поверхностная температура в иранской пустыне в 2005 году достигала +70.7 °C.

Статистическое распределение годовых максимальных температур поверхности на планете показывает четыре кластера (ледники, леса, саванны/степи и пустыни).

Другой анализ спутниковых снимков за 1982-2013 годы показал, что минимальные температуры в Антарктиде могут достигать -93.2 °C.

Несмотря на то, что земная поверхность в среднем получает от Солнца в 30 тысяч раз больше энергии, чем от земных недр, геотермальная энергетика является важным элементом экономики некоторых стран (к примеру, Исландии).

Бурение рекордной Кольской скважины показало, что на глубине 12 км температура достигает +220°С.

Анализ снимков спутника “Aqua“

Анализ снимков спутника “Aqua“

Изотерма +20 °C в земной коре проходит на глубинах от 1500-2000 м (районы многолетней мерзлоты) до 100 м и менее (субтропики), а в тропиках выходит на поверхность. В горных районах термальные источники имеют температуру до +50…+90 °C, а в артезианских бассейнах на глубинах 2000—3000 м вода с температурой +70…+100 °C и более.

Точка, где наблюдалась минимальная температура, не является самой высокой частью ледника: её высота составляет около 3900 метров против 4093 метров у Плато А (Аргус).

Более ранний анализ снимков спутника “Aqua“ за 2004-2007 годы подтверждает, что самые холодные зимние температуры наблюдаются на хребте B, который соединяет плато А и плато F (Фуджи).

В районах активного вулканизма термальные источники проявляются в виде гейзеров и струй пара, выносящих на поверхность пароводяные смеси и пары с глубин 500—1000 м, где вода находится в перегретом состоянии (+150…+200 °C). В подводных гидротермальных источниках (“черных курильщиках”) наблюдаются температуры до +400 °C. В вулканах температура лавы может повышаться до +1500°C.

Оценки теплового потока из недр планеты в разных частях поверхности Земли
Вариант теоретической температуры глубинных слоев планеты
Температура глубинных слоев планет
Температурный профиль земной атмосферы

На основе лабораторных экспериментов, данных сейсмологии и теоретических расчетов считается, что в недрах планеты температуры могут превышать 7 тысяч градусов. Несколько вариантов теоретической температуры глубинных слоев планеты.

Если бы наша планета не обладала атмосферой, то согласно закону Стефана-Больцмана её средняя температура равнялась бы не +14 °C, а -18 °С. Различие объясняется тем, что земная атмосфера поглощает часть теплового излучения поверхности (парниковый эффект). Это во многом объясняет, почему с ростом высоты над поверхностью планеты падает не только давление, но и температура.

Температурный максимум в стратосфере (на высоте примерно 50 км) объясняется взаимодействием озонового слоя с ультрафиолетовым излучением Солнца. Температурный пик в экзосфере (ионосфере) связан с ионизацией молекул внешних разреженных слоев атмосферы под действием солнечного излучения. Суточные колебания в этом слое могут достигать нескольких сотен градусов. В экзосфере происходит улетучивание земной атмосферы в космос.

Температурные колебания у других планет Солнечной системы

Хорошим примером температурных колебаний в случае, если бы у Земли не было атмосферы, является Луна. По наблюдениям спутника LRO температура поверхности нашего спутника изменяется от +140°C в небольших экваториальных кратерах до -245 °C на дне полярного кратера Hermite (Эрмита). Последнее значение даже меньше, чем измеренная температура поверхности Плутона -245 °C или любого другого небесного тела Солнечной Системы, для которого были проведены температурные измерения. Тем самым температурные колебания на Луне достигают 385 градусов. По этому показателю Луна занимает второе место в Солнечной Системе после Меркурия.

Колебания температуры поверхности Луны

Колебания температуры поверхности Луны

Измерения приборов, оставленных экипажами миссий Аполон-15 и Аполон-17, показали, что на глубине 35 см, температуры в среднем на 40-45 градусов теплее, чем на поверхности. На глубине 80 см сезонные колебания температуры исчезают, и постоянная температура близка к -35 °С. Оценивается, что температура ядра Луны равна 1600–1700 K. Куда более высокие температуры могут появляться во время падения астероидов.

Температурный профиль Венеры

Температурный профиль Венеры

Так в древних земных кратерах обнаружены фианиты, для образования которых из циркона требуются температуры, превышающие 2640 Кельвинов.  Достижение таких температур невозможно при земном вулканизме.

Ближайшая к нам планета – Венера характеризуется аномально плотной атмосферой с давлением эквивалентным 90 земных атмосфер. За счет чудовищного парникового эффекта температура поверхности планеты достигает 480°C, что больше чем на Меркурии.

 Сезонные различия в температурных профилях для Венеры заметны лишь на больших высотах.

Измеренные температуры в южном полушарии с помощью наблюдений аппарата “Венера-Экспресс” между маем 2006 и декабрем 2007 года составили от 422 °C до 442 °C. По другим измерениям от 10 августа 2006 года температура поверхности планеты изменяется от 453 °C до 473 °C. В то же время, наблюдения станции “Венера-Экспресс” позволили обнаружить горячие пятна с температурой до 830 °C (средняя температура поверхности планеты оценивается в 473 °С), которые могут быть лавовыми потоками и свидетельством текущей вулканической активности.

Температурный профиль атмосферы Венеры

Температурный профиль атмосферы Венеры

Предполагается, что самой высокой точкой Венеры являются горы Максвелла и так же самым холодным местом на планете. Температура там составляет около 380 °C. По измерениям аэростатов двух советских станций Вега в 1985 году, температура на высоте 55 км составляет около 40°C при давлении в 0.5 земных атмосфер.

Температура Меркурия днем колеблется от 430 °C до 280 °C в зависимости от нахождения в перицентре или апоцентре орбиты, а ночью падает до — 170 °C. Но на дне полярных кратеров температура может составлять только — 220° C, что позволяет существовать там большим скоплениям льда. Скопления льда в полярных кратерах Меркурия были обнаружены ещё в 90х годах 20 века с помощью радиолокации, которая оказалась бессильна для подобного открытия на Луне.

Сравнение температуры поверхности разных планет

Сравнение температуры поверхности разных планет

Для защиты от солнечных лучей на первом спутнике Меркурия – станции “Мессенджер” был установлен специальный защитный керамический экран. Благодаря экрану температура бортовых систем зонда находилась на уровне 20 °C, в то время как лицевая часть экрана разогревалась до 370 °С. Но “Мессенджер“ стал далеко не самым “жаропрочным“ космическим аппаратом. Западногерманские станции “Гелиос” ещё в 70х годах 20 века приблизились к Солнцу на рекордное расстояние, где аппараты могли также нагреваться до 370 °C (11 солнечных постоянных на Земле). Специальные зеркала станций не позволяли солнечным батареям нагреваться выше 165 °C, а температурный режим бортовых систем был ограничен диапазоном между -10°C и 20°С. В полете самая высокая температура, которая была зарегистрирована на “Гелиос-В“ составила 150°С.

Будущий зонд NASA — Parker Solar Probe подвергнется ещё более жестким испытаниям. В перицентре его орбиты на зонд будут воздействовать сразу 520 солнечных постоянных на Земле. Это эквивалентно температуре в 1400 °С. Специальный керамический экран толщиной в 11 см позволит поддерживать на станции комнатные температуры. На зонде будут отсутствовать солнечные батареи, электропитание будет осуществляться от плутониевых генераторов.

Многие известные объекты то же способны приближаться к Солнцу на рекордно близкое расстояние. К их числу можно отнести астероид Фаэтон, температура которого в перицентре может достигать 750 °C. В 2009 году аппарат STEREO-A зарегистрировал двукратное увеличение блеска видимого блеска Фаэтон в перицентре.

Средняя температура поверхности Марса составляет около — 55 °С. Максимальные зарегистрированные температуры составляют +35°C (по данным марсохода Спирит в кратере Гусева), минимальные -153°C (температура на полюсах по данным орбитальных станций). Сравнение температурных профилей атмосфер Марса, Земли и Венеры.

Температурные профили атмосферы Венеры, Земли и Марса

Температурные профили атмосферы Венеры, Земли и Марса

Первые пролетные станции в системе крупнейшей планеты Солнечной Системы показали, что инфракрасное излучение (и соответственно температура атмосферы) Юпитера на 60% больше, чем следовало из теоретических моделей, учитывающих только нагрев от Солнца.

Температура ядра Юпитера

Температура ядра Юпитера

При снижении атмосферного зонда станции “Галилео” в 1995 году, он передавал данные до глубины в 160 км от верхнего слоя облаков, где его температура достигла 160 °C, а давление 22 земных атмосфер. Температурный профиль атмосферы Юпитера.

Спутник Ио стал одним из самых больших сюрпризов при исследовании системы Юпитера космическими зондами. Его поверхность является самой молодой в Солнечной Системе, на ней отсутствуют ударные кратеры. Измерения со станции Галилео показали, что температура вулканов на этом спутнике достигает как минимум 1340°C. В то же время измерения ночной стороны Ио в полярных регионах показывают участки поверхности с температурой всего в 90-95 К. На другом “геологически молодом“ спутнике Юпитера – Европа величина возможных тепловых аномалий ограничена лишь несколькими градусами в районе гипотетических гейзеров.

Температурный профиль атмосферы Юпитера

Температурный профиль атмосферы Юпитера

В целом же температуры на поверхности Европы колеблются от 110 K на экваторе до 50 K на полюсах.

В отличие от Европы на спутнике Сатурна Энцеладе станции Кассини удалось зарегистрировать тепловую аномалию в районе обнаруженных гейзеров. Температуры в районе гейзерных разломов достигают 157 K против 85-90 K у окружающей местности. Теоретические расчеты говорят, что температура внутри небольшого спутника может достигать 1000 К.

Другим интересным спутником системы Сатурна является Титан – единственный спутник Солнечной Системы с атмосферой. Посадка аппарата Гюйгенс позволила определить температуру на поверхности Титана и построить её температурный профиль.

Измерения Кассини в 2004-2014 годах показали, что температура на поверхности Титана изменяется лишь на 3.5 градусов: от 89.7 ± 0.5 K на южном полюсе в зимний период, до 93.65 ± 0.15 K в экваториальных районах:

Температурный профиль Титана
Температура на поверхности Титана
Температурные измерения на Титане

Измерения Вояджера-2 позволяют оценить температуру ещё одного геологически активного спутника – Тритона в системе Нептуна. Температура поверхности Тритона близка к 38 K, а температура верхних слоев составляет примерно 95+/-5.

Сейчас считается, что Тритон холоднее карликовой планеты Плутон, которая находится почти на том же расстоянии от Солнца. Субмиллиметровые наблюдения в 2005 году позволили оценить среднюю температуру поверхности Плутона и Харона в 42±4 K и 56±14 K соответственно (Харон является более теплым по причине более низкого альбедо поверхности). Наблюдение звездных покрытий показывает, что максимальные температуры в атмосфере Плутона наблюдаются на высоте около 30 км: 110 К.

Самым удаленным объектом Солнечной Системы из известных на сегодня является карликовая планета Эрида. Наблюдения теплового излучения Эриды с помощью телескопов Гершель, Спитцер и ALMA показывают, что температура её поверхности меньше 30 К. В то же время эти же наблюдения говорят, что температура поверхности спутника Эриды – Дисномия за счет более высокого альбедо превышает 40 К.

Температура звезд

Наше Солнце является звездой главной последовательности спектрального класса G. Средняя температура её поверхности составляет примерно 5778 K, а внутри ядра по теоретическим расчетам достигает 15,7 млн. К.

Температура звезд

Температура звезд

Впрочем, эффективная температура солнечного ветра составляет 0.8 млн. K, солнечной короны 1-3 млн. K, а у солнечной вспышки может составлять многие десятки миллионов градусов (максимум их излучения приходится на рентгеновское излучение).

Во Вселенной Солнце является совершено рядовой звездой. Температуры поверхности обычных звезд колеблются от 2300 K у красных карликов, до 50 000 K у голубых карликов. В то же время существует особый класс звезд — звезды Вольфа — Райе, у которых температура поверхности может превышать 50 тыс. К. Число известных звезд этого типа в Местной группе галактик может составлять только несколько тысяч. Сейчас известно около 500 таких звезд в нашей галактике, 150 в Магеллановых облаках, 206 в М33 и 154 в М31. Подобные звезды отличаются большой плотностью, наличием сбрасываемых оболочек похожих на планетарные туманности. Считается, что они представляют собой последний этап эволюции одиночных массивных звезд перед стадией взрыва сверхновой. Наиболее горячей звездой из них считается WR 102 с оцениваемой температурой в 210 тыс. K и светимостью в половину миллиона светимости Солнца. Масса этой звезды оценивается в 20 масс Солнца при радиусе меньше 0.4 радиусов Солнца.

Материалы по теме

Температура звезды Температура во Вселенной

Расчеты показывают, что WR 102 (созвездие Стрельца, расстояние 5 тыс. парсек от Земли) может стать сверхновой через 1500 лет.

Другой крайностью являются коричневые карлики, температура которых может быть ниже, чем у планет Солнечной Системы. Анализ данных телескопа WISE позволил найти одиночный коричневый карлик в WISE 0855−0714 в 2.2 парсек от Земли с рекордно низкой температурой: 225-260 K. Его масса оценивается в 3-10 масс Юпитера.

Одновременно сейчас известны планеты, температура поверхности которых превышает температуру поверхности многих звезд. В 2010 году было опубликовано открытие транзитной планеты WASP-33b. Наблюдения вторичного затмения этой планеты определили её температуру в 3358±165 K. В 2017 году было опубликовано открытие ещё более горячей транзитной экзопланеты – KELT-9b. По оценкам температура этой планеты достигает 4600 K, что соответствует температуре поверхности звезд спектрального класса K4. В связи с этим планета KELT-9b более горячая, чем большинство звезд в галактике.

Коричневый карлик

Коричневый карлик

Кроме того в 2011 году было опубликовано открытие ещё одной экстремальной планеты Кеплер-70b. Эта планета была обнаружена на основе регистрации периодических пульсаций в яркости горячего (27730 ± 270 K) субкарлика, эволюционирующего в белый карлик. Теоретические расчеты говорят, что планета обращается вокруг звезды по 6 часовой орбите, должна обладать температурой поверхности как минимум в 6 тыс. K. Противоположным примером является недавнее открытие коричневого карлика HD 4113С, который обращаясь вокруг близкой солнцеподобной звезды за несколько десятков лет, обладает температурой в 300 K.

Звездные остатки обладают ещё более высокими температурами. Так в 2015 году было опубликовано открытие самого горячего белого карлика RX J0439.8-6809 с температурой поверхности в 240 тыс. K. Теоретики считает, что тысячу лет назад эта звезда была ещё горячее – температура её поверхности составляла 400 тыс. K. Для сравнения максимальная температура нашего Солнца в будущем не превысит 200 тыс. К. После достижения максимальной температуры белые карлики начинают медленно остывать: теоретически вплоть до абсолютного нуля. В 2014 году был обнаружен белый карлик с оцениваемой температурой меньше 3 тыс. К.

Температуры нейтронных звезд

Более экзотические остатки звезд – нейтронные звезды обладают ещё более высокими температурами поверхности. Максимум их излучения лежит в рентгеновском диапазоне и гамма-лучах. Так ярчайшими источниками в гамма-лучах на земном небе является тройка нейтронных звезд – в Крабовидной туманности, в туманности в Парусах и радиотихая звезда Геминга.

Гамма-источники

Гамма-источники

Теоретические оценки, что во время рождения нейтронной звезды температура её поверхности составляет около 100 млрд. K, затем за 100 секунд она снижается до млрд. K. Уменьшение температуры с 1 млрд. K до 100 млн. K происходит за 100 лет, а охлаждение до млн. K за миллион лет. В связи с этим наблюдаемые температуры поверхности известных нейтронных звезд составляют примерно 0.1-1 млн. K. Так поверхностная температура пульсара в Крабовидной тумманости (возраст около тысячи лет) оценивается менее чем в 1.55 млн. K, а его температура ядра в 3 млрд. K. Поверхностная температура пульсара PSR J1840-1419 в 2013 году была оценена менее чем в 600 тыс. K, а возраст в 16.5 млн. лет. Но наиболее старым считается радиопульсар PSR J2144-3933. За этим объектом числится сразу несколько рекордов: ближайший радиопульсар (180 парсек) и радиопульсар с самым большим периодом (8.51 секунд).

Нейтронные звезды в одной картинке

Нейтронные звезды в одной картинке

Возраст пульсара оценивается в 272 млн. лет, а температура поверхности в 0.23-1.9 млн. К. Если температура во время обычного взрыва сверхновой составляет “лишь“ 10-100 млрд. K, то во время экзотического гамма-всплеска (столкновение нейтронных звезд) она может достигать уже несколько десятков трлн. К. Кроме того существует теория, что взрывы сверхновых могут порождать особый экзотический тип звезд: “’электрослабые звезды”. Их температура составляет уже несколько петаКельвинов (1 петаК = 1000 трлн. К). Эти объекты могут воссоздавать Большой взрыв в первые 10-10 секунд в объеме равном яблоку (при массе в 2 массы Земли).

Высокотемпературные процессы черных дыр

Черная дыра в представлении художника

Черная дыра в представлении художника

Не менее высокотемпературные процессы происходят в аккреционных дисках черных дыр. Так черная дыра звездных масс (Scorpius X-1) является ярчайшим рентгеновским источником на земном небе, а аккреционный диск сверхмассивной черной дыры (Лебедь А) является ярчайшим радиоисточником на земном небе.  Недавние наблюдения российского космического радиотелескопа “Радиоастрон“ показали, что эффективная температура центральной части ближайшего квазара 3C273 составляет от 10 до 40 трлн. K. Существует теория, что эффективная температура темной материи в активных галактических ядрах составляет около зетаКельвина (1021 К), что в десятки миллионов раз больше наблюдаемой температуры видимой материи у этих объектов.

Температура межзвездной среды

Межзвездная среда так же отличается очень большими температурными контрастами. В межзвездных ударных волнах температура может превышать млрд. К, а в скоплениях галактик типичные температуры составляют млн. K. С другой стороны измеренная температура туманности Бумеранг в созвездии Центавра в 5 тыс. световых лет от Земли за счет быстрого расширения составляет только 1 К. Эта температура даже ниже чем современная температура реликтового излучения (2.725 K). Кроме этого примера в природе известно ещё только одно явление со схожей температурой: загадочное “холодное пятно“, которое на 70 микроK холоднее среднего значения температуры реликтового излучения. Эта разница значительно больше, чем среднеквадратичное отклонение реликтового излучения (18 микроK). Холодное пятно находится в направлении созвездия Эридана, его диаметр около 10 угловых градусов. Предполагается, что этим объектом может являться огромный супервойд диаметром около 150-500 мегапарсек, который находится в 2-3 гигапарсек от нас (z=1).

Холодное пятно

Холодное пятно

С другой стороны существует теория, что температура излучения Хокинга для свермассивных черных дыр составляет ещё меньшую величину: 10-18 К.

Температура нашей Вселенной во время Большого взрыва

 В будущем температура реликтового излучения будет продолжать уменьшаться. А какая была температура нашей Вселенной во время Большого взрыва? Теория утверждает, что на 5×10−44 секунде Большого взрыва температура нашей Вселенной была равна температуре Планка. Её примерное значение равно 1.4х1032 K, и оно характеризует один из фундаментальных пределов в квантовой механике. Современная физическая теория не способна описать что-либо с более высокой температурой из-за отсутствия в ней разработанной квантовой теории гравитации. Выше планковской температуры энергия частиц становится настолько большой, что гравитационные силы между ними становятся сравнимы с остальными фундаментальными взаимодействиями.

Материалы по теме

Планковская температура Температура во Вселенной

В соответствии с текущими представлениями космологии,  Планковская температура — это температура Вселенной в первый момент (планковское время) Большого взрыва.

При всей фантастической огромности Планковской температуры в настоящее время астрономы уже подбираются к наблюдениям подобных экстремальных температур. Речь идет о регистрации частиц космических лучей ультравысоких энергий, температура которых “лишь“ примерно в миллион раз меньше, чем температура Планка или в миллионы раз больше температур (энергий) столкновений частиц в БАК. Первоначально считалось, что существование таких частиц маловероятно, так как согласно пределу Грайзена-Зацепина-Кузьмина протоны с энергиями выше 5х1019 эВ должны взаимодействовать с фотонами реликтового излучения с последующей потерей энергии. Расчеты показывали, что среднее расстояние уменьшения энергии должно составлять около 50 мегапарсек. Однако уже 22 июля 1962 года с помощью эксперимента Volcano Ranch (Нью Мексико) была обнаружена первая частица космических лучей с энергией в 1.0×1020 eV (16 J). 15 октября 1991 года другая установка в Юте зарегистрировала частицу с ещё большей энергией — 3×1020 eV (50 J), которая получила неофициальное название, как “частица Бога“.

"Частица Бога"

«Частица Бога»

Современные теоретики считают наиболее вероятным, что рекордные по энергиям (температурам) частицы космических лучей связаны с активными ядрами галактик (аккреционными дисками сверхмассивных черных дыр). Огромная энергия (температура) частиц космических лучей сверхвысоких энергий может являться нетепловым излучением частиц, которые разгоняются в огромных природных ускорителях джетов свермассивных черных дыр, размером с галактику (к примеру, эффективная температура радиоизлучения пульсаров оценивается в 1023-1031 К). Анализ координат 87 частиц космических лучей с энергиями, превышающими 57х1018 eV, которые были зарегистрированы установкой Telescope Array (Юта) в 2008-2013 годах показал, что 19 из них (27%) концентрируются к области в созвездии Большая Медведица, которая по площади занимает только 6% неба.

Большая Медведица

Большая Медведица

Среди зафиксированных частиц максимальная энергия составляла 162.2х1018 eV, что почти в 2 раза меньше чем у “частицы Бога“ 1991 года. Стоимость установки Telescope Array (507 детекторов на площади 700 кв. км) составляет около 25 миллионов долларов. Модернизация установки стоимостью 6.4 миллиона долларов позволит увеличить количество собираемых данных в 5 раз.

Статистика частиц космических лучей по энергиям

Кроме того в Аргентине с 2008 года работает Pierre Auger Observatory, состоящая из 1600 детекторов размещенных на площади 3 тысяч км2. На 2015 год максимальная зарегистрированная энергия частиц была заключена между 1×1020 eV и 2×1020 eV.

Аргентинская обсерватория

Аргентинская обсерватория

Кроме связи частиц космических лучей ультравысоких энергий со сверхмассивными черными дырами обсуждается возможность их связи с частицами темной материи.

По мере технологического развития человеческая цивилизация получает возможность работать со всё большим диапазоном температур. Так температура горения древесины составляет 800—1000 °C, а температура промышленных взрывов для горных работ уже 2700—4200 °C. Температура в центре термоядерного взрыва достигает 400 млн. градусов. Создание дорогостоящего БАК позволило достичь ещё более экстремальных температур (энергий): 2-13 экзоК (1018 К).

С другой стороны в земных лабораториях учатся работать со сверхнизкими температурами. В 1877 году французский инженер Луи Кайете и швейцарский физик Рауль Пикте независимо друг от друга охладили кислород до жидкого состояния (90,2 К). В 1883 году Зигмунт Врублевски и Кароль Ольшевски выполнили сжижение азота (77,4 K). В 1898 году Джеймсу Дьюару удалось получить и жидкий водород (20,3 K). В 1893 году проблемой сверхнизких температур стал заниматься голландский физик Хейке Камерлинг-Оннес. Ему удалось создать лучшую в мире криогенную лабораторию, в которой 10 июля 1908 года им был получен жидкий гелий (4,2 К).

Хейке Камерлинг-Оннес (справа) с помощником Герритом Флимом

Хейке Камерлинг-Оннес (справа) с помощником Герритом Флимом

Позднее ему удалось довести его температуру до 1 Кельвина. Эксперименты Камерлинга-Оннеса с помощниками 8 апреля 1911 года неожиданно обнаружили, что при температуре в 3 K электрическое сопротивление ртути падает до нуля. Так было случайно открыто явление сверхпроводимости.

В последующие годы Хейке Камерлинг-Оннес осуществлял попытки получить твердый гелий. К 1918 году ему удалось получить температуру в 0.8 K, но гелий продолжал оставаться жидким. И только в 1926 году ученик Камерлинг-Оннеса Виллем Хендрик Кеезом смог получить 1 см³ твёрдого гелия, используя не только низкую температуру, но и повышенное давление. Гелий — единственный элемент, который не затвердевает, оставаясь в жидком состоянии, при атмосферном давлении и сколь угодно малой температуре. Переход в твёрдое состояние возможен только при давлении более 25 атм.
В 1995 году удалось получить первый бозе-эйнштейновский конденсат, агрегатное состояние вещества, основу которого составляют бозоны, охлаждённые до температур, близких к абсолютному нулю (меньше миллионной доли кельвина). В таком сильно охлаждённом состоянии достаточно большое число атомов оказывается в своих минимально возможных квантовых состояниях, и квантовые эффекты начинают проявляться на макроскопическом уровне. Для получения экзотического вещества использовался газ из атомов рубидия, охлаждённый до 170 наноКельвин (нК) (1,7х10−7 Кельвин). Используя это же вещество, в 2000 году удалось установить новый рекорд замедления скорости света – 0.2 мм/c. В 2014 году атомы рубидия удалось охладить до 50 пикоК (50х10−12 Кельвин).

В современных лабораториях, возможно, поддерживать постоянную температуру на уровне 1.7 миллиК. Так в 2014 году в течение 15 суток поддерживалась температура в 6 миллиК в объеме один кубический метр.

Источник

Поделиться ссылкой:

Абсолютной максимальной температурой является температура Планка

Есть ли максимальная температура?




Абсолютной максимальной температурой является температура Планка

Разговор о самой прохладной температуре кажется относительно простым. Самой низкой температурой является абсолютный ноль. Как вы знаете, движение вызывает трение, которое образует нагрев. Как таковым абсолютным нолем считается состояние, когда все движение останавливается. Эта минимальная температура составляет -273,16 градусов по Цельсию. Человечество подошло к этой невероятно низкой температуре довольно близко. Так, совсем недавно ученые из Массачусетского технологического института (MIT) охладили молекулы до 500 нанокельвинов – это всего лишь на волосок выше абсолютного нуля и более чем в миллион раз холоднее межзвездного пространства.

Но как насчет самой высокой температуры? Есть ли абсолютная жара?

 

Прежде чем ответить на этот вопрос, давайте посмотрим, какие высокие температуры есть в нашем мире и во Вселенной. 

 

Какая самая высокая температура на Земле?




Абсолютной максимальной температурой является температура Планка

Самая высокая температура, когда-либо зарегистрированная на поверхности Земли, составляет 56,7 ° C. Этот максимум зафиксирован в 1913 году в Долине Смерти в Калифорнии, США. Но, как известно, этой температуре очень далеко до самой высокой температуры во Вселенной.

 

Смотрите также

 

Какая самая высокая температура на Солнце?

Абсолютной максимальной температурой является температура Планка

Очевидно, что Солнце – это первое, что всплывает в нашей голове, когда мы думаем о самых горячих вещах во Вселенной или, по крайней мере, о нашей Солнечной системе. Температура на его поверхности составляет около 5500 ° C, в то время как в его ядре температура может достигать 15 миллионов ° C.




Абсолютной максимальной температурой является температура Планка

Чтобы понять, насколько это жарко, попробуйте представить, что до этой температуры мы нагрели железный шар. Тепло от этого шара мгновенно убило бы все живое в радиусе 2000 километров! Если вам все еще недостаточно жарко, давайте посмотрим на звезды, которые даже горячее нашего Солнца.

 

Есть ли звезды с температурой больше Солнца?




Абсолютной максимальной температурой является температура Планка

Конечно. Довольно невзрачный белый карлик в туманности Красный Паук сияет при температуре 300 000 ° C, которая более чем в 50 раз горячее поверхности нашего Солнца. Еще круче этого есть квазары, где сжигается в 100 раз больше энергии, чем во всем Млечном Пути! Газ вокруг квазара может достигать температуры 80 миллионов ° C.

 

Смотрите также

 

Субатомные температуры




Абсолютной максимальной температурой является температура Планка

Как видите, мы все выше и выше поднимаемся по температурной лестнице Вселенной. Далее нам снова нужно вернуться из космоса на на Землю. Самая высокая температура, с которой мы когда-либо сталкивались, зафиксирована в Большом адронном коллайдере. Находясь в Швейцарии, эта машина используется учеными для наблюдения за событиями, происходящими во время высокоскоростных столкновений между атомными частицами. 




Абсолютной максимальной температурой является температура Планка

Когда частицы, ускоренные до околосветной скорости, сталкиваются вместе, выделяется невероятное количество энергии. Так, в течение доли секунды температура достигает 4 триллионов ° C, что намного выше, чем при взрыве сверхновой или ядерном взрыве! Эта температура достаточно высока, чтобы растопить даже субатомные частицы, сделав из них грязный суп. 

 

Итог




Абсолютной максимальной температурой является температура Планка

В стандартной модели Вселенной самая высокая из когда-либо зафиксированных температур была достигнута за доли секунды после Большого взрыва. В течение этого незначительного периода времени излучаемый свет имел длину волны 10 ^ -35 метров. Эта длина называется длиной Планка и является наименьшей измеримой длиной во Вселенной. Из-за этой небольшой длины волны температура достигала 1,416808·1032 кельвинов, или 142 квинтиллиона кельвинов (142 ниллионда по короткой шкале), что называется температурой Планка и является самым близким определением «абсолютной жары», которое мы имеем в настоящее время.

 

Помимо того, что температура Планка является самой высокой температурой, когда-либо теоретически достигнутой в нашей Вселенной, физики предполагают, что при любой температуре, превышающей стандарт Планка, гравитационные силы затронутых частиц станут настолько сильными, что они могут создать черную дыру. Черная дыра, которая создается из энергии, а не из материи, называется «кугельблиц». Наши общепринятые в настоящее время модели физики рушатся на фоне этого явления, оставляя многие вопросы без ответа.

 

Если вы что-то не поняли, предлагаем посмотреть этот ролик, из которого вы обязательно поймете многие вещи по этой теме:

 

 

Какую самую высокую температуру может пережить человек?




Абсолютной максимальной температурой является температура Планка

Наши клетки начинают умирать при температуре от 41 ° C до 45 ° C, но мы можем пережить гораздо более высокие температуры воздуха: здоровый человек может совершить однодневную поездку в Долину Смерти, США, в один из самых жарких дней – при -56 ° C, и, если он будет избегать обезвоживания, вероятно, не умрет.

Самая высокая и самая низкая температура Вселенной получены на Земле | Что было, что будет

Самая высокая и самая низкая температура во Вселенной

Какая температура самая большая во Вселенной?

Это поразительно, но самая высокая температура во Вселенной в 10 триллионов градусов по Цельсию была получена искусственным путем на Земле. По информации ресурса DuGGeR абсолютный рекорд температуры был установлен 7 ноября 2010 года в Швейцарии при эксперименте на Большом адронном коллайдере – БАК (самом мощном в мире ускорителе элементарных частиц).

В рамках эксперимента на БАК ученые поставили задачу – получить кварк-глюонную плазму, которая заполняла Вселенную в первые мгновения ее возникновения после Большого взрыва. С этой целью на скорости, близкой к скорости света, ученые столкнули пучки ионов свинца, обладающие колоссальной энергией. При столкновении тяжелых ионов начали возникать “мини-большие взрывы” – плотные огненные сферы, имевшие столь чудовищную температуру. При таких температурах и энергиях ядра атомов буквально плавятся и образуют “бульон” из составляющих их кварков и глюонов. В результате в лабораторных условиях и была получена кварк-глюонная плазма с самой высокой температурой с момента возникновения Вселенной.

До этого ни в одном эксперименте ученым еще не удавалось получить столь немыслимо высокой температуры. Для сравнения: температура распада протонов и нейтронов составляет 2 триллиона градусов по Цельсию, температура нейтронной звезды, которая формируется сразу после взрыва сверхновой, составляет 100 миллиардов градусов.

Наше родное Солнце относится к желтым карликам и имеет температуру ядра в 50 миллионов градусов. Таким образом, температура полученной кварк-глюонной плазмы в 200 тысяч раз превысила температуру ядра Солнца. В тоже время в окружающем космосе обычно царит первозданный холод, так как средняя температура Вселенной только на 0,7 градуса выше абсолютного нуля.

Какая температура самая низкая во Вселенной?

А теперь угадайте – где и как была получена самая низкая температура во Вселенной? Правильно! Тоже на Земле.

В 2000 году группа финских ученых (из лаборатории низких температур Технологического университета в Хельсинки), которая занималась изучением магнетизма и сверхпроводимости в редком металле “Родий”, удалось получить температуру 0,1 нК  — пишет DuGGeR. В настоящее время это самая низкая температура, полученная на Земле и Самая низкая температура во Вселенной.

Второй по снижению температуры рекорд был установлен в Массачусетском Технологическом Институте. В 2003 году там удалось получить сверх-холодный газ Натрия.

Получение сверхнизких температур, искусственным путем, является выдающимся достижением человечества. Исследования в этой области чрезвычайно важны для изучения эффекта сверхпроводимости, использование которого (в свою очередь) может вызвать настоящую индустриальную революцию.

В природе самая низкая температур была зарегистрирована в туманности Бумеранг. Эта туманность расширяется и выбрасывает охлажденный газ со скоростью 500 000 км/ч. За счет огромной скорости выброса молекулы газа охладились до —271 °С. Это является самой низкой из официально зарегистрированных естественных температур.

Для сравнения. Обычно, в открытом космосе температура не опускается ниже -273 °С. Самая низкая температура в Солнечной системе, —235 °С на поверхности Тритона (спутник Нептуна). А самая низкая естественная температура на Земле , —89,2 °С, в Антарктиде.

Cамая высокая температура во Вселенной

Какая температура самая большая во Вселенной?

Это поразительно, но самая высокая температура во Вселенной в 10 триллионов градусов по Цельсию была получена искусственным путем на Земле. Абсолютный рекорд температуры был установлен 7 ноября 2010 года в Швейцарии при эксперименте на Большом адронном коллайдере — БАК (самом мощном в мире ускорителе частиц).

В рамках эксперимента на БАК ученые поставили задачу — получить кварк-глюонную плазму, которая заполняла Вселенную в первые мгновения ее возникновения после Большого взрыва. С этой целью на скорости, близкой к скорости света, ученые столкнули пучки ионов свинца, обладающие колоссальной энергией. При столкновении тяжелых ионов начали возникать «мини-большие взрывы» — плотные огненные сферы, имевшие столь чудовищную температуру. При таких температурах и энергиях ядра атомов буквально плавятся и образуют «бульон» из составляющих их кварков и глюонов. В результате в лабораторных условиях и была получена кварк-глюонная плазма с самой высокой температурой с момента возникновения Вселенной.

До этого ни в одном эксперименте ученым еще не удавалось получить столь немыслимо высокой температуры. Для сравнения: температура распада протонов и нейтронов составляет 2 триллиона градусов по Цельсию, температура нейтронной звезды, которая формируется сразу после взрыва сверхновой, составляет 100 миллиардов градусов.

Выше температуры звезд

Согласно спектральной классификации Моргана-Кинана все звезды делятся на следующие классы по светимости, размеру и температуре:
О — голубые гиганты — 30000-60000 гр. Кельвина (Вега)
В — бело-голубые гиганты 10000-30000 гр. Кельвина (Сириус)
А — белые гиганты 7500-10000 гр. Кельвина (Альтаир)
F — желто-белые звезды 6000-7500 гр. Кельвина (Капелла)
G — желтые карлики 5000-6000 гр. Кельвина (Солнце)
К — оранжевые звезды 3500-5000 гр. Кельвина (не знаю примера)
М — красные гиганты 2000-3500 гр. Кельвина (Антарес)

Наше родное Солнце относится к желтым карликам и имеет температуру ядра в 50 миллионов градусов. Таким образом, температура полученной кварк-глюонной плазмы в 200 тысяч раз превысила температуру ядра Солнца. В тоже время в окружающем космосе обычно царит первозданный холод, так как средняя температура Вселенной только на 0,7 градуса выше абсолютного нуля.

Но почему при столкновении ионов свинца получаются такие высокие температуры?

Все дело в заряде частиц. Чем он больше, тем больше энергия, до которой частица разгоняется в поле коллайдера. Кроме того, ион сам по себе довольно крупный объект. Поэтому при столкновении таких частиц, да еще разогнанных до огромных энергий, и рождается вещество с фантастической температурой.

Кстати, они (ионы) никакой опасности не представляют, так как количество сверх-разогретого вещества очень мизерное, меньше, чем атом.

Прежний рекорд- 4 триллиона градусов, установленный в Брукхейвенской национальной лаборатории (США), продержался всего пару месяцев. Для этого в коллайдере сталкивали ионы золота. Но уже тогда многие ученые предсказывали, что БАК превзойдет этот рекорд, ведь ионы свинца значительно тяжелее ионов золота.

Полученная учеными рекордная температура в 10 триллионов градусов по Цельсию держалась только несколько миллисекунд, но за это время было получено столько интересных данных, что на их анализ пришлось потратить несколько лет. Проводилось множество измерений и полученные данные многократно уточнялись и перепроверялись. После того как появилась уверенность, что кварк-глюонная плазма была получена, различные показатели пересчитали в давление и рекордную температуру.

В течение считанных микросекунд после Большого Взрыва Вселенная состояла из аналогичной кварк-глюонной плазмы, которая представляет собой не ионизированный газ, а скорее жидкость, лишенную вязкости и текущую почти без трения. В дальнейшем (по мере остывания) кварки объединяются в нейтроны и протоны, а уже из них возникают ядра атомов.

Что дальше?

Физики уверены, что при помощи БАК им удалось поймать мгновение перед тем, как плазма конденсировалась в адроны и мгновение до того, как было создано неравновесное состояние между материей и антиматерией (в другом случае наша Вселенная была бы наполнена лишь чистой энергией). Таким образом, проводимые исследования позволяют лучше понять процессы, которые происходили на ранних стадиях развития космоса. В конечном итоге ученые надеются еще больше приблизиться к пониманию того, как и почему из массы однородного кварк-глюонного «супа» возникла существующая материя

Возникновение такого особого состояния вещества, как кварк-глюонная плазма, является ключевым предсказанием квантовой хромодинамики. Согласно ей, по мере того, как ученым удастся воссоздавать условия все более ранних моментов эволюции нашей Вселенной, они увидят как, так называемое сильное взаимодействие, удерживающее нейтроны и протоны внутри атомного ядра, сойдет на нет.

Теперь с помощью установленного на БАКе детектора ALICE массой в 10 тысяч тонн, ученые смогут изучать условия, существовавшие во Вселенной всего через миллисекунду после давшего ей начало Большого взрыва.

Трудно даже предположить, какие еще открытия ожидают человечество впереди.

Смотрите также:
Самая высокая температура во вселенной
Самая низкая температура во вселенной
Самый-самый
Самое большое животное за всю историю земли
Что убило динозавров?
Самые высокие горы в Солнечной системе. Top-10
Самое крупное животное за всю историю земли
Самое тяжелое животное за всю историю земли
Самый большой хищник за всю историю Земли
Самый большой сухопутный хищник за всю историю Земли
Самое большое животное, когда-либо жившее на земле
Где живут самые красивые женщины в мире?
Самые необычные и фантастические места на Земле

Самое холодное место во вселенной

Насколько холоден холодный космос? Обычно температура в нем не опускается ниже температуры пронизывающего всю вселенную реликтового излучения. Но там, где умирают звезды, может быть еще холоднее. Такое место есть в препланетарной туманности Бумеранг.

На расстоянии за 149 600 000 км от Солнца средняя температура на Земле держится в районе 300 К (правда, нас еще обогревает горячее ядро планеты, а без атмосферы было бы на 50 К холоднее. Чем дальше от ближайшей звезды, тем холоднее. На Плутоне, например, всего 44 К — при этой температуре замерзает даже азот, а значит, наша атмосфера выпала бы в осадок, ведь азота в ней 80%. А в межзвездном пространстве за пределами Солнечной системы еще холоднее.

Вещество в молекулярных облаках, которые плавают по галактике в световых годах от ближайших звезд, имеет температуру от 10 до 20 К, близко к абсолютному нолю. Холоднее, чем в них, в галактике не становится: все остальные ее участки так или иначе согреты излучением звезд.

Если заглянуть в межгалактическое пространство, можно замерзнуть еще сильнее, чем в молекулярном облаке вдалеке от источников излучения. Галактики разделены миллионами световых лет пустоты, и единственное излучение, которое доходит до всех уголков космоса — это реликтовое микроволновое излучение, оставшееся со времен Большого Взрыва. Температура реликтового излучения — это и есть температура межгалактического пространства, и она не может упасть ниже 2,725 К. Может показаться, что в природе не может быть места холоднее. Однако это не так.

Точнее, будет не так. Чтобы температура излучения в межгалактическом пространстве опустилась ниже 2,725 К, нужно подождать, пока Вселенная еще немного расширится (она уже и так это делает со скоростью примерно 770 км/с на 3.26 миллионов световых лет). Сейчас старушке-вселенной 13,78 миллиардов лет, а когда станет вдвое больше, реликтового излучения хватит едва ли на один градус выше абсолютного ноля.

Путешествие по Луне в 4K: ютубер осовременил запись с лунного ровера

Температурная карта препланетарной туманности Бумеранг

А теперь сюрприз: найти такое холодное место во вселенной можно уже сейчас! И даже относительно недалеко от дома: в туманности Бумеранг, которая удобно расположилась в каких-то 5000 световых лет от Земли.

В центре туманности Бумеранг находится умирающая звезда, которая когда-то была желтым карликом, как наше Солнце. Как и остальные звезды того же спектрального класса, звезда в туманности Бумеранг превратилась в красный гигант и закончила жизнь в системе из белого карлика и препланетарной туманности вокруг него.

ESA/NASA.
Туманность Бумеранг — самое холодное место во вселенной

Планетарная туманность — это остатки периферийного вещества красного гиганта, которое звезда сбросила, когда ее центр сжался до белого карлика. Однако прежде чем превратиться в планетарную туманность, красный карлик должен немного побыть препланетарной туманностью. А если в препланетарной туманности сойдутся все необходимые условия, то температура в ней может опуститься ниже самой низкой во вселенной. Это показали расчёты индийского астронома Равендры Сахая еще до того, как его команда создала температурную карту Бумеранга и удостоверилась, что там действительно невероятно холодно.

Препланетарная туманность возникает, когда температура в ядре звезды повышается, а периферия только начинает отделяться. Выброс вещества происходит чаще всего одним-двумя джетами — потоками плазмы, берущими начало во внешних слоях вещества звезды. Джеты живут совсем недолго по космическим меркам: всего несколько тысяч лет. Если плазма в джетах движется достаточно быстро (а в Бумеранге это так), звезда теряет вещество с огромной скоростью. И именно из-за такой невероятной скорости, с которой вещество уходит из звезды, в ней возникают области, где температура вещества равняется 0,5 К — ниже любого другого места во вселенной.

Причина этого явления в том же, почему воздух, который вы выдуваете сложив губы трубочкой, оказывается холоднее 36,6 °C и холоднее воздуха, который вы выдыхаете с широко открытым ртом. Тепловая энергия молекул расходуется, переходя в кинетическую энергию движения, и воздух остывает.

Самая высокая температура во Вселенной измерена

ВАШИНГТОН (ISNS) — Вы не найдете самого горячего места на планете в Калифорнийской Долине Смерти или даже в расплавленном ядре Земли. Честь достается туннелю на глубине 12 футов под снегом, который сейчас покрывает Лонг-Айленд, штат Нью-Йорк, где каждый день происходят крошечные взрывы, более мощные, чем атомная бомба.

Огненные взрывы, созданные «разрушителем атомов» в Брукхейвенской национальной лаборатории в Аптоне, установили новый рекорд самой высокой температуры из когда-либо измеренных: 4 триллиона градусов Цельсия.Это намного горячее, чем в центре Солнца (всего 15 миллионов градусов), и примерно в 40 раз сильнее, чем сверхновые, вызванные взрывами умирающих звезд.

«Это более высокая температура, чем все, что мы знаем о Вселенной», — сказал физик Стивен Вигдор из BNL, член группы, которая сообщила о новом рекорде 15 февраля на собрании Американского физического общества в Вашингтоне, округ Колумбия.

Но Вигдор и его коллеги не делают оружие из своих рекордных подземных огненных шаров.Каждый взрыв намного меньше атома, слишком мал, чтобы быть разрушительным.

Ученые путешествуют во времени.

Их эксперименты стремятся воссоздать первую микросекунду после Большого взрыва, когда термометр, застрявший в новорожденной Вселенной, показал бы температуру в несколько триллионов градусов. Согласно современным теориям, до появления первых планет, галактик и даже атомов пространство было заполнено горячим супом из крошечных частиц, называемых кварками и глюонами.

Итак, эти теории были впервые окончательно подтверждены. Экстремальные температуры взрывов ученых подтверждают, что они успешно приготовили крошечные капли этого исконного супа — вещества, называемого «кварк-глюонная плазма», которого не существовало почти 14 миллиардов лет.

Как приготовить субатомный суп

Рецепт кварк-глюонной плазмы требует триллионов «ионов» золота — обнаженных атомов, лишенных внешней оболочки электронов, так что остаются только твердые центры.Эти тяжелые ионы золота ускоряются почти до скорости света на релятивистском коллайдере тяжелых ионов BNL (RHIC, произносится как «Рик»), подземном ипподроме длиной 2,4 мили.

Два луча, заполненные частицами золота, движутся в противоположных направлениях по двум полосам кругового пути. Там, где пересекаются переулки, пересекаются балки. Большинство крошечных кусочков золота безвредно проносятся друг от друга, но некоторые врезаются друг в друга и взрываются.

«Мы проанализировали около тысячи столкновений в секунду, всего около миллиарда», — сказала Барбара Джакак из Университета Стоуни-Брук в Нью-Йорке.

В тепле, генерируемом лобовым столкновением, ионы золота разрываются на частицы, которые плавятся, создавая каплю сверхгорячей кварк-глюонной плазмы размером не больше атома.

«Мы сбрасываем огромное количество энергии в очень маленький объем», — сказал Вигдор.

Эта плазма существует только краткое мгновение. Если бы секунда была размером со все пляжи на планете, то время, в течение которого плазма держится, было бы меньше песчинки.

Чрезвычайно маленький и невероятно короткий

Как ученые измеряют температуру того, что происходит за такое короткое время и в таком крошечном пространстве?

Детекторы RHIC не могут непосредственно видеть кварк-глюонную плазму. Вместо этого они работают в обратном направлении от свидетельств, оставшихся после столкновения ионов золота.

Столкновения создают миниатюрные вспышки света, регистрируемые детекторами. Сложенные вместе многие столкновения создают свечение, которое можно измерить, чтобы вычислить их температуру.

Другие свидетельства показали в 2005 году, что эта кварк-глюонная плазма представляет собой жидкость почти без трения, похожую на воду, но даже более гладкую. Четырнадцать миллиардов лет назад вся Вселенная текла на долю секунды.

Эксперименты будут продолжены на Лонг-Айленде и на Большом адронном коллайдере в Швейцарии, которые исследуют способы столкнуть вместе еще более тяжелые ионы при еще более высоких энергиях и температурах, которые приближают ученых к самому горячему моменту в истории — самому Большому взрыву.

.

Самые низкие и самые высокие температуры в известной Вселенной (Инфографика)

Довольно Диапазон

Земля может показаться местом с большим разнообразием, и во многих отношениях это так. Наша планета является домом для организмов, которые меньше кончика иглы, а некоторые из них размером с здание (например, синий кит) или человека (например, медуза Номура).

Щелкните, чтобы просмотреть полную инфографику

Но по правде говоря, многие вещи на Земле действительно довольно ручные. По крайней мере, насколько нам известно, они ручные.Температура окружающей среды — один из примеров. Она может меняться на 50 градусов от зимы к лету, плюс-минус немного, но на самом деле это не большая разница в общей схеме вещей.

Для сравнения: самая высокая температура, известная как температура Планка, составляет более 100 миллионов миллионов миллионов миллионов миллионов градусов, или 10 32 К. Как заметил главный редактор NOVA Online Питер Тайсон: «Вы просто нельзя рассматривать такую ​​температуру в перспективе. Невозможно осмыслить это число.Сказать, что температура 10 32 K — это все равно, что сказать, что Вселенная занимает какое-то пространство ».

Теория всего

Если мы попытаемся подняться выше температуры Планка, физика сломается. Буквально. Гравитация становится такой же сильной, как и другие фундаментальные силы, и, по сути, все они становятся одной силой.

Это то, что мы ищем: математика, лежащая в основе этой единственной силы. Это теория всего, своего рода квантовая гравитация. К сожалению, пока это нам не под силу, и поэтому самой высокой температурой остается как бы потолок.Но теперь я немного отклоняюсь от темы.

Дело, однако, в том, что самый горячий и самый холодный холод поразят вас, и вы должны проверить приведенную ниже инфографику от BBC Future, чтобы лучше понять, что на самом деле означают горячее и холодное.

Изображение предоставлено BBC.

Какая самая высокая известная температура во Вселенной?

Здесь становится жарко

Каждый атом во Вселенной любит тепло. Им так нравится тепло, что атомы и субатомные частицы вибрируют и двигаются, когда они горячие. Чем они горячее, тем быстрее двигаются. По тем же самым линиям, чем они холоднее, тем медленнее движутся.

Фактически, при абсолютном нуле (0 Кельвина, −273 ° C или −460 ° F) все движения атомов полностью прекращаются. Холоднее этого не может быть.Это похоже на попытку пойти на юг от Южного полюса или на север от Северного полюса; это не только не произойдет, но и не может быть.

Самое горячее, что мы знаем (и видели), на самом деле намного ближе, чем вы думаете. Это прямо здесь, на Земле, на Большом адронном коллайдере (LHC). Когда они сталкиваются вместе, за долю секунды температура достигает 7,2 триллиона градусов по Фаренгейту. Это горячее, чем взрыв сверхновой.

Но можем ли мы стать горячее?

Теоретически да.Первым претендентом на самую высокую температуру является температура Планка, которая равна 100 миллионам миллионов миллионов миллионов миллионов градусов, или 10 32 К. Вы просто не можете представить себе такую ​​температуру в перспективе. Невозможно осмыслить это число. Сказать, что температура 10 32 K — это все равно, что сказать, что Вселенная занимает некоторое пространство.

Это настолько горячо, насколько это возможно в обычной физике, потому что, когда становится еще жарче, обычная физика просто перестает работать.Бывают странные вещи. Гравитационная сила становится такой же сильной, как и три других естественных силы (электромагнетизм, сильная и слабая ядерные силы), и они сливаются в одну объединенную силу. Понимание того, как это происходит, называется «теорией всего» — святым Граалем современной теоретической физики… чего мы в настоящее время не понимаем.

Щелкните, чтобы просмотреть полную инфографику

Температура Хагедорна — это самая высокая температура, которую, по нашему мнению, мы можем достичь.Это момент, когда адронная материя (вся обычная, обычная материя Вселенной) перестает быть стабильной и полностью разрушается. Мы достигаем этой точки примерно при 2 x 10 12 К. Примечательно, что некоторые физики-теоретики утверждают, что в этот момент адронная материя не «испаряется», а вместо этого переходит в кварковую материю, которую затем можно нагреть. Однако кварковая материя — это теоретическая фаза, и мы не уверены, существует ли она на самом деле.

Еще один претендент на самую высокую температуру во Вселенной любезно предоставлен теоретиками струн, которые говорят, что самая высокая температура составляет 10 30 K, что немного ниже, чем у конкурента выше.Это связано с тем, что теоретики струн считают, что самые основные вещи во Вселенной — это не обычные частицы, с которыми мы все знакомы, а вибрирующие струны, у которых температура Хагедорна отличается от температуры адронов.

К сожалению, невозможно проверить предсказания, сделанные теоретиками струн (и множество других предсказаний, которые существуют в таких крайностях). В результате мы не знаем точно, какая на самом деле самая высокая температура. Но, по мнению физиков, упомянутые выше — лучшие претенденты.

.

Квантовый термометр для измерения самых низких температур во Вселенной — ScienceDaily

Физики из Тринити-колледжа в Дублине предложили термометр, основанный на квантовой запутанности, который может точно измерять температуры в миллиард раз холоднее, чем в открытом космосе.

Эти сверххолодные температуры возникают в облаках атомов, известных как ферми-газы, которые созданы учеными для изучения поведения вещества в экстремальных квантовых состояниях.

Работой руководила группа QuSys из Trinity с докторантами, доктором Марком Митчисон, доктором Джакомо Гарнери и профессором Джоном Гулдом, в сотрудничестве с профессором Стивом Кэмпбеллом (UCD), доктором Томасом Фогарти и профессором Томасом Бушем, работающими в OIST, Окинава, Япония.

Обсуждая предложение, профессор Гулд, глава группы QuSys компании Trinity, объясняет, что такое сверххолодный газ. Он сказал:

«Стандартный способ, которым физики думают о газе, — это использовать теорию, известную как статистическая механика. Эта теория была изобретена гигантами физики, такими как Максвелл и Больцман, в 19 веке. Эти ребята возродили старую идею из греческого философы утверждали, что макроскопические явления, такие как давление и температура, можно понять в терминах микроскопического движения атомов.Мы должны помнить, что в то время идея о том, что материя состоит из атомов, была революционной ».

«На заре 20-го века появилась другая теория. Это квантовая механика, и это, возможно, самая важная и точная теория, которая у нас есть в физике. Известное предсказание квантовой механики состоит в том, что отдельные атомы приобретают волнообразные свойства. , что означает, что ниже критической температуры они могут объединяться с другими атомами в единую макроскопическую волну с экзотическими свойствами.Это предсказание привело к столетнему экспериментальному поиску достижения критической температуры. Успех был наконец достигнут в 90-х годах с созданием первых ультрахолодных газов, охлаждаемых лазерами (Нобелевская премия 1997 г.) и удерживаемых сильными магнитными полями — подвиг, который получил Нобелевскую премию в 2001 г. »

«Такие сверххолодные газы сейчас обычно создаются в лабораториях по всему миру, и у них есть много применений, от проверки фундаментальных физических теорий до обнаружения гравитационных волн.Но их температуры невероятно низкие при нанокельвинах и ниже! Чтобы дать вам представление, один кельвин равен -271,15 градуса по Цельсию. Эти газы в миллиард раз холоднее этого — самые холодные места во Вселенной, и они создаются прямо здесь, на Земле ».

Так что же такое ферми-газ?

«Все частицы во Вселенной, включая атомы, относятся к одному из двух типов, называемых« бозонами »и« фермионами ». Ферми-газ состоит из фермионов, названных в честь физика Энрико Ферми.При очень низких температурах бозоны и фермионы ведут себя совершенно по-разному. В то время как бозоны любят собираться вместе, фермионы делают наоборот. Они идеальные социальные дистанции! Это свойство фактически затрудняет измерение их температуры ».

Доктор Марк Митчисон, первый автор статьи, объясняет:

«Традиционно температура сверххолодного газа определяется его плотностью: при более низких температурах атомам не хватает энергии, чтобы разойтись далеко друг от друга, что делает газ более плотным.Но фермионы всегда держатся далеко друг от друга, даже при сверхнизких температурах, поэтому в какой-то момент плотность ферми-газа ничего не говорит вам о температуре ».

«Вместо этого мы предложили использовать в качестве зонда другой тип атома. Допустим, у вас есть ультрахолодный газ, состоящий из атомов лития. Теперь вы берете другой атом, скажем, калий, и погружаете его в газ. Столкновения с окружающие атомы изменяют состояние вашего зонда калия, и это позволяет вам сделать вывод о температуре.Технически говоря, наше предложение включает создание квантовой суперпозиции: странное состояние, в котором атом зонда одновременно взаимодействует и не взаимодействует с газом.Мы показали, что эта суперпозиция изменяется со временем очень чувствительно к температуре ».

Д-р Джакомо Гварньери приводит следующую аналогию:

«Термометр — это система, физические свойства которой изменяются с температурой предсказуемым образом. Например, вы можете измерить температуру своего тела, измерив расширение ртути в стеклянной трубке. Наш термометр работает аналогичным образом, но вместо ртути мы измеряем состояние отдельных атомов, которые связаны (или коррелированы) с квантовым газом.«

Профессор Стив Кэмпбелл, UCD, примечания:

«Это не просто широко распространенная идея — то, что мы предлагаем здесь, на самом деле может быть реализовано с использованием технологий, доступных в современных лабораториях атомной физики. То, что такую ​​фундаментальную физику можно проверить, действительно удивительно. Среди различных появляющихся квантовых технологий, квантовые датчики, такие как наш термометр, скорее всего, окажут самое непосредственное влияние, поэтому это своевременная работа, и по этой причине она была подчеркнута редакторами журнала « Physical Review Letters ».«

Профессор Гулд добавляет:

«Фактически, одна из причин, по которой эта статья была подчеркнута, заключалась именно в том, что мы провели расчеты и численное моделирование с особым акцентом на эксперименте, который был проведен в Австрии и опубликован несколько лет назад в журнале Science. Здесь ферми-газ представляет собой разбавленный газ захваченных атомов лития, которые контактировали с примесями калия. Экспериментаторы могут контролировать квантовое состояние с помощью радиочастотных импульсов и измерять информацию о газе.Это операции, которые обычно используются в других квантовых технологиях ».

«Доступные временные шкалы просто поразительны и будут беспрецедентными в традиционных экспериментах по физике конденсированного состояния. Мы рады, что наша идея использовать эти примеси в качестве квантового термометра с исключительной точностью может быть реализована и протестирована с помощью существующих технологий».

Профессор Гулд и его исследовательская группа QuSys поддерживаются Ирландским научным фондом. Он является стипендиатом исследовательской стипендии Университета Королевского общества и стартового гранта Европейского исследовательского совета.Недавно он был избран членом Молодёжной академии Европы.

.

Оставьте комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *